Merge pull request #21 from MattiaMontanari/ce

Minimalistic community edition (CE) library
fixes-turtlebasket
Mattia Montanari 2022-07-09 23:18:13 +02:00 committed by GitHub
commit 1b848558f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 1575 additions and 7328 deletions

View File

@ -1,92 +1,82 @@
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# ##### # # # #
# #### ##### ###### # # # # # # # #
# # # # # # ## # # # # # #
# # # # # ##### # # # # #### # ### #
# # # ##### # # # # # # # # # # #
# # # # # # ## # # # # # # #
# #### # ###### # # ##### ##### # # #
# #
# This file is part of openGJK. #
# #
# OpenGJK is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# any later version. #
# #
# OpenGJK is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with OpenGJK. If not, see <https://www.gnu.org/licenses/>. #
# #
# openGJK: open-source Gilbert-Johnson-Keerthi algorithm #
# Copyright (C) Mattia Montanari 2018 - 2020 #
# http://iel.eng.ox.ac.uk/?page_id=504 #
# #
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
cmake_minimum_required(VERSION 3.13)
set(CMAKE_POLICY_DEFAULT_CMP0079 NEW)
set(LIBRARY_VERSION "2.0.3")
project(openGJKlib VERSION ${LIBRARY_VERSION} LANGUAGES C)
set(CMAKE_C_STANDARD 11)
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
include(CMakeDefaults)
include(CompilerFlags)
include(PlatformDefaults)
message( "[${PROJECT_NAME}] CMake setting ..")
message(STATUS "Version : " ${CMAKE_PROJECT_VERSION} )
message(STATUS "Build type : " ${CMAKE_BUILD_TYPE} )
# Specify project specific and user custum options
include(CMakeProjectOptions)
set( SOURCE_FILES src/openGJK.c )
set( SOURCE_HEADS include/openGJK/openGJK.h)
IF(BUILD_STATIC_LIB)
add_library(${PROJECT_NAME} STATIC ${SOURCE_FILES} ${SOURCE_HEADS})
add_definitions(-DCMAKE_WINDOWS_EXPORT_ALL_SYMBOLS=TRUE -DBUILD_SHARED_LIBS=FALSE)
ELSE()
add_library(${PROJECT_NAME} SHARED ${SOURCE_FILES} ${SOURCE_HEADS})
add_definitions(-DCMAKE_WINDOWS_EXPORT_ALL_SYMBOLS=TRUE -DBUILD_SHARED_LIBS=TRUE)
ENDIF(BUILD_STATIC_LIB)
set_target_properties(${PROJECT_NAME} PROPERTIES PUBLIC_HEADER ${SOURCE_HEADS})
# Add compiler flags
include(CompilerFlags)
# Install setup
install(TARGETS ${PROJECT_NAME} PERMISSIONS WORLD_WRITE )
find_package(OpenMP REQUIRED)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif()
# Link include file
target_include_directories( ${PROJECT_NAME} PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
target_link_libraries(${PROJECT_NAME} ${CMOCKA_LIBRARY} )
set(DESTDIR "/usr")
INSTALL(TARGETS ${PROJECT_NAME}
LIBRARY DESTINATION "${DESTDIR}/lib"
PUBLIC_HEADER DESTINATION "${DESTDIR}/include"
)
if (WITH_EXAMPLES)
add_subdirectory(examples/c)
endif (WITH_EXAMPLES)
message(STATUS "Completed CMake setting for ${PROJECT_NAME}" )
# _____ _ _ __ #
# / ____| | | |/ / #
# ___ _ __ ___ _ __ | | __ | | ' / #
# / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < #
# | (_) | |_) | __/ | | | |__| | |__| | . \ #
# \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ #
# | | #
# |_| #
# #
# Copyright 2022 Mattia Montanari, University of Oxford #
# #
# This program is free software: you can redistribute it and/or modify it under #
# the terms of the GNU General Public License as published by the Free Software #
# Foundation, either version 3 of the License. You should have received a copy #
# of the GNU General Public License along with this program. If not, visit #
# #
# https://www.gnu.org/licenses/ #
# #
# This program is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS #
# FOR A PARTICULAR PURPOSE. See GNU General Public License for details. #
cmake_minimum_required(VERSION 2.8)
cmake_policy(SET CMP0048 NEW)
cmake_policy(SET CMP0079 NEW)
option(BUILD_EXAMPLE "Build demo" ON)
project(lib_opengjk_ce
LANGUAGES C
VERSION ${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}.${PROJECT_VERSION_PATCH}
DESCRIPTION "openGJK library"
HOMEPAGE_URL "https://mattiamontanari.com/opengjk"
)
set( C_STANDARD 99)
set( CMAKE_CXX_VISIBILITY_PRESET hidden)
set( CMAKE_VISIBILITY_INLINES_HIDDEN 1)
set( CMAKE_POLICY_DEFAULT_CMP0079 NEW)
set( CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
set( CMAKE_INCLUDE_CURRENT_DIR TRUE)
set( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -pedantic -Wunused-macros")
set( CMAKE_C_FLAGS_DEBUG "-O0 -g -Wall -Wno-unused-command-line-argument")
set( CMAKE_C_FLAGS_RELEASE "-O3 -Werror -Wno-unused-command-line-argument")
set( GK_PUBLIC_HEADER_DIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
add_library(${PROJECT_NAME}
STATIC
${CMAKE_CURRENT_SOURCE_DIR}/openGJK.c
${GK_PUBLIC_HEADER_DIR}/openGJK/openGJK.h
)
target_include_directories(
${PROJECT_NAME}
PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/include
${CMAKE_CURRENT_BINARY_DIR}
)
set_target_properties(${PROJECT_NAME}
PROPERTIES
PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/openGJK/openGJK.h
)
if(BUILD_EXAMPLE)
add_subdirectory(examples/c)
endif(BUILD_EXAMPLE)
if (UNIX)
install(TARGETS ${PROJECT_NAME} PERMISSIONS WORLD_WRITE )
set(DESTDIR "/usr")
INSTALL(TARGETS ${PROJECT_NAME}
LIBRARY DESTINATION "${DESTDIR}/lib"
PUBLIC_HEADER DESTINATION "${DESTDIR}/include"
)
endif (UNIX)
# Wrap up feedback on setup
message(STATUS "Version : " ${CMAKE_PROJECT_VERSION} )
message(STATUS "Build type : " ${CMAKE_BUILD_TYPE} )

674
COPYING
View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -1,151 +0,0 @@
# How to compile openGJK
Using openGJK is very simple. This guide will help you getting started compiling and using openGJK.
## Requirements
### Common requirements
1. A C compiler
2. [CMake](http://www.cmake.org) version 3.5 or above
## Building
First, you need to configure the compilation, using CMake.
1. Go inside the `build` dir. Create it if it doesn't exist.
2. Move into `build` dir and use `cmake ..`. On Windows you can specify `cmake -G "Visual Studio 15 2017 Win64" ..`, on Unix `cmake -G "Unix Makefiles" ..`.
### CMake standard options
- CMAKE_BUILD_TYPE: The type of build (can be Debug or Release)
- CMAKE_C_COMPILER: The path to the C compiler
### CMake options defined for openGJK
Options are defined in the following files:
- CmakeOptions.cmake
They can be changed with the -D option:
`cmake -DVERSION_ACCURATE=ON ..`
In addition to passing options on the command line, you can browse and edit
CMake options using `cmakesetup` (Windows), `cmake-gui` or `ccmake` (GNU/Linux
and MacOS X).
- Go to the build dir
- On Windows: run `cmakesetup`
- On GNU/Linux and MacOS X: run `ccmake ..`
### Install and run
If all above building commands were executed from `build`, the openGJK library can be found in the `build/src` directory.
You can run the binaries in `build/examples/*`.
To install the library copy the header file openGJK.h and the binaries in a folder accessible in the search path by all users (on Unix this would normally be /usr/local).
## Testing
TO REWRITE!!
As mention above you can turn on the unit tests and make it possible to easily
execute them:
`cmake -DCMAKE_BUILD_TYPE=Debug -DUNIT_TESTING=ON ..`
After that you can simply call `make test` in the build directory or if you
want more output simply call `ctest -V`.
If you want to enable the generation of coverage files you can do this by
using the following options:
`cmake -DCMAKE_BUILD_TYPE=Profiling -DUNIT_TESTING=ON ..`
After building it you will see that you have several coverage options in
`make help`
You should have `make ExperimentalCoverage` and running it will create
coverage files. The result is stored in Testing directory.
## Examples
This section presents three examples on how to use openGJK with C, C# and Matlab.
### C
This example illustrates how to include openGJK in an existing C
program.
All files for the example are in the `example1_c` folder. The executable built with
CMake reads the coordinates of two polytopes from the input files,
respectively userP.dat and userQ.dat, and computes the minimum distance
between them.
Notice that the input files must be in the folder from which the executable
is launched, otherwise an error is returned.
You can edit the coordinates in the input file to test different
polytopes; just remember to edit also the first number in the files
that corresponds to the numbers of vertices that the program will read.
### Matlab
This example illustrates how to invoke openGJK as a regular built-in
Matlab function. You will need to build mex files (find out the requisites from [Mathworks documentation](https://uk.mathworks.com/help/matlab/matlab_external/what-you-need-to-build-mex-files.html)).
Open Matlab and cd into the `example2_mex` folder. By running the
script `runme.m`, Matlab will first compile a mex file (telling you
about the name of the mex file generated) and will call the script
`main.m`. This invokes openGJK within Matlab and illustrates the
result.
The mex file may be copied and called from any other Matlab project.
### C# #
This example illustrates how to invoke openGJK in an applications written in C#. You will need [mono](http://www.mono-project.com/) and Microsoft Visual Studio toolchain for C# on Windows.
The only file required is in the `example3_csharp` folder. This can be compiled in Unix
with mono, or in Windows using Visual Studio. Notice that, however, the openGJK library
is compiled for a specific architecture (usually x64), and this breaks the portability
of the .NET application compiled in this example.
Below are the steps for compiling the C# application on Windows and Linux. Both
procedures assume the dynamic library of openGJK has been already compiled.
#### Compile on Windows
1. Move into the folder `example3_csharp` and create a new folder `example3`.
2. Copy into this folder the openGJK library or make it available in any directory.
3. Open Visual Studio and create a new project. As project type select **Console App (.NET Framework)**.
4. Add to this project the `main.cs` file
5. Set x64 as the target platform, compile the application and run it.
#### Compile on Linux
1. Move into the folder `example3_csharp` and create a new folder `example3`.
2. Copy into this folder the openGJK library or install is so that is available in any directory.
3. Move into that new folder and open a terminal.
4. Type `mcs -out:example3demo -d:UNIX ../main.cs`
5. Run the example by typing `mono example3demo`
## API user reference
```double gjk( struct bodyA, struct bodyB, struct simplex)```
### Documentation
The folder `doc` contains a Doxygen file for generating the documentation of the whole
library. To build the documentation cd into `doc` and call Doxygen from the command line simply by typing `doxygen`. If correctly installed, Doxygen will create html documentation with graphs illustrating the call stack of the functions of the library.
### Parameters
* **bodyA** The first body.
* **bodyB** The second body.
* **simplex** The simplex used the GJK algorithm at the first iteration.
### Returns
* **double** the minimum distance between bodyA and bodyB.
### Description
The function `gjk` computes the minimum Euclidean distance between two bodies using the
GJK algorithm. Note that the simplex used at the first iteration may be initialised by the user, but this is not necessary.

View File

@ -1,13 +1,50 @@
<!-- _____ _ _ __ >
< / ____| | | |/ / >
< ___ _ __ ___ _ __ | | __ | | ' / >
< / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < >
< | (_) | |_) | __/ | | | |__| | |__| | . \ >
< \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ >
< | | >
< |_| >
< >
< Copyright 2022 Mattia Montanari, University of Oxford >
< >
< This program is free software: you can redistribute it and/or modify it under >
< the terms of the GNU General Public License as published by the Free Software >
< Foundation, either version 3 of the License. You should have received a copy >
< of the GNU General Public License along with this program. If not, visit >
< >
< https://www.gnu.org/licenses/ >
< >
< This program is distributed in the hope that it will be useful, but WITHOUT >
< ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS >
< FOR A PARTICULAR PURPOSE. See GNU General Public License for details. -->
# Hello!
This is a simple and reliable C implementation of the Gilbert-Johnson-Keerthi (GJK) algorithm, [docs and details are available here](https://www.mattiamontanari.com/opengjk/).
# Get started
All contributes are all welcome. For instance you could add:
- Support for other shapes: quadrics and splines (easy)
- More python examples and test (easy)
- EPA algorithm (hard)
If you have some basic tools installed (git, compiler and cmake) clone this repo:
> openGJK, Copyright (c) 2018-2021
>
> Department of Engineering Science. University of Oxford, UK.
```
git clone
```
followed by these commands:
```
cmake -E make_directory build
cmake -E chdir build cmake -DRUN_UNITESTS=ON -DCMAKE_BUILD_TYPE=Release ..
cmake --build build
cmake -E chdir build/src/examples/c ./example_lib_opengjk_ce
cmake -E chdir "build/test" ctest --build-config Release
```
If you get no errors, the successfull output is:
> `Distance between bodies 3.653650`.
However, if you do get an error - any error - please file a bug! Support requests are welcome too.
# Beyond getting started
With the commands above you have built a demo example tha invokes the openGJK library. The library is statically linked and the distance between two bodies is computed and returned.
To learn how to use this library in your project the best place to start is the demo. Look at `main.c` and the other examples. In `examples/c/CMakeLists.txt` you can find how simple is to link using CMake.

View File

@ -1,51 +0,0 @@
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# ##### # # # #
# #### ##### ###### # # # # # # # #
# # # # # # ## # # # # # #
# # # # # ##### # # # # #### # ### #
# # # ##### # # # # # # # # # # #
# # # # # # ## # # # # # # #
# #### # ###### # # ##### ##### # # #
# #
# This file is part of openGJK. #
# #
# openGJK is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# any later version. #
# #
# openGJK is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with Foobar. If not, see <https://www.gnu.org/licenses/>. #
# #
# openGJK: open-source Gilbert-Johnson-Keerthi algorithm #
# Copyright (C) Mattia Montanari 2018 - 2019 #
# http://iel.eng.ox.ac.uk/?page_id=504 #
# #
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# Include srcdir and builddir in include path to save typing ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY} in every subdir
set(CMAKE_INCLUDE_CURRENT_DIR ON)
# Put the include dirs which are in the source or build tree
# before all other include dirs, so the headers in the sources
# are prefered over the already installed ones
# since cmake 2.4.1
set(CMAKE_INCLUDE_DIRECTORIES_PROJECT_BEFORE ON)
# Use colored output
set(CMAKE_COLOR_MAKEFILE ON)
# Create the compile command database for clang by default
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
# Always build with -fPIC
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
# Avoid source tree pollution
set(CMAKE_DISABLE_SOURCE_CHANGES ON)
set(CMAKE_DISABLE_IN_SOURCE_BUILD ON)

View File

@ -1,44 +0,0 @@
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# ##### # # # #
# #### ##### ###### # # # # # # # #
# # # # # # ## # # # # # #
# # # # # ##### # # # # #### # ### #
# # # ##### # # # # # # # # # # #
# # # # # # ## # # # # # # #
# #### # ###### # # ##### ##### # # #
# #
# This file is part of openGJK. #
# #
# openGJK is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# any later version. #
# #
# openGJK is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with Foobar. If not, see <https://www.gnu.org/licenses/>. #
# #
# openGJK: open-source Gilbert-Johnson-Keerthi algorithm #
# Copyright (C) Mattia Montanari 2018 - 2020 #
# http://iel.eng.ox.ac.uk/?page_id=504 #
# #
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
option(WITH_STATIC_LIB "Build static lib" OFF)
option(WITH_EXAMPLES "Build C example" ON)
# Default build type
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Release")
# APPLY USER OPTIONS
IF (WITH_STATIC_LIB)
set(BUILD_STATIC_LIB ON)
ENDIF (WITH_STATIC_LIB)
# FEEDBACK
message(STATUS " Build static lib (ON): " ${WITH_STATIC_LIB})
message(STATUS " Build C examples (ON): " ${WITH_EXAMPLES})

View File

@ -1,22 +0,0 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,109 +0,0 @@
include(AddCCompilerFlag)
include(CheckCCompilerFlagSSP)
if (UNIX)
#
# Check for -Werror turned on if possible
#
# This will prevent that compiler flags are detected incorrectly.
#
check_c_compiler_flag("-Werror" REQUIRED_FLAGS_WERROR)
if (REQUIRED_FLAGS_WERROR)
set(CMAKE_REQUIRED_FLAGS "-Werror")
if (PICKY_DEVELOPER)
list(APPEND SUPPORTED_COMPILER_FLAGS "-Werror")
endif()
endif()
add_c_compiler_flag("-std=gnu99" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wpedantic" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wall" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wshadow" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wmissing-prototypes" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wcast-align" SUPPORTED_COMPILER_FLAGS)
#add_c_compiler_flag("-Wcast-qual" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=address" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wstrict-prototypes" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=strict-prototypes" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wwrite-strings" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=write-strings" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror-implicit-function-declaration" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wpointer-arith" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=pointer-arith" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wdeclaration-after-statement" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=declaration-after-statement" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wreturn-type" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=return-type" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wuninitialized" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=uninitialized" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wimplicit-fallthrough" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=strict-overflow" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wstrict-overflow=2" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wno-format-zero-length" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wmissing-field-initializers" SUPPORTED_COMPILER_FLAGS)
check_c_compiler_flag("-Wformat" REQUIRED_FLAGS_WFORMAT)
if (REQUIRED_FLAGS_WFORMAT)
list(APPEND SUPPORTED_COMPILER_FLAGS "-Wformat")
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} -Wformat")
endif()
add_c_compiler_flag("-Wformat-security" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Werror=format-security" SUPPORTED_COMPILER_FLAGS)
# Allow zero for a variadic macro argument
string(TOLOWER "${CMAKE_C_COMPILER_ID}" _C_COMPILER_ID)
if ("${_C_COMPILER_ID}" STREQUAL "clang")
add_c_compiler_flag("-Wno-gnu-zero-variadic-macro-arguments" SUPPORTED_COMPILER_FLAGS)
endif()
add_c_compiler_flag("-fno-common" SUPPORTED_COMPILER_FLAGS)
if (CMAKE_BUILD_TYPE)
string(TOLOWER "${CMAKE_BUILD_TYPE}" CMAKE_BUILD_TYPE_LOWER)
if (CMAKE_BUILD_TYPE_LOWER MATCHES (release|relwithdebinfo|minsizerel))
add_c_compiler_flag("-Wp,-D_FORTIFY_SOURCE=2" SUPPORTED_COMPILER_FLAGS)
endif()
endif()
check_c_compiler_flag_ssp("-fstack-protector-strong" WITH_STACK_PROTECTOR_STRONG)
if (WITH_STACK_PROTECTOR_STRONG)
list(APPEND SUPPORTED_COMPILER_FLAGS "-fstack-protector-strong")
# This is needed as Solaris has a seperate libssp
if (SOLARIS)
list(APPEND SUPPORTED_LINKER_FLAGS "-fstack-protector-strong")
endif()
else (WITH_STACK_PROTECTOR_STRONG)
check_c_compiler_flag_ssp("-fstack-protector" WITH_STACK_PROTECTOR)
if (WITH_STACK_PROTECTOR)
list(APPEND SUPPORTED_COMPILER_FLAGS "-fstack-protector")
# This is needed as Solaris has a seperate libssp
if (SOLARIS)
list(APPEND SUPPORTED_LINKER_FLAGS "-fstack-protector")
endif()
endif()
endif (WITH_STACK_PROTECTOR_STRONG)
check_c_compiler_flag_ssp("-fstack-clash-protection" WITH_STACK_CLASH_PROTECTION)
if (WITH_STACK_CLASH_PROTECTION)
list(APPEND SUPPORTED_COMPILER_FLAGS "-fstack-clash-protection")
endif()
if (PICKY_DEVELOPER)
add_c_compiler_flag("-Wno-error=deprecated-declarations" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("-Wno-error=tautological-compare" SUPPORTED_COMPILER_FLAGS)
endif()
# Unset CMAKE_REQUIRED_FLAGS
unset(CMAKE_REQUIRED_FLAGS)
endif()
if (MSVC)
add_c_compiler_flag("/D _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES=1" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("/D _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT=1" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("/D _CRT_NONSTDC_NO_WARNINGS=1" SUPPORTED_COMPILER_FLAGS)
add_c_compiler_flag("/D _CRT_SECURE_NO_WARNINGS=1" SUPPORTED_COMPILER_FLAGS)
endif()
set(DEFAULT_C_COMPILE_FLAGS ${SUPPORTED_COMPILER_FLAGS} CACHE INTERNAL "Default C Compiler Flags" FORCE)
set(DEFAULT_LINK_FLAGS ${SUPPORTED_LINKER_FLAGS} CACHE INTERNAL "Default C Linker Flags" FORCE)

View File

@ -1,103 +0,0 @@
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# ##### # # # #
# #### ##### ###### # # # # # # # #
# # # # # # ## # # # # # #
# # # # # ##### # # # # #### # ### #
# # # ##### # # # # # # # # # # #
# # # # # # ## # # # # # # #
# #### # ###### # # ##### ##### # # #
# #
# This file is part of openGJK. #
# #
# openGJK is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# any later version. #
# #
# openGJK is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with openGJK. If not, see <https://www.gnu.org/licenses/>. #
# #
# openGJK: open-source Gilbert-Johnson-Keerthi algorithm #
# Copyright (C) Mattia Montanari 2018 - 2019 #
# http://iel.eng.ox.ac.uk/?page_id=504 #
# #
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# PLATFORM-SPECIFIC SETTING
if (UNIX)
find_library(M_LIB m)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -lm")
else ()
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
endif ()
if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")
# using GCC
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wextra -Werror")
add_compile_options(-static-libgcc -static-libstdc++ )
add_definitions(-DMT)
elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /wd4131 /wd4701 /wd4255 /wd4710 /wd4820 /wd4711 /wd5045")
set(CMAKE_C_FLAGS_DEBUG "-DDEBUG /D_DEBUG /MDd /Zi /Ob0 /Od /RTC1")
set(CMAKE_C_FLAGS_RELEASE "/Ox")
set(CMAKE_SUPPRESS_REGENERATION true)
endif()
if (UNIX AND NOT WIN32)
# Activate with: -DCMAKE_BUILD_TYPE=Debug
set(CMAKE_C_FLAGS_DEBUG "-g -DDEBUG -Wall -Wextra -Werror"
CACHE STRING "Flags used by the C compiler during DEBUG builds.")
# Activate with: -DCMAKE_BUILD_TYPE=Release
set(CMAKE_C_FLAGS_RELEASE "-O3 -Wall -finline-functions -Wextra -Werror"
CACHE STRING "Flags used by the C compiler during RELEASE builds.")
# Activate with: -DCMAKE_BUILD_TYPE=Profiling
set(CMAKE_C_FLAGS_PROFILING "-O0 -g -fprofile-arcs -ftest-coverage"
CACHE STRING "Flags used by the C compiler during PROFILING builds.")
set(CMAKE_CXX_FLAGS_PROFILING "-O0 -g -fprofile-arcs -ftest-coverage"
CACHE STRING "Flags used by the CXX compiler during PROFILING builds.")
set(CMAKE_SHARED_LINKER_FLAGS_PROFILING "-fprofile-arcs -ftest-coverage"
CACHE STRING "Flags used by the linker during the creation of shared libraries during PROFILING builds.")
set(CMAKE_MODULE_LINKER_FLAGS_PROFILING "-fprofile-arcs -ftest-coverage"
CACHE STRING "Flags used by the linker during the creation of shared libraries during PROFILING builds.")
set(CMAKE_EXEC_LINKER_FLAGS_PROFILING "-fprofile-arcs -ftest-coverage"
CACHE STRING "Flags used by the linker during PROFILING builds.")
# Activate with: -DCMAKE_BUILD_TYPE=AddressSanitizer
set(CMAKE_C_FLAGS_ADDRESSSANITIZER "-g -O1 -fsanitize=address -fno-omit-frame-pointer"
CACHE STRING "Flags used by the C compiler during ADDRESSSANITIZER builds.")
set(CMAKE_CXX_FLAGS_ADDRESSSANITIZER "-g -O1 -fsanitize=address -fno-omit-frame-pointer"
CACHE STRING "Flags used by the CXX compiler during ADDRESSSANITIZER builds.")
set(CMAKE_SHARED_LINKER_FLAGS_ADDRESSSANITIZER "-fsanitize=address"
CACHE STRING "Flags used by the linker during the creation of shared libraries during ADDRESSSANITIZER builds.")
set(CMAKE_MODULE_LINKER_FLAGS_ADDRESSSANITIZER "-fsanitize=address"
CACHE STRING "Flags used by the linker during the creation of shared libraries during ADDRESSSANITIZER builds.")
set(CMAKE_EXEC_LINKER_FLAGS_ADDRESSSANITIZER "-fsanitize=address"
CACHE STRING "Flags used by the linker during ADDRESSSANITIZER builds.")
# Activate with: -DCMAKE_BUILD_TYPE=MemorySanitizer
set(CMAKE_C_FLAGS_MEMORYSANITIZER "-g -O2 -fsanitize=memory -fsanitize-memory-track-origins=2 -fno-omit-frame-pointer"
CACHE STRING "Flags used by the C compiler during MEMORYSANITIZER builds.")
set(CMAKE_CXX_FLAGS_MEMORYSANITIZER "-g -O2 -fsanitize=memory -fsanitize-memory-track-origins=2 -fno-omit-frame-pointer"
CACHE STRING "Flags used by the CXX compiler during MEMORYSANITIZER builds.")
set(CMAKE_SHARED_LINKER_FLAGS_MEMORYSANITIZER "-fsanitize=memory"
CACHE STRING "Flags used by the linker during the creation of shared libraries during MEMORYSANITIZER builds.")
set(CMAKE_MODULE_LINKER_FLAGS_MEMORYSANITIZER "-fsanitize=memory"
CACHE STRING "Flags used by the linker during the creation of shared libraries during MEMORYSANITIZER builds.")
set(CMAKE_EXEC_LINKER_FLAGS_MEMORYSANITIZER "-fsanitize=memory"
CACHE STRING "Flags used by the linker during MEMORYSANITIZER builds.")
endif()

View File

@ -1,149 +0,0 @@
include(CheckIncludeFile)
include(CheckSymbolExists)
include(CheckFunctionExists)
include(CheckLibraryExists)
include(CheckTypeSize)
include(CheckCXXSourceCompiles)
include(CheckStructHasMember)
include(TestBigEndian)
set(PACKAGE ${PROJECT_NAME})
set(VERSION ${PROJECT_VERSION})
set(DATADIR ${DATA_INSTALL_DIR})
set(LIBDIR ${CMAKE_INSTALL_LIBDIR})
set(PLUGINDIR "${PLUGIN_INSTALL_DIR}-${LIBRARY_SOVERSION}")
set(SYSCONFDIR ${SYSCONF_INSTALL_DIR})
set(BINARYDIR ${CMAKE_BINARY_DIR})
set(SOURCEDIR ${CMAKE_SOURCE_DIR})
function(COMPILER_DUMPVERSION _OUTPUT_VERSION)
# Remove whitespaces from the argument.
# This is needed for CC="ccache gcc" cmake ..
string(REPLACE " " "" _C_COMPILER_ARG "${CMAKE_C_COMPILER_ARG1}")
execute_process(
COMMAND
${CMAKE_C_COMPILER} ${_C_COMPILER_ARG} -dumpversion
OUTPUT_VARIABLE _COMPILER_VERSION
)
string(REGEX REPLACE "([0-9])\\.([0-9])(\\.[0-9])?" "\\1\\2"
_COMPILER_VERSION ${_COMPILER_VERSION})
set(${_OUTPUT_VERSION} ${_COMPILER_VERSION} PARENT_SCOPE)
endfunction()
if(CMAKE_COMPILER_IS_GNUCC AND NOT MINGW)
compiler_dumpversion(GNUCC_VERSION)
if (NOT GNUCC_VERSION EQUAL 34)
check_c_compiler_flag("-fvisibility=hidden" WITH_VISIBILITY_HIDDEN)
endif (NOT GNUCC_VERSION EQUAL 34)
endif(CMAKE_COMPILER_IS_GNUCC AND NOT MINGW)
# DEFINITIONS
if (SOLARIS)
add_definitions(-D__EXTENSIONS__)
endif (SOLARIS)
# HEADER FILES
check_include_file(assert.h HAVE_ASSERT_H)
check_include_file(inttypes.h HAVE_INTTYPES_H)
check_include_file(io.h HAVE_IO_H)
check_include_file(malloc.h HAVE_MALLOC_H)
check_include_file(memory.h HAVE_MEMORY_H)
check_include_file(setjmp.h HAVE_SETJMP_H)
check_include_file(signal.h HAVE_SIGNAL_H)
check_include_file(stdarg.h HAVE_STDARG_H)
check_include_file(stddef.h HAVE_STDDEF_H)
check_include_file(stdint.h HAVE_STDINT_H)
check_include_file(stdio.h HAVE_STDIO_H)
check_include_file(stdlib.h HAVE_STDLIB_H)
check_include_file(string.h HAVE_STRING_H)
check_include_file(strings.h HAVE_STRINGS_H)
check_include_file(sys/stat.h HAVE_SYS_STAT_H)
check_include_file(sys/types.h HAVE_SYS_TYPES_H)
check_include_file(time.h HAVE_TIME_H)
check_include_file(unistd.h HAVE_UNISTD_H)
if (HAVE_TIME_H)
check_struct_has_member("struct timespec" tv_sec "time.h" HAVE_STRUCT_TIMESPEC)
endif (HAVE_TIME_H)
# FUNCTIONS
check_function_exists(calloc HAVE_CALLOC)
check_function_exists(exit HAVE_EXIT)
check_function_exists(fprintf HAVE_FPRINTF)
check_function_exists(free HAVE_FREE)
check_function_exists(longjmp HAVE_LONGJMP)
check_function_exists(siglongjmp HAVE_SIGLONGJMP)
check_function_exists(malloc HAVE_MALLOC)
check_function_exists(memcpy HAVE_MEMCPY)
check_function_exists(memset HAVE_MEMSET)
check_function_exists(printf HAVE_PRINTF)
check_function_exists(setjmp HAVE_SETJMP)
check_function_exists(signal HAVE_SIGNAL)
check_function_exists(strsignal HAVE_STRSIGNAL)
check_function_exists(strcmp HAVE_STRCMP)
check_function_exists(clock_gettime HAVE_CLOCK_GETTIME)
if (WIN32)
check_function_exists(_vsnprintf_s HAVE__VSNPRINTF_S)
check_function_exists(_vsnprintf HAVE__VSNPRINTF)
check_function_exists(_snprintf HAVE__SNPRINTF)
check_function_exists(_snprintf_s HAVE__SNPRINTF_S)
check_symbol_exists(snprintf stdio.h HAVE_SNPRINTF)
check_symbol_exists(vsnprintf stdio.h HAVE_VSNPRINTF)
else (WIN32)
check_function_exists(sprintf HAVE_SNPRINTF)
check_function_exists(vsnprintf HAVE_VSNPRINTF)
endif (WIN32)
find_library(RT_LIBRARY rt)
if (RT_LIBRARY AND NOT LINUX AND NOT ANDROID)
set(CMOCKA_REQUIRED_LIBRARIES ${RT_LIBRARY} CACHE INTERNAL "cmocka required system libraries")
endif ()
# OPTIONS
check_c_source_compiles("
__thread int tls;
int main(void) {
return 0;
}" HAVE_GCC_THREAD_LOCAL_STORAGE)
if (WIN32)
check_c_source_compiles("
__declspec(thread) int tls;
int main(void) {
return 0;
}" HAVE_MSVC_THREAD_LOCAL_STORAGE)
endif(WIN32)
if (HAVE_TIME_H AND HAVE_STRUCT_TIMESPEC AND HAVE_CLOCK_GETTIME)
if (RT_LIBRARY)
set(CMAKE_REQUIRED_LIBRARIES ${RT_LIBRARY})
endif()
check_c_source_compiles("
#include <time.h>
int main(void) {
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return 0;
}" HAVE_CLOCK_REALTIME)
# reset cmake requirements
set(CMAKE_REQUIRED_INCLUDES)
set(CMAKE_REQUIRED_LIBRARIES)
endif ()
# ENDIAN
if (NOT WIN32)
set(WORDS_SIZEOF_VOID_P ${CMAKE_SIZEOF_VOID_P})
test_big_endian(WORDS_BIGENDIAN)
endif (NOT WIN32)

View File

@ -1,21 +0,0 @@
# Set system vars
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
set(LINUX TRUE)
endif(CMAKE_SYSTEM_NAME MATCHES "Linux")
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
set(FREEBSD TRUE)
endif (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
set(OPENBSD TRUE)
endif (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
set(NETBSD TRUE)
endif (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
if (CMAKE_SYSTEM_NAME MATCHES "(Solaris|SunOS)")
set(SOLARIS TRUE)
endif (CMAKE_SYSTEM_NAME MATCHES "(Solaris|SunOS)")

File diff suppressed because it is too large Load Diff

View File

@ -1,48 +0,0 @@
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* This file is part of openGJK. *
* *
* openGJK is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* any later version. *
* *
* openGJK is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with Foobar. If not, see <https://www.gnu.org/licenses/>. *
* *
* openGJK: open-source Gilbert-Johnson-Keerthi algorithm *
* Copyright (C) Mattia Montanari 2018 - 2019 *
* http://iel.eng.ox.ac.uk/?page_id=504 *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!--BEGIN GENERATE_TREEVIEW-->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
$navpath
<li class="footer">$generatedby
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="$relpath^doxygen.png" alt="doxygen"/></a> $doxygenversion </li>
</ul>
</div>
<!--END GENERATE_TREEVIEW-->
<!--BEGIN !GENERATE_TREEVIEW-->
<hr class="footer"/><address class="footer"><small>
$generatedby &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="$relpath^doxygen.png" alt="doxygen"/>
</a> $doxygenversion
</small></address>
<!--END !GENERATE_TREEVIEW-->
</body>
</html>

View File

@ -1,64 +0,0 @@
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* This file is part of openGJK. *
* *
* openGJK is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* any later version. *
* *
* openGJK is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with Foobar. If not, see <https://www.gnu.org/licenses/>. *
* *
* openGJK: open-source Gilbert-Johnson-Keerthi algorithm *
* Copyright (C) Mattia Montanari 2018 - 2019 *
* http://iel.eng.ox.ac.uk/?page_id=504 *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.14"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>openGJK: Main Page</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<link href="openGJKcustomstyle.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td id="projectlogo"><img alt="Logo" src="oxforduni.jpg" height="100px"/></td>
<td id="projectalign" style="padding-left: 2.5em;">
<div id="projectname">openGJK
&#160;<span id="projectnumber">v 1.0</span>
</div>
<div id="projectbrief">Fast and reliable distance queries in 3D between convex polytopes.</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

View File

@ -1,67 +1,40 @@
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
# ##### # # # #
# #### ##### ###### # # # # # # # #
# # # # # # ## # # # # # #
# # # # # ##### # # # # #### # ### #
# # # ##### # # # # # # # # # # #
# # # # # # ## # # # # # # #
# #### # ###### # # ##### ##### # # #
# #
# This file is part of openGJK. #
# #
# openGJK is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# any later version. #
# #
# openGJK is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with openGJK. If not, see <https://www.gnu.org/licenses/>. #
# #
# openGJK: open-source Gilbert-Johnson-Keerthi algorithm #
# Copyright (C) Mattia Montanari 2018 - 2019 #
# http://iel.eng.ox.ac.uk/?page_id=504 #
# #
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
project(openGJKdemo VERSION 1.0.0 LANGUAGES C)
set(APPLICATION_NAME ${PROJECT_NAME})
set(CMAKE_C_STANDARD 11)
set(TEST_NAME ${PROJECT_NAME}_CTEST)
message( "[${PROJECT_NAME}] CMake setting ..")
# Set source file
set(SOURCE_FILES main.c )
# Create the executable
add_executable(demo ${SOURCE_FILES})
# Copy input files for this example after build
add_custom_command(
TARGET demo POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/userP.dat
${CMAKE_CURRENT_BINARY_DIR}/userP.dat )
add_custom_command(
TARGET demo POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/userQ.dat
${CMAKE_CURRENT_BINARY_DIR}/userQ.dat )
# PLATFORM-SPECIFIC SETTING
if (UNIX)
find_library(M_LIB m)
# Link to openGJK and math library
target_link_libraries(demo openGJKlib m)
else ()
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
target_link_libraries(demo openGJKlib)
endif ()
message(STATUS "Completed CMake setting for ${PROJECT_NAME}" )
# _____ _ _ __ #
# / ____| | | |/ / #
# ___ _ __ ___ _ __ | | __ | | ' / #
# / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < #
# | (_) | |_) | __/ | | | |__| | |__| | . \ #
# \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ #
# | | #
# |_| #
# #
# Copyright 2022 Mattia Montanari, University of Oxford #
# #
# This program is free software: you can redistribute it and/or modify it under #
# the terms of the GNU General Public License as published by the Free Software #
# Foundation, either version 3 of the License. You should have received a copy #
# of the GNU General Public License along with this program. If not, visit #
# #
# https://www.gnu.org/licenses/ #
# #
# This program is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS #
# FOR A PARTICULAR PURPOSE. See GNU General Public License for details. #
project(example_lib_opengjk_ce
LANGUAGES C
VERSION 1.0.0
)
add_executable(${PROJECT_NAME} ${CMAKE_CURRENT_SOURCE_DIR}/main.c)
target_link_libraries(${PROJECT_NAME} lib_opengjk_ce)
# Copy input files for this example after build
add_custom_command(
TARGET ${PROJECT_NAME} POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/userP.dat
${CMAKE_CURRENT_BINARY_DIR}/userP.dat
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/userQ.dat
${CMAKE_CURRENT_BINARY_DIR}/userQ.dat
)

View File

@ -1,178 +1,129 @@
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* This file is part of openGJK. *
* *
* openGJK is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* any later version. *
* *
* openGJK is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with Foobar. If not, see <https://www.gnu.org/licenses/>. *
* *
* openGJK: open-source Gilbert-Johnson-Keerthi algorithm *
* Copyright (C) Mattia Montanari 2018 - 2019 *
* http://iel.eng.ox.ac.uk/?page_id=504 *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* *
* This file runs an example to illustrate how to invoke the openGJK lib *
* within a C program. An executable called 'demo' can be compiled with *
* CMake. This reads the coordinates of two polytopes from the input *
* files userP.dat and userQ.dat, respectively, and returns the minimum *
* distance between them computed using the openGJK library. *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* @file main.c
* @author Mattia Montanari
* @date April 2018
* @brief File illustrating an application that invokes openGJK.
*
*/
#define _CRT_HAS_CXX17 0
#include <stdlib.h>
#include <stdio.h>
/* For importing openGJK this is Step 1: include header in subfolder. */
#include "openGJK/openGJK.h"
#ifndef WIN32
#define fscanf_s fscanf
#endif
/**
* @brief Function for reading input file with body's coordinates.
*
*/
int readinput(const char *inputfile, double ***pts, int * out) {
int npoints = 0;
int idx = 0;
FILE *fp;
/* Open file. */
#ifdef WIN32
errno_t err;
if ((err = fopen_s(&fp, inputfile, "r")) != 0) {
#else
if ((fp = fopen(inputfile, "r")) == NULL) {
#endif
fprintf(stdout, "ERROR: input file %s not found!\n", inputfile);
fprintf(stdout, " -> The file must be in the folder from which this program is launched\n\n");
return 1;
}
/* Read number of input vertices. */
if (fscanf(fp, "%d", &npoints) != 1)
return 1;
/* Allocate memory. */
double **arr = (double **)malloc(npoints * sizeof(double *));
for (int i = 0; i < npoints; i++)
arr[i] = (double *)malloc(3 * sizeof(double));
/* Read and store vertices' coordinates. */
for (idx = 0; idx < npoints; idx++)
{
if (fscanf(fp, "%lf %lf %lf\n", &arr[idx][0], &arr[idx][1], &arr[idx][2]) != 3)
return 1;
}
/* Close file. */
fclose(fp);
/* Pass pointers. */
*pts = arr;
*out = idx;
return (0);
}
/**
* @brief Main program of example1_c (described in Section 3.1 of the paper).
*
*/
int main() {
/* Squared distance computed by openGJK. */
double dd;
/* Structure of simplex used by openGJK. */
struct simplex s;
/* Number of vertices defining body 1 and body 2, respectively. */
int nvrtx1,
nvrtx2;
/* Structures of body 1 and body 2, respectively. */
struct bd bd1;
struct bd bd2;
/* Specify name of input files for body 1 and body 2, respectively. */
char inputfileA[40] = "userP.dat",
inputfileB[40] = "userQ.dat";
/* Pointers to vertices' coordinates of body 1 and body 2, respectively. */
double(**vrtx1) = NULL,
(**vrtx2) = NULL;
/* For importing openGJK this is Step 2: adapt the data structure for the
* two bodies that will be passed to the GJK procedure. */
/* Import coordinates of object 1. */
if (readinput(inputfileA, &vrtx1, &nvrtx1))
return (1);
bd1.coord = vrtx1;
bd1.numpoints = nvrtx1;
/* Import coordinates of object 2. */
if (readinput(inputfileB, &vrtx2, &nvrtx2))
return (1);
bd2.coord = vrtx2;
bd2.numpoints = nvrtx2;
/* Initialise simplex as empty */
s.nvrtx = 0;
#ifdef DEBUG
/* Verify input of body A. */
for (int i = 0; i < bd1.numpoints; ++i) {
printf("%.2f ", vrtx1[i][0]);
printf("%.2f ", vrtx1[i][1]);
printf("%.2f\n", bd1.coord[i][2]);
}
/* Verify input of body B. */
for (int i = 0; i < bd2.numpoints; ++i) {
printf("%.2f ", bd2.coord[i][0]);
printf("%.2f ", bd2.coord[i][1]);
printf("%.2f\n", bd2.coord[i][2]);
}
#endif
/* For importing openGJK this is Step 3: invoke the GJK procedure. */
/* Compute squared distance using GJK algorithm. */
dd = gjk(bd1, bd2, &s);
/* Print distance between objects. */
printf("Distance between bodies %f\n", dd);
/* Free memory */
for (int i = 0; i < bd1.numpoints; i++)
free(bd1.coord[i]);
free(bd1.coord);
for (int i = 0; i < bd2.numpoints; i++)
free(bd2.coord[i]);
free(bd2.coord);
return (0);
}
// _____ _ _ __ //
// / ____| | | |/ / //
// ___ _ __ ___ _ __ | | __ | | ' / //
// / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < //
// | (_) | |_) | __/ | | | |__| | |__| | . \ //
// \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ //
// | | //
// |_| //
// //
// Copyright 2022 Mattia Montanari, University of Oxford //
// //
// This program is free software: you can redistribute it and/or modify it under //
// the terms of the GNU General Public License as published by the Free Software //
// Foundation, either version 3 of the License. You should have received a copy //
// of the GNU General Public License along with this program. If not, visit //
// //
// https://www.gnu.org/licenses/ //
// //
// This program is distributed in the hope that it will be useful, but WITHOUT //
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS //
// FOR A PARTICULAR PURPOSE. See GNU General Public License for details. //
/// @author Mattia Montanari
/// @date July 2022
#include <stdio.h>
#include <stdlib.h>
#include "openGJK/openGJK.h"
#define fscanf_s fscanf
/// @brief Function for reading input file with body's coordinates.
int readinput(const char *inputfile, double ***pts, int *out) {
int npoints = 0;
int idx = 0;
FILE *fp;
/* Open file. */
#ifdef WIN32
errno_t err;
if ((err = fopen_s(&fp, inputfile, "r")) != 0) {
#else
if ((fp = fopen(inputfile, "r")) == NULL) {
#endif
fprintf(stdout, "ERROR: input file %s not found!\n", inputfile);
fprintf(stdout, " -> The file must be in the folder from which this "
"program is launched\n\n");
return 1;
}
/* Read number of input vertices. */
if (fscanf_s(fp, "%d", &npoints) != 1)
return 1;
/* Allocate memory. */
double **arr = (double **)malloc(npoints * sizeof(double *));
for (int i = 0; i < npoints; i++)
arr[i] = (double *)malloc(3 * sizeof(double));
/* Read and store vertices' coordinates. */
for (idx = 0; idx < npoints; idx++) {
if (fscanf_s(fp, "%lf %lf %lf\n", &arr[idx][0], &arr[idx][1], &arr[idx][2]) !=
3)
return 1;
}
fclose(fp);
*pts = arr;
*out = idx;
return (0);
}
/**
* @brief Main program of example1_c (described in Section 3.1 of the paper).
*
*/
int main() {
/* Squared distance computed by openGJK. */
double dd;
/* Structure of simplex used by openGJK. */
gkSimplex s;
/* Number of vertices defining body 1 and body 2, respectively. */
int nvrtx1, nvrtx2;
/* Structures of body 1 and body 2, respectively. */
gkPolytope bd1;
gkPolytope bd2;
/* Specify name of input files for body 1 and body 2, respectively. */
char inputfileA[40] = "userP.dat", inputfileB[40] = "userQ.dat";
/* Pointers to vertices' coordinates of body 1 and body 2, respectively. */
double(**vrtx1) = NULL, (**vrtx2) = NULL;
/* For importing openGJK this is Step 2: adapt the data structure for the
* two bodies that will be passed to the GJK procedure. */
/* Import coordinates of object 1. */
if (readinput(inputfileA, &vrtx1, &nvrtx1))
return (1);
bd1.coord = vrtx1;
bd1.numpoints = nvrtx1;
/* Import coordinates of object 2. */
if (readinput(inputfileB, &vrtx2, &nvrtx2))
return (1);
bd2.coord = vrtx2;
bd2.numpoints = nvrtx2;
/* Initialise simplex as empty */
s.nvrtx = 0;
/* For importing openGJK this is Step 3: invoke the GJK procedure. */
/* Compute squared distance using GJK algorithm. */
dd = compute_minimum_distance(bd1, bd2, &s);
/* Print distance between objects. */
printf("Distance between bodies %f\n", dd);
/* Free memory */
for (int i = 0; i < bd1.numpoints; i++)
free(bd1.coord[i]);
free(bd1.coord);
for (int i = 0; i < bd2.numpoints; i++)
free(bd2.coord[i]);
free(bd2.coord);
return (0);
}

View File

@ -1,10 +1,10 @@
9
0.0 5.5 0.0
2.3 1.0 -2.0
8.1 4.0 2.4
4.3 5.0 2.2
2.5 1.0 2.3
7.1 1.0 2.4
1.0 1.5 0.3
3.3 0.5 0.3
6.0 1.4 0.2
9
0.0 5.5 0.0
2.3 1.0 -2.0
8.1 4.0 2.4
4.3 5.0 2.2
2.5 1.0 2.3
7.1 1.0 2.4
1.0 1.5 0.3
3.3 0.5 0.3
6.0 1.4 0.2

View File

@ -1,10 +1,10 @@
9
-0.0 -5.5 0.0
-2.3 -1.0 2.0
-8.1 -4.0 -2.4
-4.3 -5.0 -2.2
-2.5 -1.0 -2.3
-7.1 -1.0 -2.4
-1.0 -1.5 -0.3
-3.3 -0.5 -0.3
-6.0 -1.4 -0.2
9
-0.0 -5.5 0.0
-2.3 -1.0 2.0
-8.1 -4.0 -2.4
-4.3 -5.0 -2.2
-2.5 -1.0 -2.3
-7.1 -1.0 -2.4
-1.0 -1.5 -0.3
-3.3 -0.5 -0.3
-6.0 -1.4 -0.2

View File

@ -1,63 +1,63 @@
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* This file is part of openGJK. *
* *
* openGJK is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* any later version. *
* *
* openGJK is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with Foobar. If not, see <https://www.gnu.org/licenses/>. *
* *
* openGJK: open-source Gilbert-Johnson-Keerthi algorithm *
* Copyright (C) Mattia Montanari 2018 - 2019 *
* http://iel.eng.ox.ac.uk/?page_id=504 *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
using System;
using System.Runtime.InteropServices;
public class Tester
{
[DllImport("libopenGJKlib", EntryPoint="csFunction", CallingConvention = CallingConvention.StdCall)]
static extern double gjk(int na, double [,] ia, int nb, double [,] ib);
public static void Main(string[] args)
{
double dist;
// Define array A with coordinates
int nCoordsA = 9;
var inCoordsA = new double[3,9] { {0.0 , 2.3 , 8.1 , 4.3 ,2.5 , 7.1 , 1.0 , 3.3 , 6.0} , { 5.5 , 1.0 , 4.0 , 5.0 ,1.0, 1.0, 1.5, 0.5 , 1.4} ,{ 0.0 , -2.0, 2.4, 2.2, 2.3 , 2.4 , 0.3 , 0.3 , 0.2} };
// Define array B with coordinates
int nCoordsB = 9;
var inCoordsB = new double[3,9] { {-0.0 , -2.3 , -8.1 , -4.3 ,-2.5 , -7.1 , -1.0 , -3.3 , -6.0} , { -5.5 , -1.0 ,- 4.0 ,- 5.0 ,-1.0, -1.0, -1.5, -0.5 , -1.4} ,{ -0.0 , 2.0, -2.4, -2.2, -2.3 , -2.4 , -0.3 , -0.3 , -0.2} };
// Invoke GJK to compute distance
dist = gjk( nCoordsA, inCoordsA, nCoordsB, inCoordsB );
// Output results
var s = string.Format("{0:0.##}", dist);
var message = string.Format("The distance between {0} is {1}","A and B",s);
Console.WriteLine(message);
Console.WriteLine("Press any key to exit");
Console.ReadLine();
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* This file is part of openGJK. *
* *
* openGJK is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* any later version. *
* *
* openGJK is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with Foobar. If not, see <https://www.gnu.org/licenses/>. *
* *
* openGJK: open-source Gilbert-Johnson-Keerthi algorithm *
* Copyright (C) Mattia Montanari 2018 - 2019 *
* http://iel.eng.ox.ac.uk/?page_id=504 *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
using System;
using System.Runtime.InteropServices;
public class Tester
{
[DllImport("libopenGJKlib", EntryPoint="csFunction", CallingConvention = CallingConvention.StdCall)]
static extern double gjk(int na, double [,] ia, int nb, double [,] ib);
public static void Main(string[] args)
{
double dist;
// Define array A with coordinates
int nCoordsA = 9;
var inCoordsA = new double[3,9] { {0.0 , 2.3 , 8.1 , 4.3 ,2.5 , 7.1 , 1.0 , 3.3 , 6.0} , { 5.5 , 1.0 , 4.0 , 5.0 ,1.0, 1.0, 1.5, 0.5 , 1.4} ,{ 0.0 , -2.0, 2.4, 2.2, 2.3 , 2.4 , 0.3 , 0.3 , 0.2} };
// Define array B with coordinates
int nCoordsB = 9;
var inCoordsB = new double[3,9] { {-0.0 , -2.3 , -8.1 , -4.3 ,-2.5 , -7.1 , -1.0 , -3.3 , -6.0} , { -5.5 , -1.0 ,- 4.0 ,- 5.0 ,-1.0, -1.0, -1.5, -0.5 , -1.4} ,{ -0.0 , 2.0, -2.4, -2.2, -2.3 , -2.4 , -0.3 , -0.3 , -0.2} };
// Invoke GJK to compute distance
dist = gjk( nCoordsA, inCoordsA, nCoordsB, inCoordsB );
// Output results
var s = string.Format("{0:0.##}", dist);
var message = string.Format("The distance between {0} is {1}","A and B",s);
Console.WriteLine(message);
Console.WriteLine("Press any key to exit");
Console.ReadLine();
}
}

View File

@ -1,78 +1,62 @@
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% ##### # # # %
% #### ##### ###### # # # # # # # %
% # # # # # ## # # # # # %
% # # # # ##### # # # # #### # ### %
% # # ##### # # # # # # # # # # %
% # # # # # ## # # # # # # %
% #### # ###### # # ##### ##### # # %
% %
% This file is part of openGJK. %
% %
% openGJK is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% openGJK is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with Foobar. If not, see <https://www.gnu.org/licenses/>. %
% %
% openGJK: open-source Gilbert-Johnson-Keerthi algorithm %
% Copyright (C) Mattia Montanari 2018 - 2019 %
% http://iel.eng.ox.ac.uk/?page_id=504 %
% %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% %
% This file runs an example to illustrate how to cll the openGJK library %
% withing Matlab. It assumes that a mex file openGJK is availalbe, see %
% the runme.m script for information on how to compile it. %
% The example computes the minimum distance between two polytopes in 3D, %
% A and B, both defined as a list of points. %
% %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% DEFINE BODY A AS 3xN MATRIX, WHERE N IS THE NUMBER OF VERTICES OF BODY A
A = [ 0.0 2.3 8.1 4.3 2.5 7.1 1.0 3.3 6.0
5.5 1.0 4.0 5.0 1.0 1.0 1.5 0.5 1.4
0.0 -2.0 2.4 2.2 2.3 2.4 0.3 0.3 0.2];
% DEFINE BODY B IN THE OPPOSITE QUADRANT OF BODY A
B = -A;
% COMPUTE MINIMUM DISTANCE AND RETURN VALUE
dist = openGJK( A, B );
fprintf('The minimum distance between A and B is %.2f\n',dist);
% VISUALISE RESULTS
% .. create new figure
figure('units','centimeters', 'WindowStyle','normal', 'color','w',...
'Position',[0 8.5 9 6],'defaultAxesColorOrder',parula,...
'Renderer','opengl')
% .. adjust properties
axis equal tight off; hold all;
% .. display body A
DT = delaunayTriangulation(A');
[K,~] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'EdgeColor','none','FaceColor',[.4 1 .9 ],...
'FaceLighting','flat' )
% .. display body B
DT = delaunayTriangulation(B');
[K,~] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'EdgeColor','none','FaceColor',[.4 1 .8 ],...
'FaceLighting','flat' )
% .. represent the computed distance as a sphere
[x,y,z] = sphere(100);
surf(x.*dist/2,y.*dist/2,z.*dist/2,'facecolor',[.9 .9 .9],...
'EdgeColor','none','FaceLighting','flat','SpecularColorReflectance',0,...
'SpecularStrength',1,'SpecularExponent',10,'facealpha',.7)
% ... adjust point of view
view(42,21)
% ... add light
light('Position',[5 -10 20],'Style','local');
% _____ _ _ __ %
% / ____| | | |/ / %
% ___ _ __ ___ _ __ | | __ | | ' / %
% / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < %
% | (_) | |_) | __/ | | | |__| | |__| | . \ %
% \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ %
% | | %
% |_| %
% %
% Copyright 2022 Mattia Montanari, University of Oxford %
% %
% This program is free software: you can redistribute it and/or modify it under %
% the terms of the GNU General Public License as published by the Free Software %
% Foundation, either version 3 of the License. You should have received a copy %
% of the GNU General Public License along with this program. If not, visit %
% %
% https://www.gnu.org/licenses/ %
% %
% This program is distributed in the hope that it will be useful, but WITHOUT %
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS %
% FOR A PARTICULAR PURPOSE. See GNU General Public License for details. %
% DEFINE BODY A AS 3xN MATRIX, WHERE N IS THE NUMBER OF VERTICES OF BODY A
A = [ 0.0 2.3 8.1 4.3 2.5 7.1 1.0 3.3 6.0
5.5 1.0 4.0 5.0 1.0 1.0 1.5 0.5 1.4
0.0 -2.0 2.4 2.2 2.3 2.4 0.3 0.3 0.2];
% DEFINE BODY B IN THE OPPOSITE QUADRANT OF BODY A
B = -A;
% COMPUTE MINIMUM DISTANCE AND RETURN VALUE
dist = openGJK( A, B );
fprintf('The minimum distance between A and B is %.2f\n',dist);
% VISUALISE RESULTS
% .. create new figure
figure('units','centimeters', 'WindowStyle','normal', 'color','w',...
'Position',[0 8.5 9 6],'defaultAxesColorOrder',parula,...
'Renderer','opengl')
% .. adjust properties
axis equal tight off; hold all;
% .. display body A
DT = delaunayTriangulation(A');
[K,~] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'EdgeColor','none','FaceColor',[.4 1 .9 ],...
'FaceLighting','flat' )
% .. display body B
DT = delaunayTriangulation(B');
[K,~] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'EdgeColor','none','FaceColor',[.4 1 .8 ],...
'FaceLighting','flat' )
% .. represent the computed distance as a sphere
[x,y,z] = sphere(100);
surf(x.*dist/2,y.*dist/2,z.*dist/2,'facecolor',[.9 .9 .9],...
'EdgeColor','none','FaceLighting','flat','SpecularColorReflectance',0,...
'SpecularStrength',1,'SpecularExponent',10,'facealpha',.7)
% ... adjust point of view
view(42,21)
% ... add light
light('Position',[5 -10 20],'Style','local');

View File

@ -1,79 +1,65 @@
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% ##### # # # %
% #### ##### ###### # # # # # # # %
% # # # # # ## # # # # # %
% # # # # ##### # # # # #### # ### %
% # # ##### # # # # # # # # # # %
% # # # # # ## # # # # # # %
% #### # ###### # # ##### ##### # # %
% %
% This file is part of openGJK. %
% %
% openGJK is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% openGJK is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with Foobar. If not, see <https://www.gnu.org/licenses/>. %
% %
% openGJK: open-source Gilbert-Johnson-Keerthi algorithm %
% Copyright (C) Mattia Montanari 2018 - 2019 %
% http://iel.eng.ox.ac.uk/?page_id=504 %
% %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% %
% This file compiles a mex function from the openGJK library and runs an %
% example. If the mex function cannot be compiled an error is returned. %
% %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% CLEAR ALL VARIABLES
clearvars
% SELECT OPTIMISATION FLAG - FASTER BUT NOT SUITABLE FOR DEBUGGING
if 0
optflug = '-g'; %#ok<*UNRCH>
else
optflug = '-O';
end
% SELECT SILET COMPILATION MODE.
if 1
silflag = '-silent';
else
silflag = '-v';
end
% TRY COMPILING MEX FILE
fprintf('Compiling mex function... ')
try
mex(fullfile('..','..','src','openGJK.c'),... % Source of openGJK
'-largeArrayDims', ... % Support large arrays
optflug, ... % Compiler flag for debug/optimisation
fullfile('-I..','..','include'),... % Folder to header files
'-outdir', pwd,... % Ouput directory for writing mex function
'-output', 'openGJK',... % Name of ouput mex file
'-DMATLABDOESMEXSTUFF',... % Define variable for mex function in source files
silflag ) % Silent/verbose flag
% File compiled without errors. Return path and name of mex file
fprintf('completed!\n')
fprintf('The following mex file has been generated:')
fprintf('\t%s\n',[pwd,filesep,'openGJK.',mexext])
catch
% Build failed, refer to documentation
fprintf('\n\n ERROR DETECTED! Mex file cannot be compiled.\n')
fprintf('\tFor more information, see ')
fprintf('<a href="http://www.mathworks.com/help/matlab/ref/mex.html">this documentation page</a>.\n\n')
return
end
% RUN EXAMPLE
fprintf('Running example... ')
main
% _____ _ _ __ %
% / ____| | | |/ / %
% ___ _ __ ___ _ __ | | __ | | ' / %
% / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < %
% | (_) | |_) | __/ | | | |__| | |__| | . \ %
% \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ %
% | | %
% |_| %
% %
% Copyright 2022 Mattia Montanari, University of Oxford %
% %
% This program is free software: you can redistribute it and/or modify it under %
% the terms of the GNU General Public License as published by the Free Software %
% Foundation, either version 3 of the License. You should have received a copy %
% of the GNU General Public License along with this program. If not, visit %
% %
% https://www.gnu.org/licenses/ %
% %
% This program is distributed in the hope that it will be useful, but WITHOUT %
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS %
% FOR A PARTICULAR PURPOSE. See GNU General Public License for details. %
clearvars
% SELECT OPTIMISATION FLAG - FASTER BUT NOT SUITABLE FOR DEBUGGING
if 0
optflug = '-g'; %#ok<*UNRCH>
else
optflug = '-O';
end
% SELECT SILET COMPILATION MODE.
if 1
silflag = '-silent';
else
silflag = '-v';
end
% TRY COMPILING MEX FILE
fprintf('Compiling mex function... ')
try
mex(fullfile('..','..','src','openGJK.c'),... % Source of openGJK
'-largeArrayDims', ... % Support large arrays
optflug, ... % Compiler flag for debug/optimisation
fullfile('-I..','..','include'),... % Folder to header files
'-outdir', pwd,... % Ouput directory for writing mex function
'-output', 'openGJK',... % Name of ouput mex file
'-DMATLABDOESMEXSTUFF',... % Define variable for mex function in source files
silflag ) % Silent/verbose flag
% File compiled without errors. Return path and name of mex file
fprintf('completed!\n')
fprintf('The following mex file has been generated:')
fprintf('\t%s\n',[pwd,filesep,'openGJK.',mexext])
catch
% Build failed, refer to documentation
fprintf('\n\n ERROR DETECTED! Mex file cannot be compiled.\n')
fprintf('\tFor more information, see ')
fprintf('<a href="http://www.mathworks.com/help/matlab/ref/mex.html">this documentation page</a>.\n\n')
return
end
% RUN EXAMPLE
fprintf('Running example... ')
main
fprintf('completed!\n')

View File

@ -1,2 +1,2 @@
#!/bin/bash
#!/bin/bash
g++ -Wall -fPIC -fopenmp -shared `python3 -m pybind11 --includes` -I ../../include -I/usr/include/eigen3 pyopenGJK.cpp ../../src/openGJK.c -o opengjkc`python3-config --extension-suffix`

View File

@ -3,23 +3,22 @@
#include <pybind11/pybind11.h>
namespace py = pybind11;
PYBIND11_MODULE(opengjkc, m)
{
PYBIND11_MODULE(opengjkc, m) {
m.def("gjk",
[](Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor>& arr1,
Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor>& arr2)
[](Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor> &arr1,
Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor> &arr2)
-> double {
struct simplex s;
struct bd bd1;
struct bd bd2;
bd1.numpoints = arr1.rows();
std::vector<double*> arr1_rows(arr1.rows());
std::vector<double *> arr1_rows(arr1.rows());
for (int i = 0; i < arr1.rows(); ++i)
arr1_rows[i] = arr1.row(i).data();
bd1.coord = arr1_rows.data();
bd2.numpoints = arr2.rows();
std::vector<double*> arr2_rows(arr2.rows());
std::vector<double *> arr2_rows(arr2.rows());
for (int i = 0; i < arr2.rows(); ++i)
arr2_rows[i] = arr2.row(i).data();
bd2.coord = arr2_rows.data();

View File

@ -1,185 +1,185 @@
import opengjkc as opengjk
from scipy.spatial.transform import Rotation as R
import numpy as np
import pytest
#from IPython import embed
def settol():
return 1e-12
def distance_point_to_line_3D(P1, P2, point):
"""
distance from point to line
"""
return np.linalg.norm(np.cross(P2-P1, P1-point))/np.linalg.norm(P2-P1)
def distance_point_to_plane_3D(P1, P2, P3, point):
"""
Distance from point to plane
"""
return np.abs(np.dot(np.cross(P2-P1, P3-P1) /
np.linalg.norm(np.cross(P2-P1, P3-P1)), point-P2))
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0, -2])
def test_line_point_distance(delta):
line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=np.float64)
point_on_line = line[0] + 0.27*(line[1]-line[0])
normal = np.cross(line[0], line[1])
point = point_on_line + delta * normal
distance = opengjk.gjk(line, point)
actual_distance = distance_point_to_line_3D(
line[0], line[1], point)
print(distance, actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0])
def test_line_line_distance(delta):
line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=np.float64)
point_on_line = line[0] + 0.38*(line[1]-line[0])
normal = np.cross(line[0], line[1])
point = point_on_line + delta * normal
line_2 = np.array([point, [2, 5, 6]], dtype=np.float64)
distance = opengjk.gjk(line, line_2)
actual_distance = distance_point_to_line_3D(
line[0], line[1], line_2[0])
print(distance, actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1**(3*i) for i in range(6)])
def test_tri_distance(delta):
tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=np.float64)
tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [
1, 1, 0]], dtype=np.float64)
P1 = tri_1[2]
P2 = tri_1[1]
point = tri_2[0]
actual_distance = distance_point_to_line_3D(P1, P2, point)
distance = opengjk.gjk(tri_1, tri_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
#embed()
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1*0.1**(3*i) for i in range(6)])
def test_quad_distance2d(delta):
quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
[1, 1, 0]], dtype=np.float64)
quad_2 = np.array([[0, 1+delta, 0], [2, 2, 0],
[2, 4, 0], [4, 4, 0]], dtype=np.float64)
P1 = quad_1[2]
P2 = quad_1[3]
point = quad_2[0]
actual_distance = distance_point_to_line_3D(P1, P2, point)
distance = opengjk.gjk(quad_1, quad_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [1*0.5**(3*i) for i in range(7)])
def test_tetra_distance_3d(delta):
tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3],
[0, 0, 1]], dtype=np.float64)
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
[0.5, 0.3, -delta]], dtype=np.float64)
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
tetra_1[2], tetra_2[3])
distance = opengjk.gjk(tetra_1, tetra_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [(-1)**i*np.sqrt(2)*0.1**(3*i)
for i in range(6)])
def test_tetra_collision_3d(delta):
tetra_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
[0, 0, 1]], dtype=np.float64)
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
[0.5, 0.3, -delta]], dtype=np.float64)
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
tetra_1[2], tetra_2[3])
distance = opengjk.gjk(tetra_1, tetra_2)
if delta < 0:
assert(np.isclose(distance, 0, atol=settol()))
else:
print("Computed distance ", distance,
"Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol()))
@pytest.mark.parametrize("delta", [0, -0.1, -0.49, -0.51])
def test_hex_collision_3d(delta):
hex_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
dtype=np.float64)
P0 = np.array([1.5+delta, 1.5+delta, 0.5], dtype=np.float64)
P1 = np.array([2, 2, 1], dtype=np.float64)
P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
P3 = P1 + P2 - P0
quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
n = (np.cross(quad_1[1]-quad_1[0], quad_1[2]-quad_1[0]) /
np.linalg.norm(
np.cross(quad_1[1]-quad_1[0],
quad_1[2]-quad_1[0])))
quad_2 = quad_1 + n
hex_2 = np.zeros((8, 3), dtype=np.float64)
hex_2[:4, :] = quad_1
hex_2[4:, :] = quad_2
actual_distance = np.linalg.norm(
np.array([1, 1, P0[2]], dtype=np.float64)-hex_2[0])
distance = opengjk.gjk(hex_1, hex_2)
if P0[0] < 1:
assert(np.isclose(distance, 0, atol=settol()))
else:
print("Computed distance ", distance,
"Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol()))
@pytest.mark.parametrize("c0", [0, 1, 2, 3])
@pytest.mark.parametrize("c1", [0, 1, 2, 3])
def test_cube_distance(c0, c1):
cubes = [np.array([[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]],
dtype=np.float64)]
r = R.from_euler('z', 45, degrees=True)
cubes.append(r.apply(cubes[0]))
r = R.from_euler('y', np.arctan2(1.0, np.sqrt(2)))
cubes.append(r.apply(cubes[1]))
r = R.from_euler('y', 45, degrees=True)
cubes.append(r.apply(cubes[0]))
dx = cubes[c0][:,0].max() - cubes[c1][:,0].min()
cube0 = cubes[c0]
for delta in [1e8, 1.0, 1e-4, 1e-8, 1e-12]:
cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
distance = opengjk.gjk(cube0, cube1)
print(distance, delta)
assert(np.isclose(distance, delta))
def test_random_objects():
for i in range(1, 8):
for j in range(1, 8):
for k in range(1000):
arr1 = np.random.rand(i, 3)
arr2 = np.random.rand(j, 3)
opengjk.gjk(arr1, arr2)
def test_large_random_objects():
for i in range(1, 8):
for j in range(1, 8):
for k in range(1000):
arr1 = 10000.0*np.random.rand(i, 3)
arr2 = 10000.0*np.random.rand(j, 3)
opengjk.gjk(arr1, arr2)
import opengjkc as opengjk
from scipy.spatial.transform import Rotation as R
import numpy as np
import pytest
#from IPython import embed
def settol():
return 1e-12
def distance_point_to_line_3D(P1, P2, point):
"""
distance from point to line
"""
return np.linalg.norm(np.cross(P2-P1, P1-point))/np.linalg.norm(P2-P1)
def distance_point_to_plane_3D(P1, P2, P3, point):
"""
Distance from point to plane
"""
return np.abs(np.dot(np.cross(P2-P1, P3-P1) /
np.linalg.norm(np.cross(P2-P1, P3-P1)), point-P2))
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0, -2])
def test_line_point_distance(delta):
line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=np.float64)
point_on_line = line[0] + 0.27*(line[1]-line[0])
normal = np.cross(line[0], line[1])
point = point_on_line + delta * normal
distance = opengjk.gjk(line, point)
actual_distance = distance_point_to_line_3D(
line[0], line[1], point)
print(distance, actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0])
def test_line_line_distance(delta):
line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=np.float64)
point_on_line = line[0] + 0.38*(line[1]-line[0])
normal = np.cross(line[0], line[1])
point = point_on_line + delta * normal
line_2 = np.array([point, [2, 5, 6]], dtype=np.float64)
distance = opengjk.gjk(line, line_2)
actual_distance = distance_point_to_line_3D(
line[0], line[1], line_2[0])
print(distance, actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1**(3*i) for i in range(6)])
def test_tri_distance(delta):
tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=np.float64)
tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [
1, 1, 0]], dtype=np.float64)
P1 = tri_1[2]
P2 = tri_1[1]
point = tri_2[0]
actual_distance = distance_point_to_line_3D(P1, P2, point)
distance = opengjk.gjk(tri_1, tri_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
#embed()
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1*0.1**(3*i) for i in range(6)])
def test_quad_distance2d(delta):
quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
[1, 1, 0]], dtype=np.float64)
quad_2 = np.array([[0, 1+delta, 0], [2, 2, 0],
[2, 4, 0], [4, 4, 0]], dtype=np.float64)
P1 = quad_1[2]
P2 = quad_1[3]
point = quad_2[0]
actual_distance = distance_point_to_line_3D(P1, P2, point)
distance = opengjk.gjk(quad_1, quad_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [1*0.5**(3*i) for i in range(7)])
def test_tetra_distance_3d(delta):
tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3],
[0, 0, 1]], dtype=np.float64)
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
[0.5, 0.3, -delta]], dtype=np.float64)
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
tetra_1[2], tetra_2[3])
distance = opengjk.gjk(tetra_1, tetra_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [(-1)**i*np.sqrt(2)*0.1**(3*i)
for i in range(6)])
def test_tetra_collision_3d(delta):
tetra_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
[0, 0, 1]], dtype=np.float64)
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
[0.5, 0.3, -delta]], dtype=np.float64)
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
tetra_1[2], tetra_2[3])
distance = opengjk.gjk(tetra_1, tetra_2)
if delta < 0:
assert(np.isclose(distance, 0, atol=settol()))
else:
print("Computed distance ", distance,
"Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol()))
@pytest.mark.parametrize("delta", [0, -0.1, -0.49, -0.51])
def test_hex_collision_3d(delta):
hex_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
dtype=np.float64)
P0 = np.array([1.5+delta, 1.5+delta, 0.5], dtype=np.float64)
P1 = np.array([2, 2, 1], dtype=np.float64)
P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
P3 = P1 + P2 - P0
quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
n = (np.cross(quad_1[1]-quad_1[0], quad_1[2]-quad_1[0]) /
np.linalg.norm(
np.cross(quad_1[1]-quad_1[0],
quad_1[2]-quad_1[0])))
quad_2 = quad_1 + n
hex_2 = np.zeros((8, 3), dtype=np.float64)
hex_2[:4, :] = quad_1
hex_2[4:, :] = quad_2
actual_distance = np.linalg.norm(
np.array([1, 1, P0[2]], dtype=np.float64)-hex_2[0])
distance = opengjk.gjk(hex_1, hex_2)
if P0[0] < 1:
assert(np.isclose(distance, 0, atol=settol()))
else:
print("Computed distance ", distance,
"Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol()))
@pytest.mark.parametrize("c0", [0, 1, 2, 3])
@pytest.mark.parametrize("c1", [0, 1, 2, 3])
def test_cube_distance(c0, c1):
cubes = [np.array([[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]],
dtype=np.float64)]
r = R.from_euler('z', 45, degrees=True)
cubes.append(r.apply(cubes[0]))
r = R.from_euler('y', np.arctan2(1.0, np.sqrt(2)))
cubes.append(r.apply(cubes[1]))
r = R.from_euler('y', 45, degrees=True)
cubes.append(r.apply(cubes[0]))
dx = cubes[c0][:,0].max() - cubes[c1][:,0].min()
cube0 = cubes[c0]
for delta in [1e8, 1.0, 1e-4, 1e-8, 1e-12]:
cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
distance = opengjk.gjk(cube0, cube1)
print(distance, delta)
assert(np.isclose(distance, delta))
def test_random_objects():
for i in range(1, 8):
for j in range(1, 8):
for k in range(1000):
arr1 = np.random.rand(i, 3)
arr2 = np.random.rand(j, 3)
opengjk.gjk(arr1, arr2)
def test_large_random_objects():
for i in range(1, 8):
for j in range(1, 8):
for k in range(1000):
arr1 = 10000.0*np.random.rand(i, 3)
arr2 = 10000.0*np.random.rand(j, 3)
opengjk.gjk(arr1, arr2)

View File

@ -1,52 +1,55 @@
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* Edward Garemo and Mattia Montanari *
* University of Oxford 2019 *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* *
* This is the header file for the openGJK.c file. It defines the openGJK *
* function and it two important structures: bd and simplex. *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#ifndef __OPENGJK_H__
#define __OPENGJK_H__
#include <stdio.h>
#include <stdlib.h>
#include "math.h"
/**
* @brief Structure of a body.
*/
struct bd {
int numpoints; /**< Number of points defining the body. */
double s[3]; /**< Support mapping computed last. */
double **coord; /**< Pointer to pointer to the points' coordinates. */
};
/**
* @brief Structure for a simplex.
*/
struct simplex {
int nvrtx; /**< Number of simplex's vertices. */
double vrtx[4][3]; /**< Coordinates of simplex's vertices. */
int wids[4]; /**< Label of the simplex's vertices. */
double lambdas[4]; /**< Barycentric coordiantes for each vertex. */
};
/**
* @brief The GJK algorithm which returns the minimum distance between
* two bodies.
*/
extern double gjk(struct bd, struct bd, struct simplex *);
#endif
// _____ _ _ __ //
// / ____| | | |/ / //
// ___ _ __ ___ _ __ | | __ | | ' / //
// / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < //
// | (_) | |_) | __/ | | | |__| | |__| | . \ //
// \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ //
// | | //
// |_| //
// //
// Copyright 2022 Mattia Montanari, University of Oxford //
// //
// This program is free software: you can redistribute it and/or modify it under //
// the terms of the GNU General Public License as published by the Free Software //
// Foundation, either version 3 of the License. You should have received a copy //
// of the GNU General Public License along with this program. If not, visit //
// //
// https://www.gnu.org/licenses/ //
// //
// This program is distributed in the hope that it will be useful, but WITHOUT //
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS //
// FOR A PARTICULAR PURPOSE. See GNU General Public License for details. //
#ifndef OPENGJK_H__
#define OPENGJK_H__
#ifdef __cplusplus
extern "C" {
#endif
/// @brief Use double as default precision
#define gkFloat double
/// @brief Structure of a body
typedef struct gkPolytope_ {
int numpoints; // Number of points defining the body
gkFloat s[3]; // Support mapping computed last
gkFloat **coord; // Points' coordinates
} gkPolytope;
/// @brief Structure of the simplex
typedef struct gkSimplex_ {
int nvrtx; // Number of simplex's vertices
int wids[4]; // Label of the simplex's vertices
gkFloat lambdas[4]; // Barycentric coordiantes for each vertex
gkFloat vrtx[4][3]; // Coordinates of simplex's vertices
} gkSimplex;
/// @brief Uses the GJK algorithm to compute the minimum distance between two bodies
gkFloat compute_minimum_distance(const gkPolytope p_, const gkPolytope q_, gkSimplex *s_);
#ifdef __cplusplus
}
#endif
#endif // OPENGJK_H__

823
openGJK.c Normal file
View File

@ -0,0 +1,823 @@
// _____ _ _ __ //
// / ____| | | |/ / //
// ___ _ __ ___ _ __ | | __ | | ' / //
// / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < //
// | (_) | |_) | __/ | | | |__| | |__| | . \ //
// \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ //
// | | //
// |_| //
// //
// Copyright 2022 Mattia Montanari, University of Oxford //
// //
// This program is free software: you can redistribute it and/or modify it under //
// the terms of the GNU General Public License as published by the Free Software //
// Foundation, either version 3 of the License. You should have received a copy //
// of the GNU General Public License along with this program. If not, visit //
// //
// https://www.gnu.org/licenses/ //
// //
// This program is distributed in the hope that it will be useful, but WITHOUT //
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS //
// FOR A PARTICULAR PURPOSE. See GNU General Public License for details. //
#include "openGJK/openGJK.h"
#include <stdio.h>
#include <stdlib.h>
#include "math.h"
/* If instricuted, compile a mex function for Matlab. */
#ifdef MATLAB_MEX_BUILD
#include "mex.h"
#else
#define mexPrintf printf
#endif
#define eps_rel22 1e-10
#define eps_tot22 1e-12
#define norm2(a) (a[0] * a[0] + a[1] * a[1] + a[2] * a[2])
#define dotProduct(a, b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2])
#define S3Dregion1234() \
v[0] = 0; \
v[1] = 0; \
v[2] = 0; \
s->nvrtx = 4;
#define select_1ik() \
s->nvrtx = 3; \
for (t = 0; t < 3; t++) s->vrtx[2][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = si[t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sk[t];
#define select_1ij() \
s->nvrtx = 3; \
for (t = 0; t < 3; t++) s->vrtx[2][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = si[t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sj[t];
#define select_1jk() \
s->nvrtx = 3; \
for (t = 0; t < 3; t++) s->vrtx[2][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = sj[t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sk[t];
#define select_1i() \
s->nvrtx = 2; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = si[t];
#define select_1j() \
s->nvrtx = 2; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sj[t];
#define select_1k() \
s->nvrtx = 2; \
for (t = 0; t < 3; t++) s->vrtx[1][t] = s->vrtx[3][t]; \
for (t = 0; t < 3; t++) s->vrtx[0][t] = sk[t];
#define getvrtx(point, location) \
point[0] = s->vrtx[location][0]; \
point[1] = s->vrtx[location][1]; \
point[2] = s->vrtx[location][2];
#define calculateEdgeVector(p1p2, p2) \
p1p2[0] = p2[0] - s->vrtx[3][0]; \
p1p2[1] = p2[1] - s->vrtx[3][1]; \
p1p2[2] = p2[2] - s->vrtx[3][2];
#define S1Dregion1() \
v[0] = s->vrtx[1][0]; \
v[1] = s->vrtx[1][1]; \
v[2] = s->vrtx[1][2]; \
s->nvrtx = 1; \
s->vrtx[0][0] = s->vrtx[1][0]; \
s->vrtx[0][1] = s->vrtx[1][1]; \
s->vrtx[0][2] = s->vrtx[1][2];
#define S2Dregion1() \
v[0] = s->vrtx[2][0]; \
v[1] = s->vrtx[2][1]; \
v[2] = s->vrtx[2][2]; \
s->nvrtx = 1; \
s->vrtx[0][0] = s->vrtx[2][0]; \
s->vrtx[0][1] = s->vrtx[2][1]; \
s->vrtx[0][2] = s->vrtx[2][2];
#define S2Dregion12() \
s->nvrtx = 2; \
s->vrtx[0][0] = s->vrtx[2][0]; \
s->vrtx[0][1] = s->vrtx[2][1]; \
s->vrtx[0][2] = s->vrtx[2][2];
#define S2Dregion13() \
s->nvrtx = 2; \
s->vrtx[1][0] = s->vrtx[2][0]; \
s->vrtx[1][1] = s->vrtx[2][1]; \
s->vrtx[1][2] = s->vrtx[2][2];
#define S3Dregion1() \
v[0] = s1[0]; \
v[1] = s1[1]; \
v[2] = s1[2]; \
s->nvrtx = 1; \
s->vrtx[0][0] = s1[0]; \
s->vrtx[0][1] = s1[1]; \
s->vrtx[0][2] = s1[2];
inline static gkFloat determinant(const gkFloat *p, const gkFloat *q, const gkFloat *r) {
return p[0] * ((q[1] * r[2]) - (r[1] * q[2])) - p[1] * (q[0] * r[2] - r[0] * q[2]) +
p[2] * (q[0] * r[1] - r[0] * q[1]);
}
inline static void crossProduct(const gkFloat *a, const gkFloat *b, gkFloat *c) {
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
inline static void projectOnLine(const gkFloat *p, const gkFloat *q, gkFloat *v) {
gkFloat pq[3];
gkFloat tmp;
pq[0] = p[0] - q[0];
pq[1] = p[1] - q[1];
pq[2] = p[2] - q[2];
tmp = dotProduct(p, pq) / dotProduct(pq, pq);
for (int i = 0; i < 3; i++) v[i] = p[i] - pq[i] * tmp;
}
inline static void projectOnPlane(const gkFloat *p, const gkFloat *q, const gkFloat *r, gkFloat *v) {
gkFloat n[3], pq[3], pr[3];
gkFloat tmp;
for (int i = 0; i < 3; i++) pq[i] = p[i] - q[i];
for (int i = 0; i < 3; i++) pr[i] = p[i] - r[i];
crossProduct(pq, pr, n);
tmp = dotProduct(n, p) / dotProduct(n, n);
for (int i = 0; i < 3; i++) v[i] = n[i] * tmp;
}
inline static int hff1(const gkFloat *p, const gkFloat *q) {
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) tmp += (p[i] * p[i] - p[i] * q[i]);
if (tmp > 0) return 1; // keep q
return 0;
}
inline static int hff2(const gkFloat *p, const gkFloat *q, const gkFloat *r) {
gkFloat ntmp[3];
gkFloat n[3], pq[3], pr[3];
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) pq[i] = q[i] - p[i];
for (int i = 0; i < 3; i++) pr[i] = r[i] - p[i];
crossProduct(pq, pr, ntmp);
crossProduct(pq, ntmp, n);
for (int i = 0; i < 3; i++) tmp = tmp + (p[i] * n[i]);
if (tmp < 0) return 1; // Discard r
return 0;
}
inline static int hff3(const gkFloat *p, const gkFloat *q, const gkFloat *r) {
gkFloat n[3], pq[3], pr[3];
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) pq[i] = q[i] - p[i];
for (int i = 0; i < 3; i++) pr[i] = r[i] - p[i];
crossProduct(pq, pr, n);
for (int i = 0; i < 3; i++) tmp = tmp + (p[i] * n[i]);
if (tmp > 0) return 0; // discard s
return 1;
}
inline static void S1D(gkSimplex *s, gkFloat *v) {
gkFloat *s1p = s->vrtx[1];
gkFloat *s2p = s->vrtx[0];
if (hff1(s1p, s2p)) {
projectOnLine(s1p, s2p, v); // Update v, no need to update s
return; // Return V{1,2}
} else {
S1Dregion1(); // Update v and s
return; // Return V{1}
}
}
inline static void S2D(gkSimplex *s, gkFloat *v) {
gkFloat *s1p = s->vrtx[2];
gkFloat *s2p = s->vrtx[1];
gkFloat *s3p = s->vrtx[0];
int hff1f_s12 = hff1(s1p, s2p);
int hff1f_s13 = hff1(s1p, s3p);
int hff2f_23 = !hff2(s1p, s2p, s3p);
int hff2f_32 = !hff2(s1p, s3p, s2p);
if (hff1f_s12) {
if (hff2f_23) {
if (hff1f_s13) {
if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3}
} else {
projectOnLine(s1p, s3p, v); // Update v
S2Dregion13(); // Update s
return; // Return V{1,3}
}
} else {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3}
}
} else {
projectOnLine(s1p, s2p, v); // Update v
S2Dregion12(); // Update s
return; // Return V{1,2}
}
} else if (hff1f_s13) {
if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update v
return; // Return V{1,2,3}
} else {
projectOnLine(s1p, s3p, v); // Update v
S2Dregion13(); // Update s
return; // Return V{1,3}
}
} else {
S2Dregion1(); // Update s and v
return; // Return V{1}
}
}
inline static void S3D(gkSimplex *s, gkFloat *v) {
gkFloat s1[3], s2[3], s3[3], s4[3], s1s2[3], s1s3[3], s1s4[3];
gkFloat si[3], sj[3], sk[3];
int testLineThree, testLineFour, testPlaneTwo, testPlaneThree, testPlaneFour, dotTotal;
int i, j, k, t;
getvrtx(s1, 3);
getvrtx(s2, 2);
getvrtx(s3, 1);
getvrtx(s4, 0);
calculateEdgeVector(s1s2, s2);
calculateEdgeVector(s1s3, s3);
calculateEdgeVector(s1s4, s4);
int hff1_tests[3];
hff1_tests[2] = hff1(s1, s2);
hff1_tests[1] = hff1(s1, s3);
hff1_tests[0] = hff1(s1, s4);
testLineThree = hff1(s1, s3);
testLineFour = hff1(s1, s4);
dotTotal = hff1(s1, s2) + testLineThree + testLineFour;
if (dotTotal == 0) { /* case 0.0 -------------------------------------- */
S3Dregion1();
return;
}
gkFloat det134 = determinant(s1s3, s1s4, s1s2);
int sss;
if (det134 > 0) {
sss = 0;
} else {
sss = 1;
}
testPlaneTwo = hff3(s1, s3, s4) - sss;
testPlaneTwo = testPlaneTwo * testPlaneTwo;
testPlaneThree = hff3(s1, s4, s2) - sss;
testPlaneThree = testPlaneThree * testPlaneThree;
testPlaneFour = hff3(s1, s2, s3) - sss;
testPlaneFour = testPlaneFour * testPlaneFour;
switch (testPlaneTwo + testPlaneThree + testPlaneFour) {
case 3:
S3Dregion1234();
break;
case 2:
// Only one facing the oring
// 1,i,j, are the indices of the points on the triangle and remove k from
// simplex
s->nvrtx = 3;
if (!testPlaneTwo) { // k = 2; removes s2
for (i = 0; i < 3; i++) s->vrtx[2][i] = s->vrtx[3][i];
} else if (!testPlaneThree) { // k = 1; // removes s3
for (i = 0; i < 3; i++) s->vrtx[1][i] = s2[i];
for (i = 0; i < 3; i++) s->vrtx[2][i] = s->vrtx[3][i];
} else if (!testPlaneFour) { // k = 0; // removes s4 and no need to reorder
for (i = 0; i < 3; i++) s->vrtx[0][i] = s3[i];
for (i = 0; i < 3; i++) s->vrtx[1][i] = s2[i];
for (i = 0; i < 3; i++) s->vrtx[2][i] = s->vrtx[3][i];
}
// Call S2D
S2D(s, v);
break;
case 1:
// Two triangles face the origins:
// The only positive hff3 is for triangle 1,i,j, therefore k must be in
// the solution as it supports the the point of minimum norm.
// 1,i,j, are the indices of the points on the triangle and remove k from
// simplex
s->nvrtx = 3;
if (testPlaneTwo) {
k = 2; // s2
i = 1;
j = 0;
} else if (testPlaneThree) {
k = 1; // s3
i = 0;
j = 2;
} else {
k = 0; // s4
i = 2;
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (dotTotal == 1) {
if (hff1_tests[k]) {
if (!hff2(s1, sk, si)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
} else if (!hff2(s1, sk, sj)) {
select_1jk();
projectOnPlane(s1, sj, sk, v);
} else {
select_1k(); // select region 1i
projectOnLine(s1, sk, v);
}
} else if (hff1_tests[i]) {
if (!hff2(s1, si, sk)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
} else {
select_1i(); // select region 1i
projectOnLine(s1, si, v);
}
} else {
if (!hff2(s1, sj, sk)) {
select_1jk();
projectOnPlane(s1, sj, sk, v);
} else {
select_1j(); // select region 1i
projectOnLine(s1, sj, v);
}
}
} else if (dotTotal == 2) {
// Two edges have positive hff1, meaning that for two edges the origin's
// project fall on the segement.
// Certainly the edge 1,k supports the the point of minimum norm, and so
// hff1_1k is positive
if (hff1_tests[i]) {
if (!hff2(s1, sk, si))
if (!hff2(s1, si, sk)) {
select_1ik(); // select region 1ik
projectOnPlane(s1, si, sk, v);
} else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
else {
if (!hff2(s1, sk, sj)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
} else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
}
} else if (hff1_tests[j]) { // there is no other choice
if (!hff2(s1, sk, sj))
if (!hff2(s1, sj, sk)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
} else {
select_1j(); // select region 1j
projectOnLine(s1, sj, v);
}
else {
if (!hff2(s1, sk, si)) {
select_1ik(); // select region 1ik
projectOnPlane(s1, si, sk, v);
} else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
}
} else {
// ERROR;
}
} else if (dotTotal == 3) {
// MM : ALL THIS HYPHOTESIS IS FALSE
// sk is s.t. hff3 for sk < 0. So, sk must support the origin because
// there are 2 triangles facing the origin.
int hff2_ik = hff2(s1, si, sk);
int hff2_jk = hff2(s1, sj, sk);
int hff2_ki = hff2(s1, sk, si);
int hff2_kj = hff2(s1, sk, sj);
if (hff2_ki == 0 && hff2_kj == 0) {
mexPrintf("\n\n UNEXPECTED VALUES!!! \n\n");
}
if (hff2_ki == 1 && hff2_kj == 1) {
select_1k();
projectOnLine(s1, sk, v);
} else if (hff2_ki) {
// discard i
if (hff2_jk) {
// discard k
select_1j();
projectOnLine(s1, sj, v);
} else {
select_1jk();
projectOnPlane(s1, sk, sj, v);
}
} else {
// discard j
if (hff2_ik) {
// discard k
select_1i();
projectOnLine(s1, si, v);
} else {
select_1ik();
projectOnPlane(s1, sk, si, v);
}
}
}
break;
case 0:
// The origin is outside all 3 triangles
if (dotTotal == 1) {
// Here si is set such that hff(s1,si) > 0
if (testLineThree) {
k = 2;
i = 1; // s3
j = 0;
} else if (testLineFour) {
k = 1; // s3
i = 0;
j = 2;
} else {
k = 0;
i = 2; // s2
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (!hff2(s1, si, sj)) {
select_1ij();
projectOnPlane(s1, si, sj, v);
} else if (!hff2(s1, si, sk)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
} else {
select_1i();
projectOnLine(s1, si, v);
}
} else if (dotTotal == 2) {
// Here si is set such that hff(s1,si) < 0
s->nvrtx = 3;
if (!testLineThree) {
k = 2;
i = 1; // s3
j = 0;
} else if (!testLineFour) {
k = 1;
i = 0; // s4
j = 2;
} else {
k = 0;
i = 2; // s2
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (!hff2(s1, sj, sk)) {
if (!hff2(s1, sk, sj)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
} else if (!hff2(s1, sk, si)) {
select_1ik();
projectOnPlane(s1, sk, si, v);
} else {
select_1k();
projectOnLine(s1, sk, v);
}
} else if (!hff2(s1, sj, si)) {
select_1ij();
projectOnPlane(s1, si, sj, v);
} else {
select_1j();
projectOnLine(s1, sj, v);
}
}
break;
default:
mexPrintf("\nERROR:\tunhandled");
}
}
inline static void support(gkPolytope *body, const gkFloat *v) {
gkFloat s, maxs;
gkFloat *vrt;
int better = -1;
maxs = dotProduct(body->s, v);
for (int i = 0; i < body->numpoints; ++i) {
vrt = body->coord[i];
s = dotProduct(vrt, v);
if (s > maxs) {
maxs = s;
better = i;
}
}
if (better != -1) {
body->s[0] = body->coord[better][0];
body->s[1] = body->coord[better][1];
body->s[2] = body->coord[better][2];
}
}
inline static void subalgorithm(gkSimplex *s, gkFloat *v) {
switch (s->nvrtx) {
case 4:
S3D(s, v);
break;
case 3:
S2D(s, v);
break;
case 2:
S1D(s, v);
break;
default:
mexPrintf("\nERROR:\t invalid simplex\n");
}
}
gkFloat compute_minimum_distance(gkPolytope bd1, gkPolytope bd2, gkSimplex *s) {
int k = 0; /**< Iteration counter */
int i; /**< General purpose counter */
int mk = 25; /**< Maximum number of iterations of the GJK algorithm */
int absTestin;
gkFloat norm2Wmax = 0;
gkFloat tesnorm;
gkFloat v[3]; /**< Search direction */
gkFloat vminus[3]; /**< Search direction * -1 */
gkFloat w[3]; /**< Vertex on CSO boundary given by the difference of support
functions on both bodies */
gkFloat eps_rel = eps_rel22; /**< Tolerance on relative */
gkFloat eps_rel2 = eps_rel * eps_rel;
gkFloat eps_tot = eps_tot22;
gkFloat exeedtol_rel; /**< Test for 1st exit condition */
int nullV = 0;
/* Initialise search direction */
v[0] = bd1.coord[0][0] - bd2.coord[0][0];
v[1] = bd1.coord[0][1] - bd2.coord[0][1];
v[2] = bd1.coord[0][2] - bd2.coord[0][2];
/* Inialise simplex */
s->nvrtx = 1;
for (int t = 0; t < 3; ++t) s->vrtx[0][t] = v[t];
for (int t = 0; t < 3; ++t) bd1.s[t] = bd1.coord[0][t];
for (int t = 0; t < 3; ++t) bd2.s[t] = bd2.coord[0][t];
/* Begin GJK iteration */
do {
k++;
/* Update negative search direction */
for (int t = 0; t < 3; ++t) vminus[t] = -v[t];
/* Support function */
support(&bd1, vminus);
support(&bd2, v);
for (int t = 0; t < 3; ++t) w[t] = bd1.s[t] - bd2.s[t];
/* Test first exit condition (new point already in simplex/can't move
* further) */
exeedtol_rel = (norm2(v) - dotProduct(v, w));
if (exeedtol_rel <= (eps_rel * norm2(v)) || exeedtol_rel < eps_tot22) {
break;
}
nullV = norm2(v) < eps_rel2;
if (nullV) {
break;
}
/* Add new vertex to simplex */
i = s->nvrtx;
for (int t = 0; t < 3; ++t) s->vrtx[i][t] = w[t];
s->nvrtx++;
/* Invoke distance sub-algorithm */
subalgorithm(s, v);
/* Test */
for (int jj = 0; jj < s->nvrtx; jj++) {
tesnorm = norm2(s->vrtx[jj]);
if (tesnorm > norm2Wmax) {
norm2Wmax = tesnorm;
}
}
absTestin = (norm2(v) <= (eps_tot * eps_tot * norm2Wmax));
if (absTestin) {
break;
}
} while ((s->nvrtx != 4) && (k != mk));
if (k == mk) {
mexPrintf(
"\n * * * * * * * * * * * * MAXIMUM ITERATION NUMBER REACHED!!! "
" * * * * * * * * * * * * * * \n");
}
return sqrt(norm2(v));
}
#ifdef MATLAB_MEX_BUILD
/**
* @brief Mex function for Matlab.
*/
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
gkFloat *inCoordsA;
gkFloat *inCoordsB;
size_t nCoordsA;
size_t nCoordsB;
int i;
gkFloat *distance;
int c = 3;
int count = 0;
gkFloat **arr1;
gkFloat **arr2;
/**************** PARSE INPUTS AND OUTPUTS **********************/
/*----------------------------------------------------------------*/
/* Examine input (right-hand-side) arguments. */
if (nrhs != 2) {
mexErrMsgIdAndTxt("MyToolbox:gjk:nrhs", "Two inputs required.");
}
/* Examine output (left-hand-side) arguments. */
if (nlhs != 1) {
mexErrMsgIdAndTxt("MyToolbox:gjk:nlhs", "One output required.");
}
/* make sure the two input arguments are any numerical type */
/* .. first input */
if (!mxIsNumeric(prhs[0])) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notNumeric", "Input matrix must be type numeric.");
}
/* .. second input */
if (!mxIsNumeric(prhs[1])) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notNumeric", "Input matrix must be type numeric.");
}
/* make sure the two input arguments have 3 columns */
/* .. first input */
if (mxGetM(prhs[0]) != 3) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notColumnVector", "First input must have 3 columns.");
}
/* .. second input */
if (mxGetM(prhs[1]) != 3) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notColumnVector", "Second input must have 3 columns.");
}
/*----------------------------------------------------------------*/
/* CREATE DATA COMPATIBLE WITH MATALB */
/* create a pointer to the real data in the input matrix */
inCoordsA = mxGetPr(prhs[0]);
inCoordsB = mxGetPr(prhs[1]);
/* get the length of each input vector */
nCoordsA = mxGetN(prhs[0]);
nCoordsB = mxGetN(prhs[1]);
/* Create output */
plhs[0] = mxCreategkFloatMatrix(1, 1, mxREAL);
/* get a pointer to the real data in the output matrix */
distance = mxGetPr(plhs[0]);
/* Copy data from Matlab's vectors into two new arrays */
arr1 = (gkFloat **)mxMalloc(sizeof(gkFloat *) * (int)nCoordsA);
arr2 = (gkFloat **)mxMalloc(sizeof(gkFloat *) * (int)nCoordsB);
for (i = 0; i < nCoordsA; i++) arr1[i] = &inCoordsA[i * 3];
for (i = 0; i < nCoordsB; i++) arr2[i] = &inCoordsB[i * 3];
/*----------------------------------------------------------------*/
/* POPULATE BODIES' STRUCTURES */
gkPolytope bd1; /* Structure of body A */
gkPolytope bd2; /* Structure of body B */
/* Assign number of vertices to each body */
bd1.numpoints = (int)nCoordsA;
bd2.numpoints = (int)nCoordsB;
bd1.coord = arr1;
bd2.coord = arr2;
/*----------------------------------------------------------------*/
/*CALL COMPUTATIONAL ROUTINE */
gkSimplex s;
s.nvrtx = 0;
/* Compute squared distance using GJK algorithm */
distance[0] = gjk(bd1, bd2, &s);
mxFree(arr1);
mxFree(arr2);
}
#endif
#ifdef CS_MONO_BUILD
/**
* @brief Invoke this function from C# applications
*/
gkFloat csFunction(int nCoordsA, gkFloat *inCoordsA, int nCoordsB, gkFloat *inCoordsB) {
gkFloat distance = 0;
int i, j;
/*----------------------------------------------------------------*/
/* POPULATE BODIES' STRUCTURES */
gkPolytope bd1; /* Structure of body A */
gkPolytope bd2; /* Structure of body B */
/* Assign number of vertices to each body */
bd1.numpoints = (int)nCoordsA;
bd2.numpoints = (int)nCoordsB;
gkFloat **pinCoordsA = (gkFloat **)malloc(bd1.numpoints * sizeof(gkFloat *));
for (i = 0; i < bd1.numpoints; i++) pinCoordsA[i] = (gkFloat *)malloc(3 * sizeof(gkFloat));
for (i = 0; i < 3; i++)
for (j = 0; j < bd1.numpoints; j++) pinCoordsA[j][i] = inCoordsA[i * bd1.numpoints + j];
gkFloat **pinCoordsB = (gkFloat **)malloc(bd2.numpoints * sizeof(gkFloat *));
for (i = 0; i < bd2.numpoints; i++) pinCoordsB[i] = (gkFloat *)malloc(3 * sizeof(gkFloat));
for (i = 0; i < 3; i++)
for (j = 0; j < bd2.numpoints; j++) pinCoordsB[j][i] = inCoordsB[i * bd2.numpoints + j];
bd1.coord = pinCoordsA;
bd2.coord = pinCoordsB;
/*----------------------------------------------------------------*/
/*CALL COMPUTATIONAL ROUTINE */
gkSimplex s;
/* Initialise simplex as empty */
s.nvrtx = 0;
/* Compute squared distance using GJK algorithm */
distance = compute_minimum_distance(bd1, bd2, &s);
for (i = 0; i < bd1.numpoints; i++) free(pinCoordsA[i]);
free(pinCoordsA);
for (i = 0; i < bd2.numpoints; i++) free(pinCoordsB[i]);
free(pinCoordsB);
return distance;
}
#endif //CS_MONO_BUILD

View File

@ -1,946 +0,0 @@
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
* ##### # # # *
* #### ##### ###### # # # # # # # *
* # # # # # ## # # # # # *
* # # # # ##### # # # # #### # ### *
* # # ##### # # # # # # # # # # *
* # # # # # ## # # # # # # *
* #### # ###### # # ##### ##### # # *
* *
* This file is part of openGJK. *
* *
* openGJK is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* any later version. *
* *
* openGJK is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with Foobar. If not, see <https://www.gnu.org/licenses/>. *
* *
* openGJK: open-source Gilbert-Johnson-Keerthi algorithm *
* Copyright (C) Mattia Montanari 2018 - 2019 *
* http://iel.eng.ox.ac.uk/?page_id=504 *
* *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#include "openGJK/openGJK.h"
/* If instricuted, compile a mex function for Matlab. */
#ifdef MATLABDOESMEXSTUFF
#include "mex.h"
#else
#define mexPrintf printf
#endif
#define eps_rel22 1e-10
#define eps_tot22 1e-12
/* Select distance sub-algorithm */
#define norm2(a) (a[0]*a[0]+a[1]*a[1]+a[2]*a[2])
#define dotProduct(a, b) (a[0]*b[0]+a[1]*b[1]+a[2]*b[2])
#define S3Dregion1234() v[0] = 0;\
v[1] = 0;\
v[2] = 0;\
s->nvrtx = 4;
#define select_1ik() s->nvrtx = 3;\
for (t = 0; t < 3; t++)\
s->vrtx[2][t] = s->vrtx[3][t];\
for (t = 0; t < 3; t++)\
s->vrtx[1][t] = si[t];\
for (t = 0; t < 3; t++)\
s->vrtx[0][t] = sk[t];
#define select_1ij() s->nvrtx = 3;\
for (t = 0; t < 3; t++)\
s->vrtx[2][t] = s->vrtx[3][t];\
for (t = 0; t < 3; t++)\
s->vrtx[1][t] = si[t];\
for (t = 0; t < 3; t++)\
s->vrtx[0][t] = sj[t];
#define select_1jk() s->nvrtx = 3;\
for (t = 0; t < 3; t++)\
s->vrtx[2][t] = s->vrtx[3][t];\
for (t = 0; t < 3; t++)\
s->vrtx[1][t] = sj[t];\
for (t = 0; t < 3; t++)\
s->vrtx[0][t] = sk[t];
#define select_1i() s->nvrtx = 2;\
for (t = 0; t < 3; t++)\
s->vrtx[1][t] = s->vrtx[3][t];\
for (t = 0; t < 3; t++)\
s->vrtx[0][t] = si[t];
#define select_1j() s->nvrtx = 2;\
for (t = 0; t < 3; t++)\
s->vrtx[1][t] = s->vrtx[3][t];\
for (t = 0; t < 3; t++)\
s->vrtx[0][t] = sj[t];
#define select_1k() s->nvrtx = 2;\
for (t = 0; t < 3; t++)\
s->vrtx[1][t] = s->vrtx[3][t];\
for (t = 0; t < 3; t++)\
s->vrtx[0][t] = sk[t];
#define getvrtx(point, location) point[0] = s->vrtx[location][0];\
point[1] = s->vrtx[location][1];\
point[2] = s->vrtx[location][2];
#define calculateEdgeVector(p1p2, p2) p1p2[0] = p2[0] - s->vrtx[3][0];\
p1p2[1] = p2[1] - s->vrtx[3][1];\
p1p2[2] = p2[2] - s->vrtx[3][2];
#define S1Dregion1() v[0] = s->vrtx[1][0];\
v[1] = s->vrtx[1][1];\
v[2] = s->vrtx[1][2];\
s->nvrtx = 1;\
s->vrtx[0][0] = s->vrtx[1][0];\
s->vrtx[0][1] = s->vrtx[1][1];\
s->vrtx[0][2] = s->vrtx[1][2];
#define S2Dregion1() v[0] = s->vrtx[2][0];\
v[1] = s->vrtx[2][1];\
v[2] = s->vrtx[2][2];\
s->nvrtx = 1;\
s->vrtx[0][0] = s->vrtx[2][0];\
s->vrtx[0][1] = s->vrtx[2][1];\
s->vrtx[0][2] = s->vrtx[2][2];
#define S2Dregion12() s->nvrtx = 2;\
s->vrtx[0][0] = s->vrtx[2][0];\
s->vrtx[0][1] = s->vrtx[2][1];\
s->vrtx[0][2] = s->vrtx[2][2];
#define S2Dregion13() s->nvrtx = 2;\
s->vrtx[1][0] = s->vrtx[2][0];\
s->vrtx[1][1] = s->vrtx[2][1];\
s->vrtx[1][2] = s->vrtx[2][2];
#define S3Dregion1() v[0] = s1[0];\
v[1] = s1[1];\
v[2] = s1[2];\
s->nvrtx = 1;\
s->vrtx[0][0] = s1[0];\
s->vrtx[0][1] = s1[1];\
s->vrtx[0][2] = s1[2];
inline static double determinant(const double *p, const double *q, const double *r) {
return p[0] * ((q[1] * r[2]) - (r[1] * q[2])) - p[1] * (q[0] * r[2] - r[0] * q[2]) + p[2] * (q[0] * r[1] - r[0] * q[1]);
}
inline static void crossProduct(const double *a, const double *b, double *c)
{
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
inline static void projectOnLine(const double *p, const double *q, double *v)
{
double pq[3];
double tmp;
pq[0] = p[0] - q[0];
pq[1] = p[1] - q[1];
pq[2] = p[2] - q[2];
tmp = dotProduct(p, pq) / dotProduct(pq, pq);
for (int i = 0; i < 3; i++)
v[i] = p[i] - pq[i] * tmp;
}
inline static void projectOnPlane(const double *p, const double *q, const double *r, double *v)
{
double n[3], pq[3], pr[3];
double tmp;
for (int i = 0; i < 3; i++)
pq[i] = p[i] - q[i];
for (int i = 0; i < 3; i++)
pr[i] = p[i] - r[i];
crossProduct(pq, pr, n);
tmp = dotProduct(n, p) / dotProduct(n, n);
for (int i = 0; i < 3; i++)
v[i] = n[i] * tmp;
}
inline static int hff1(const double *p, const double *q)
{
double tmp = 0;
#pragma omp simd reduction(+:tmp)
for (int i = 0; i < 3; i++)
tmp += (p[i] * p[i] - p[i] * q[i]);
if (tmp > 0)
return 1; // keep q
return 0;
}
inline static int hff2(const double *p, const double *q, const double *r)
{
double ntmp[3];
double n[3], pq[3], pr[3];
double tmp = 0;
for (int i = 0; i < 3; i++)
pq[i] = q[i] - p[i];
for (int i = 0; i < 3; i++)
pr[i] = r[i] - p[i];
crossProduct(pq, pr, ntmp);
crossProduct(pq, ntmp, n);
#pragma omp simd reduction(+:tmp)
for (int i = 0; i < 3; i++)
tmp = tmp + (p[i] * n[i]);
if (tmp < 0)
return 1; // Discard r
return 0;
}
inline static int hff3(const double *p, const double *q, const double *r)
{
double n[3], pq[3], pr[3];
double tmp = 0;
for (int i = 0; i < 3; i++)
pq[i] = q[i] - p[i];
for (int i = 0; i < 3; i++)
pr[i] = r[i] - p[i];
crossProduct(pq, pr, n);
#pragma omp simd reduction(+:tmp)
for (int i = 0; i < 3; i++)
tmp = tmp + (p[i] * n[i]);
if (tmp > 0)
return 0; // discard s
return 1;
}
inline static void S1D(struct simplex * s, double *v)
{
double *s1p = s->vrtx[1];
double *s2p = s->vrtx[0];
if (hff1(s1p, s2p)) {
projectOnLine(s1p, s2p, v); // Update v, no need to update s
return; // Return V{1,2}
}
else {
S1Dregion1(); // Update v and s
return; // Return V{1}
}
}
inline static void S2D(struct simplex * s, double *v)
{
double *s1p = s->vrtx[2];
double *s2p = s->vrtx[1];
double *s3p = s->vrtx[0];
int hff1f_s12 = hff1(s1p, s2p);
int hff1f_s13 = hff1(s1p, s3p);
int hff2f_23 = !hff2(s1p, s2p, s3p);
int hff2f_32 = !hff2(s1p, s3p, s2p);
if (hff1f_s12) {
if (hff2f_23) {
if (hff1f_s13) {
if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3}
}
else
{
projectOnLine(s1p, s3p, v); // Update v
S2Dregion13(); // Update s
return; // Return V{1,3}
}
}
else
{
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3}
}
}
else
{
projectOnLine(s1p, s2p, v); // Update v
S2Dregion12(); // Update s
return; // Return V{1,2}
}
}
else if (hff1f_s13) {
if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update v
return; // Return V{1,2,3}
}
else
{
projectOnLine(s1p, s3p, v); // Update v
S2Dregion13(); // Update s
return; // Return V{1,3}
}
}
else {
S2Dregion1(); // Update s and v
return; // Return V{1}
}
}
inline static void S3D(struct simplex * s, double *v) {
double s1[3], s2[3], s3[3], s4[3], s1s2[3], s1s3[3], s1s4[3];
double si[3], sj[3], sk[3];
int testLineThree, testLineFour, testPlaneTwo, testPlaneThree, testPlaneFour, dotTotal;
int i, j, k, t;
getvrtx(s1, 3);
getvrtx(s2, 2);
getvrtx(s3, 1);
getvrtx(s4, 0);
calculateEdgeVector(s1s2, s2);
calculateEdgeVector(s1s3, s3);
calculateEdgeVector(s1s4, s4);
int hff1_tests[3];
hff1_tests[2] = hff1(s1, s2);
hff1_tests[1] = hff1(s1, s3);
hff1_tests[0] = hff1(s1, s4);
testLineThree = hff1(s1, s3);
testLineFour = hff1(s1, s4);
dotTotal = hff1(s1, s2) + testLineThree + testLineFour;
if (dotTotal == 0) { /* case 0.0 -------------------------------------- */
S3Dregion1();
return;
}
double det134 = determinant(s1s3, s1s4, s1s2);
int sss;
if (det134 > 0) {
sss = 0;
}
else {
sss = 1;
}
testPlaneTwo = hff3(s1, s3, s4) - sss;
testPlaneTwo = testPlaneTwo * testPlaneTwo;
testPlaneThree = hff3(s1, s4, s2) - sss;
testPlaneThree = testPlaneThree * testPlaneThree;
testPlaneFour = hff3(s1, s2, s3) - sss;
testPlaneFour = testPlaneFour * testPlaneFour;
switch (testPlaneTwo + testPlaneThree + testPlaneFour) {
case 3:
S3Dregion1234();
break;
case 2:
// Only one facing the oring
// 1,i,j, are the indices of the points on the triangle and remove k from simplex
s->nvrtx = 3;
if (!testPlaneTwo) { // k = 2; removes s2
for (i = 0; i < 3; i++)
s->vrtx[2][i] = s->vrtx[3][i];
}
else if (!testPlaneThree) {// k = 1; // removes s3
for (i = 0; i < 3; i++)
s->vrtx[1][i] = s2[i];
for (i = 0; i < 3; i++)
s->vrtx[2][i] = s->vrtx[3][i];
}
else if (!testPlaneFour) { // k = 0; // removes s4 and no need to reorder
for (i = 0; i < 3; i++)
s->vrtx[0][i] = s3[i];
for (i = 0; i < 3; i++)
s->vrtx[1][i] = s2[i];
for (i = 0; i < 3; i++)
s->vrtx[2][i] = s->vrtx[3][i];
}
// Call S2D
S2D(s, v);
break;
case 1:
// Two triangles face the origins:
// The only positive hff3 is for triangle 1,i,j, therefore k must be in the solution as it supports the the point of minimum norm.
// 1,i,j, are the indices of the points on the triangle and remove k from simplex
s->nvrtx = 3;
if (testPlaneTwo) {
k = 2; // s2
i = 1;
j = 0;
}
else if (testPlaneThree) {
k = 1; // s3
i = 0;
j = 2;
}
else {
k = 0; // s4
i = 2;
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (dotTotal == 1) {
if (hff1_tests[k]) {
if (!hff2(s1, sk, si)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
}
else if (!hff2(s1, sk, sj)) {
select_1jk();
projectOnPlane(s1, sj, sk, v);
}
else {
select_1k(); // select region 1i
projectOnLine(s1, sk, v);
}
}
else if (hff1_tests[i]) {
if (!hff2(s1, si, sk)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
}
else {
select_1i(); // select region 1i
projectOnLine(s1, si, v);
}
}
else {
if (!hff2(s1, sj, sk)) {
select_1jk();
projectOnPlane(s1, sj, sk, v);
}
else {
select_1j(); // select region 1i
projectOnLine(s1, sj, v);
}
}
}
else if (dotTotal == 2) {
// Two edges have positive hff1, meaning that for two edges the origin's project fall on the segement.
// Certainly the edge 1,k supports the the point of minimum norm, and so hff1_1k is positive
if (hff1_tests[i]) {
if (!hff2(s1, sk, si))
if (!hff2(s1, si, sk)) {
select_1ik(); // select region 1ik
projectOnPlane(s1, si, sk, v);
}
else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
else {
if (!hff2(s1, sk, sj)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
}
else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
}
}
else if (hff1_tests[j]) {// there is no other choice
if (!hff2(s1, sk, sj))
if (!hff2(s1, sj, sk)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
}
else {
select_1j(); // select region 1j
projectOnLine(s1, sj, v);
}
else {
if (!hff2(s1, sk, si)) {
select_1ik(); // select region 1ik
projectOnPlane(s1, si, sk, v);
}
else {
select_1k(); // select region 1k
projectOnLine(s1, sk, v);
}
}
}
else {
// ERROR;
}
}
else if (dotTotal == 3) {
// MM : ALL THIS HYPHOTESIS IS FALSE
// sk is s.t. hff3 for sk < 0. So, sk must support the origin because there are 2 triangles facing the origin.
int hff2_ik = hff2(s1,si,sk);
int hff2_jk = hff2(s1,sj,sk);
int hff2_ki = hff2(s1,sk,si);
int hff2_kj = hff2(s1,sk,sj);
if (hff2_ki == 0 && hff2_kj == 0){
mexPrintf("\n\n UNEXPECTED VALUES!!! \n\n");
}
if (hff2_ki == 1 && hff2_kj == 1){
select_1k();
projectOnLine(s1, sk, v);
}
else if (hff2_ki) {
// discard i
if (hff2_jk){
// discard k
select_1j();
projectOnLine(s1, sj, v);
}
else{
select_1jk();
projectOnPlane(s1, sk, sj, v);
}
}
else {
// discard j
if (hff2_ik){
// discard k
select_1i();
projectOnLine(s1, si, v);
}
else{
select_1ik();
projectOnPlane(s1, sk, si, v);
}
}
}
break;
case 0:
// The origin is outside all 3 triangles
if (dotTotal == 1) {
// Here si is set such that hff(s1,si) > 0
if (testLineThree) {
k = 2;
i = 1; // s3
j = 0;
}
else if (testLineFour) {
k = 1; // s3
i = 0;
j = 2;
}
else {
k = 0;
i = 2; // s2
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (!hff2(s1, si, sj)) {
select_1ij();
projectOnPlane(s1, si, sj, v);
}
else if (!hff2(s1, si, sk)) {
select_1ik();
projectOnPlane(s1, si, sk, v);
}
else {
select_1i();
projectOnLine(s1, si, v);
}
}
else if (dotTotal == 2) {
// Here si is set such that hff(s1,si) < 0
s->nvrtx = 3;
if (!testLineThree) {
k = 2;
i = 1; // s3
j = 0;
}
else if (!testLineFour) {
k = 1;
i = 0; // s4
j = 2;
}
else {
k = 0;
i = 2; // s2
j = 1;
}
getvrtx(si, i);
getvrtx(sj, j);
getvrtx(sk, k);
if (!hff2(s1, sj, sk)) {
if (!hff2(s1, sk, sj)) {
select_1jk(); // select region 1jk
projectOnPlane(s1, sj, sk, v);
}
else if (!hff2(s1, sk, si)) {
select_1ik();
projectOnPlane(s1, sk, si, v);
}
else {
select_1k();
projectOnLine(s1, sk, v);
}
}
else if (!hff2(s1, sj, si)) {
select_1ij();
projectOnPlane(s1, si, sj, v);
}
else {
select_1j();
projectOnLine(s1, sj, v);
}
}
break;
default:
mexPrintf("\nERROR:\tunhandled");
}
}
inline static void support(struct bd *body, const double *v) {
double s, maxs;
double *vrt;
int better = -1;
maxs = dotProduct(body->s, v);
for (int i = 0; i < body->numpoints; ++i) {
vrt = body->coord[i];
s = dotProduct(vrt, v);
if (s > maxs) {
maxs = s;
better = i;
}
}
if (better != -1) {
body->s[0] = body->coord[better][0];
body->s[1] = body->coord[better][1];
body->s[2] = body->coord[better][2];
}
}
inline static void subalgorithm(struct simplex *s, double *v) {
switch (s->nvrtx) {
case 4:
S3D(s, v);
break;
case 3:
S2D(s, v);
break;
case 2:
S1D(s, v);
break;
default:
mexPrintf("\nERROR:\t invalid simplex\n");
}
}
double gjk(struct bd bd1, struct bd bd2, struct simplex *s) {
int k = 0; /**< Iteration counter */
int i; /**< General purpose counter */
int mk = 25; /**< Maximum number of iterations of the GJK algorithm */
int absTestin;
double norm2Wmax = 0;
double tesnorm;
double v[3]; /**< Search direction */
double vminus[3]; /**< Search direction * -1 */
double w[3]; /**< Vertex on CSO boundary given by the difference of support functions on both bodies */
double eps_rel = eps_rel22; /**< Tolerance on relative */
double eps_rel2 = eps_rel * eps_rel;
double eps_tot = eps_tot22;
double exeedtol_rel; /**< Test for 1st exit condition */
int nullV = 0;
#ifdef DEBUG
mexPrintf("Num points A = %i \n", bd1.numpoints);
mexPrintf("Num points B = %i \n", bd2.numpoints);
for (i = 0; i < bd1.numpoints; ++i) {
for (int j = 0; j < 3; j++) {
mexPrintf("%.4f ", bd1.coord[i][j]);
}
mexPrintf("\n");
}
for (i = 0; i < bd2.numpoints; ++i) {
for (int j = 0; j < 3; j++) {
mexPrintf("%.4f ", bd2.coord[i][j]);
}
mexPrintf("\n");
}
#endif
/* Initialise search direction */
v[0] = bd1.coord[0][0] - bd2.coord[0][0];
v[1] = bd1.coord[0][1] - bd2.coord[0][1];
v[2] = bd1.coord[0][2] - bd2.coord[0][2];
/* Inialise simplex */
s->nvrtx = 1;
for (int t = 0; t < 3; ++t)
s->vrtx[0][t] = v[t];
for (int t = 0; t < 3; ++t)
bd1.s[t] = bd1.coord[0][t];
for (int t = 0; t < 3; ++t)
bd2.s[t] = bd2.coord[0][t];
/* Begin GJK iteration */
do {
k++;
/* Update negative search direction */
for (int t = 0; t < 3; ++t)
vminus[t] = -v[t];
/* Support function */
support(&bd1, vminus);
support(&bd2, v);
for (int t = 0; t < 3; ++t)
w[t] = bd1.s[t] - bd2.s[t];
/* Test first exit condition (new point already in simplex/can't move further) */
exeedtol_rel = (norm2(v) - dotProduct(v, w));
if ( exeedtol_rel <= (eps_rel * norm2(v)) || exeedtol_rel < eps_tot22) {
break;
}
nullV = norm2(v) < eps_rel2;
if (nullV) {
break;
}
/* Add new vertex to simplex */
i = s->nvrtx;
for (int t = 0; t < 3; ++t)
s->vrtx[i][t] = w[t];
s->nvrtx++;
/* Invoke distance sub-algorithm */
subalgorithm(s, v);
/* Test */
for (int jj = 0; jj < s->nvrtx; jj++) {
tesnorm = norm2(s->vrtx[jj]);
if (tesnorm > norm2Wmax) {
norm2Wmax = tesnorm;
}
}
absTestin = (norm2(v) <= (eps_tot * eps_tot * norm2Wmax));
if (absTestin) {
break;
}
} while ((s->nvrtx != 4) && (k != mk));
if (k == mk) {
mexPrintf("\n * * * * * * * * * * * * MAXIMUM ITERATION NUMBER REACHED!!! * * * * * * * * * * * * * * \n");
}
return sqrt(norm2(v));
}
#ifdef MATLABDOESMEXSTUFF
/**
* @brief Mex function for Matlab.
*/
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
double *inCoordsA;
double *inCoordsB;
size_t nCoordsA;
size_t nCoordsB;
int i;
double *distance;
int c = 3;
int count = 0;
double**arr1;
double**arr2;
/**************** PARSE INPUTS AND OUTPUTS **********************/
/*----------------------------------------------------------------*/
/* Examine input (right-hand-side) arguments. */
if (nrhs != 2) {
mexErrMsgIdAndTxt("MyToolbox:gjk:nrhs", "Two inputs required.");
}
/* Examine output (left-hand-side) arguments. */
if (nlhs != 1) {
mexErrMsgIdAndTxt("MyToolbox:gjk:nlhs", "One output required.");
}
/* make sure the two input arguments are any numerical type */
/* .. first input */
if (!mxIsNumeric(prhs[0])) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notNumeric", "Input matrix must be type numeric.");
}
/* .. second input */
if (!mxIsNumeric(prhs[1])) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notNumeric", "Input matrix must be type numeric.");
}
/* make sure the two input arguments have 3 columns */
/* .. first input */
if (mxGetM(prhs[0]) != 3) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notColumnVector", "First input must have 3 columns.");
}
/* .. second input */
if (mxGetM(prhs[1]) != 3) {
mexErrMsgIdAndTxt("MyToolbox:gjk:notColumnVector", "Second input must have 3 columns.");
}
/*----------------------------------------------------------------*/
/* CREATE DATA COMPATIBLE WITH MATALB */
/* create a pointer to the real data in the input matrix */
inCoordsA = mxGetPr(prhs[0]);
inCoordsB = mxGetPr(prhs[1]);
/* get the length of each input vector */
nCoordsA = mxGetN(prhs[0]);
nCoordsB = mxGetN(prhs[1]);
/* Create output */
plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
/* get a pointer to the real data in the output matrix */
distance = mxGetPr(plhs[0]);
/* Copy data from Matlab's vectors into two new arrays */
arr1 = (double **)mxMalloc(sizeof(double *) * (int)nCoordsA);
arr2 = (double **)mxMalloc(sizeof(double *) * (int)nCoordsB);
for (i = 0; i < nCoordsA; i++)
arr1[i] = &inCoordsA[i * 3];
for (i = 0; i < nCoordsB; i++)
arr2[i] = &inCoordsB[i * 3];
/*----------------------------------------------------------------*/
/* POPULATE BODIES' STRUCTURES */
struct bd bd1; /* Structure of body A */
struct bd bd2; /* Structure of body B */
/* Assign number of vertices to each body */
bd1.numpoints = (int)nCoordsA;
bd2.numpoints = (int)nCoordsB;
bd1.coord = arr1;
bd2.coord = arr2;
/*----------------------------------------------------------------*/
/*CALL COMPUTATIONAL ROUTINE */
struct simplex s;
s.nvrtx = 0;
/* Compute squared distance using GJK algorithm */
distance[0] = gjk(bd1, bd2, &s);
mxFree(arr1);
mxFree(arr2);
}
#endif
/**
* @brief Invoke this function from C# applications
*/
double csFunction(int nCoordsA, double *inCoordsA, int nCoordsB, double *inCoordsB)
{
double distance = 0;
int i, j;
/*----------------------------------------------------------------*/
/* POPULATE BODIES' STRUCTURES */
struct bd bd1; /* Structure of body A */
struct bd bd2; /* Structure of body B */
/* Assign number of vertices to each body */
bd1.numpoints = (int)nCoordsA;
bd2.numpoints = (int)nCoordsB;
double **pinCoordsA = (double **)malloc(bd1.numpoints * sizeof(double *));
for (i = 0; i < bd1.numpoints; i++)
pinCoordsA[i] = (double *)malloc(3 * sizeof(double));
for (i = 0; i < 3; i++)
for (j = 0; j < bd1.numpoints; j++)
pinCoordsA[j][i] = inCoordsA[i*bd1.numpoints + j];
double **pinCoordsB = (double **)malloc(bd2.numpoints * sizeof(double *));
for (i = 0; i < bd2.numpoints; i++)
pinCoordsB[i] = (double *)malloc(3 * sizeof(double));
for (i = 0; i < 3; i++)
for (j = 0; j < bd2.numpoints; j++)
pinCoordsB[j][i] = inCoordsB[i*bd2.numpoints + j];
bd1.coord = pinCoordsA;
bd2.coord = pinCoordsB;
/*----------------------------------------------------------------*/
/*CALL COMPUTATIONAL ROUTINE */
struct simplex s;
/* Initialise simplex as empty */
s.nvrtx = 0;
/* Compute squared distance using GJK algorithm */
distance = gjk(bd1, bd2, &s);
for (i = 0; i < bd1.numpoints; i++)
free(pinCoordsA[i]);
free(pinCoordsA);
for (i = 0; i < bd2.numpoints; i++)
free(pinCoordsB[i]);
free(pinCoordsB);
return distance;
}