Compare commits

..

9 Commits

Author SHA1 Message Date
Cullen Watson 5bd199d0a5 Merge branch 'main' of https://github.com/Bunsly/JobSpy 2025-02-21 14:15:06 -06:00
Cullen Watson 4ec308a302 refactor:organize code 2025-02-21 14:14:55 -06:00
Cullen Watson 7cb0c518fc
docs:readme 2025-02-21 12:53:59 -06:00
Cullen Watson df70d4bc2e minor 2025-02-21 12:35:31 -06:00
Cullen Watson 3006063875 enh:remove log by default 2025-02-21 12:31:04 -06:00
Abdulrahman Hisham 1be009b8bc
Adding Bayt.com Scraper to current codebase (#246) 2025-02-21 12:29:54 -06:00
Cullen Watson 81ed9b3ddf enh:remove log by default 2025-02-21 12:29:28 -06:00
Abdulrahman Al Muaitah 11a9e9a56a Fixed Bayt scraper integration 2025-02-21 20:10:02 +04:00
Abdulrahman Al Muaitah c6ade14784 Added Bayt Scraper integration 2025-02-21 15:31:29 +04:00
34 changed files with 757 additions and 732 deletions

View File

@ -1,50 +1,33 @@
name: Publish Python 🐍 distributions 📦 to PyPI
on:
pull_request:
types:
- closed
permissions:
contents: write
name: Publish JobSpy to PyPi
on: push
jobs:
build-n-publish:
name: Build and publish Python 🐍 distributions 📦 to PyPI
name: Build and publish JobSpy to PyPi
runs-on: ubuntu-latest
if: github.event.pull_request.merged == true && github.event.pull_request.base.ref == 'main'
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Install dependencies
run: pip install toml
- name: Increment version
run: python increment_version.py
- name: Commit version increment
run: |
git config --global user.name 'github-actions'
git config --global user.email 'github-actions@github.com'
git add pyproject.toml
git commit -m 'Increment version'
- name: Push changes
run: git push
- name: Install poetry
run: pip install poetry --user
run: >-
python3 -m
pip install
poetry
--user
- name: Build distribution 📦
run: poetry build
run: >-
python3 -m
poetry
build
- name: Publish distribution 📦 to PyPI
if: startsWith(github.ref, 'refs/tags')
uses: pypa/gh-action-pypi-publish@release/v1
with:
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@ -1,22 +0,0 @@
name: Python Tests
on:
pull_request:
branches:
- main
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.8'
- name: Install dependencies
run: |
pip install poetry
poetry install
- name: Run tests
run: poetry run pytest tests/test_all.py

View File

@ -1,10 +1,10 @@
<img src="https://github.com/cullenwatson/JobSpy/assets/78247585/ae185b7e-e444-4712-8bb9-fa97f53e896b" width="400">
**JobSpy** is a simple, yet comprehensive, job scraping library.
**JobSpy** is a job scraping library with the goal of aggregating all the jobs from popular job boards with one tool.
## Features
- Scrapes job postings from **LinkedIn**, **Indeed**, **Glassdoor**, **Google**, & **ZipRecruiter** simultaneously
- Scrapes job postings from **LinkedIn**, **Indeed**, **Glassdoor**, **Google**, **ZipRecruiter**, & **Bayt** concurrently
- Aggregates the job postings in a dataframe
- Proxies support to bypass blocking
@ -25,7 +25,7 @@ import csv
from jobspy import scrape_jobs
jobs = scrape_jobs(
site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor", "google"],
site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor", "google", "bayt"],
search_term="software engineer",
google_search_term="software engineer jobs near San Francisco, CA since yesterday",
location="San Francisco, CA",
@ -58,7 +58,7 @@ zip_recruiter Software Developer TEKsystems Phoenix
```plaintext
Optional
├── site_name (list|str):
| linkedin, zip_recruiter, indeed, glassdoor, google
| linkedin, zip_recruiter, indeed, glassdoor, google, bayt
| (default is all)
├── search_term (str)
@ -165,6 +165,11 @@ You can specify the following countries when searching on Indeed (use the exact
| United Arab Emirates | UK* | USA* | Uruguay |
| Venezuela | Vietnam* | | |
### **Bayt**
Bayt only uses the search_term parameter currently and searches internationally
## Notes
* Indeed is the best scraper currently with no rate limiting.

View File

@ -1,21 +0,0 @@
import toml
def increment_version(version):
major, minor, patch = map(int, version.split('.'))
patch += 1
return f"{major}.{minor}.{patch}"
# Load pyproject.toml
with open('pyproject.toml', 'r') as file:
pyproject = toml.load(file)
# Increment the version
current_version = pyproject['tool']['poetry']['version']
new_version = increment_version(current_version)
pyproject['tool']['poetry']['version'] = new_version
# Save the updated pyproject.toml
with open('pyproject.toml', 'w') as file:
toml.dump(pyproject, file)
print(f"Version updated from {current_version} to {new_version}")

View File

@ -1,24 +1,27 @@
from __future__ import annotations
import pandas as pd
from typing import Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Tuple
from .jobs import JobType, Location
from .scrapers.utils import set_logger_level, extract_salary, create_logger
from .scrapers.indeed import IndeedScraper
from .scrapers.ziprecruiter import ZipRecruiterScraper
from .scrapers.glassdoor import GlassdoorScraper
from .scrapers.google import GoogleJobsScraper
from .scrapers.linkedin import LinkedInScraper
from .scrapers import SalarySource, ScraperInput, Site, JobResponse, Country
from .scrapers.exceptions import (
LinkedInException,
IndeedException,
ZipRecruiterException,
GlassdoorException,
GoogleJobsException,
import pandas as pd
from jobspy.bayt import BaytScraper
from jobspy.glassdoor import Glassdoor
from jobspy.google import Google
from jobspy.indeed import Indeed
from jobspy.linkedin import LinkedIn
from jobspy.model import JobType, Location, JobResponse, Country
from jobspy.model import SalarySource, ScraperInput, Site
from jobspy.util import (
set_logger_level,
extract_salary,
create_logger,
get_enum_from_value,
map_str_to_site,
convert_to_annual,
desired_order,
)
from jobspy.ziprecruiter import ZipRecruiter
def scrape_jobs(
@ -32,7 +35,6 @@ def scrape_jobs(
easy_apply: bool | None = None,
results_wanted: int = 15,
country_indeed: str = "usa",
hyperlinks: bool = False,
proxies: list[str] | str | None = None,
ca_cert: str | None = None,
description_format: str = "markdown",
@ -41,31 +43,22 @@ def scrape_jobs(
offset: int | None = 0,
hours_old: int = None,
enforce_annual_salary: bool = False,
verbose: int = 2,
verbose: int = 0,
**kwargs,
) -> pd.DataFrame:
"""
Simultaneously scrapes job data from multiple job sites.
:return: pandas dataframe containing job data
Scrapes job data from job boards concurrently
:return: Pandas DataFrame containing job data
"""
SCRAPER_MAPPING = {
Site.LINKEDIN: LinkedInScraper,
Site.INDEED: IndeedScraper,
Site.ZIP_RECRUITER: ZipRecruiterScraper,
Site.GLASSDOOR: GlassdoorScraper,
Site.GOOGLE: GoogleJobsScraper,
Site.LINKEDIN: LinkedIn,
Site.INDEED: Indeed,
Site.ZIP_RECRUITER: ZipRecruiter,
Site.GLASSDOOR: Glassdoor,
Site.GOOGLE: Google,
Site.BAYT: BaytScraper,
}
set_logger_level(verbose)
def map_str_to_site(site_name: str) -> Site:
return Site[site_name.upper()]
def get_enum_from_value(value_str):
for job_type in JobType:
if value_str in job_type.value:
return job_type
raise Exception(f"Invalid job type: {value_str}")
job_type = get_enum_from_value(job_type) if job_type else None
def get_site_type():
@ -125,28 +118,12 @@ def scrape_jobs(
site_value, scraped_data = future.result()
site_to_jobs_dict[site_value] = scraped_data
def convert_to_annual(job_data: dict):
if job_data["interval"] == "hourly":
job_data["min_amount"] *= 2080
job_data["max_amount"] *= 2080
if job_data["interval"] == "monthly":
job_data["min_amount"] *= 12
job_data["max_amount"] *= 12
if job_data["interval"] == "weekly":
job_data["min_amount"] *= 52
job_data["max_amount"] *= 52
if job_data["interval"] == "daily":
job_data["min_amount"] *= 260
job_data["max_amount"] *= 260
job_data["interval"] = "yearly"
jobs_dfs: list[pd.DataFrame] = []
for site, job_response in site_to_jobs_dict.items():
for job in job_response.jobs:
job_data = job.dict()
job_url = job_data["job_url"]
job_data["job_url_hyper"] = f'<a href="{job_url}">{job_url}</a>'
job_data["site"] = site
job_data["company"] = job_data["company_name"]
job_data["job_type"] = (
@ -209,38 +186,6 @@ def scrape_jobs(
# Step 2: Concatenate the filtered DataFrames
jobs_df = pd.concat(filtered_dfs, ignore_index=True)
# Desired column order
desired_order = [
"id",
"site",
"job_url_hyper" if hyperlinks else "job_url",
"job_url_direct",
"title",
"company",
"location",
"date_posted",
"job_type",
"salary_source",
"interval",
"min_amount",
"max_amount",
"currency",
"is_remote",
"job_level",
"job_function",
"listing_type",
"emails",
"description",
"company_industry",
"company_url",
"company_logo",
"company_url_direct",
"company_addresses",
"company_num_employees",
"company_revenue",
"company_description",
]
# Step 3: Ensure all desired columns are present, adding missing ones as empty
for column in desired_order:
if column not in jobs_df.columns:

145
jobspy/bayt/__init__.py Normal file
View File

@ -0,0 +1,145 @@
from __future__ import annotations
import random
import time
from bs4 import BeautifulSoup
from jobspy.model import (
Scraper,
ScraperInput,
Site,
JobPost,
JobResponse,
Location,
Country,
)
from jobspy.util import create_logger, create_session
log = create_logger("Bayt")
class BaytScraper(Scraper):
base_url = "https://www.bayt.com"
delay = 2
band_delay = 3
def __init__(
self, proxies: list[str] | str | None = None, ca_cert: str | None = None
):
super().__init__(Site.BAYT, proxies=proxies, ca_cert=ca_cert)
self.scraper_input = None
self.session = None
self.country = "worldwide"
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
self.scraper_input = scraper_input
self.session = create_session(
proxies=self.proxies, ca_cert=self.ca_cert, is_tls=False, has_retry=True
)
job_list: list[JobPost] = []
page = 1
results_wanted = (
scraper_input.results_wanted if scraper_input.results_wanted else 10
)
while len(job_list) < results_wanted:
log.info(f"Fetching Bayt jobs page {page}")
job_elements = self._fetch_jobs(self.scraper_input.search_term, page)
if not job_elements:
break
if job_elements:
log.debug(
"First job element snippet:\n" + job_elements[0].prettify()[:500]
)
initial_count = len(job_list)
for job in job_elements:
try:
job_post = self._extract_job_info(job)
if job_post:
job_list.append(job_post)
if len(job_list) >= results_wanted:
break
else:
log.debug(
"Extraction returned None. Job snippet:\n"
+ job.prettify()[:500]
)
except Exception as e:
log.error(f"Bayt: Error extracting job info: {str(e)}")
continue
if len(job_list) == initial_count:
log.info(f"No new jobs found on page {page}. Ending pagination.")
break
page += 1
time.sleep(random.uniform(self.delay, self.delay + self.band_delay))
job_list = job_list[: scraper_input.results_wanted]
return JobResponse(jobs=job_list)
def _fetch_jobs(self, query: str, page: int) -> list | None:
"""
Grabs the job results for the given query and page number.
"""
try:
url = f"{self.base_url}/en/international/jobs/{query}-jobs/?page={page}"
response = self.session.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
job_listings = soup.find_all("li", attrs={"data-js-job": ""})
log.debug(f"Found {len(job_listings)} job listing elements")
return job_listings
except Exception as e:
log.error(f"Bayt: Error fetching jobs - {str(e)}")
return None
def _extract_job_info(self, job: BeautifulSoup) -> JobPost | None:
"""
Extracts the job information from a single job listing.
"""
# Find the h2 element holding the title and link (no class filtering)
job_general_information = job.find("h2")
if not job_general_information:
return
job_title = job_general_information.get_text(strip=True)
job_url = self._extract_job_url(job_general_information)
if not job_url:
return
# Extract company name using the original approach:
company_tag = job.find("div", class_="t-nowrap p10l")
company_name = (
company_tag.find("span").get_text(strip=True)
if company_tag and company_tag.find("span")
else None
)
# Extract location using the original approach:
location_tag = job.find("div", class_="t-mute t-small")
location = location_tag.get_text(strip=True) if location_tag else None
job_id = f"bayt-{abs(hash(job_url))}"
location_obj = Location(
city=location,
country=Country.from_string(self.country),
)
return JobPost(
id=job_id,
title=job_title,
company_name=company_name,
location=location_obj,
job_url=job_url,
)
def _extract_job_url(self, job_general_information: BeautifulSoup) -> str | None:
"""
Pulls the job URL from the 'a' within the h2 element.
"""
a_tag = job_general_information.find("a")
if a_tag and a_tag.has_attr("href"):
return self.base_url + a_tag["href"].strip()

View File

@ -1,5 +1,5 @@
"""
jobspy.scrapers.exceptions
jobspy.jobboard.exceptions
~~~~~~~~~~~~~~~~~~~
This module contains the set of Scrapers' exceptions.
@ -29,3 +29,8 @@ class GlassdoorException(Exception):
class GoogleJobsException(Exception):
def __init__(self, message=None):
super().__init__(message or "An error occurred with Google Jobs")
class BaytException(Exception):
def __init__(self, message=None):
super().__init__(message or "An error occurred with Bayt")

View File

@ -1,41 +1,38 @@
"""
jobspy.scrapers.glassdoor
~~~~~~~~~~~~~~~~~~~
This module contains routines to scrape Glassdoor.
"""
from __future__ import annotations
import re
import json
import requests
from typing import Optional, Tuple
from typing import Tuple
from datetime import datetime, timedelta
from concurrent.futures import ThreadPoolExecutor, as_completed
from .constants import fallback_token, query_template, headers
from .. import Scraper, ScraperInput, Site
from ..utils import extract_emails_from_text, create_logger
from ..exceptions import GlassdoorException
from ..utils import (
from jobspy.glassdoor.constant import fallback_token, query_template, headers
from jobspy.glassdoor.util import (
get_cursor_for_page,
parse_compensation,
parse_location,
)
from jobspy.util import (
extract_emails_from_text,
create_logger,
create_session,
markdown_converter,
)
from ...jobs import (
from jobspy.exception import GlassdoorException
from jobspy.model import (
JobPost,
Compensation,
CompensationInterval,
Location,
JobResponse,
JobType,
DescriptionFormat,
Scraper,
ScraperInput,
Site,
)
logger = create_logger("Glassdoor")
log = create_logger("Glassdoor")
class GlassdoorScraper(Scraper):
class Glassdoor(Scraper):
def __init__(
self, proxies: list[str] | str | None = None, ca_cert: str | None = None
):
@ -64,7 +61,7 @@ class GlassdoorScraper(Scraper):
self.base_url = self.scraper_input.country.get_glassdoor_url()
self.session = create_session(
proxies=self.proxies, ca_cert=self.ca_cert, is_tls=True, has_retry=True
proxies=self.proxies, ca_cert=self.ca_cert, has_retry=True
)
token = self._get_csrf_token()
headers["gd-csrf-token"] = token if token else fallback_token
@ -74,7 +71,7 @@ class GlassdoorScraper(Scraper):
scraper_input.location, scraper_input.is_remote
)
if location_type is None:
logger.error("Glassdoor: location not parsed")
log.error("Glassdoor: location not parsed")
return JobResponse(jobs=[])
job_list: list[JobPost] = []
cursor = None
@ -83,7 +80,7 @@ class GlassdoorScraper(Scraper):
tot_pages = (scraper_input.results_wanted // self.jobs_per_page) + 2
range_end = min(tot_pages, self.max_pages + 1)
for page in range(range_start, range_end):
logger.info(f"search page: {page} / {range_end-1}")
log.info(f"search page: {page} / {range_end - 1}")
try:
jobs, cursor = self._fetch_jobs_page(
scraper_input, location_id, location_type, page, cursor
@ -93,7 +90,7 @@ class GlassdoorScraper(Scraper):
job_list = job_list[: scraper_input.results_wanted]
break
except Exception as e:
logger.error(f"Glassdoor: {str(e)}")
log.error(f"Glassdoor: {str(e)}")
break
return JobResponse(jobs=job_list)
@ -129,7 +126,7 @@ class GlassdoorScraper(Scraper):
ValueError,
Exception,
) as e:
logger.error(f"Glassdoor: {str(e)}")
log.error(f"Glassdoor: {str(e)}")
return jobs, None
jobs_data = res_json["data"]["jobListings"]["jobListings"]
@ -146,7 +143,7 @@ class GlassdoorScraper(Scraper):
except Exception as exc:
raise GlassdoorException(f"Glassdoor generated an exception: {exc}")
return jobs, self.get_cursor_for_page(
return jobs, get_cursor_for_page(
res_json["data"]["jobListings"]["paginationCursors"], page_num + 1
)
@ -185,9 +182,9 @@ class GlassdoorScraper(Scraper):
if location_type == "S":
is_remote = True
else:
location = self.parse_location(location_name)
location = parse_location(location_name)
compensation = self.parse_compensation(job["header"])
compensation = parse_compensation(job["header"])
try:
description = self._fetch_job_description(job_id)
except:
@ -264,12 +261,12 @@ class GlassdoorScraper(Scraper):
if res.status_code != 200:
if res.status_code == 429:
err = f"429 Response - Blocked by Glassdoor for too many requests"
logger.error(err)
log.error(err)
return None, None
else:
err = f"Glassdoor response status code {res.status_code}"
err += f" - {res.text}"
logger.error(f"Glassdoor response status code {res.status_code}")
log.error(f"Glassdoor response status code {res.status_code}")
return None, None
items = res.json()
@ -321,44 +318,3 @@ class GlassdoorScraper(Scraper):
{"filterKey": "jobType", "values": self.scraper_input.job_type.value[0]}
)
return json.dumps([payload])
@staticmethod
def parse_compensation(data: dict) -> Optional[Compensation]:
pay_period = data.get("payPeriod")
adjusted_pay = data.get("payPeriodAdjustedPay")
currency = data.get("payCurrency", "USD")
if not pay_period or not adjusted_pay:
return None
interval = None
if pay_period == "ANNUAL":
interval = CompensationInterval.YEARLY
elif pay_period:
interval = CompensationInterval.get_interval(pay_period)
min_amount = int(adjusted_pay.get("p10") // 1)
max_amount = int(adjusted_pay.get("p90") // 1)
return Compensation(
interval=interval,
min_amount=min_amount,
max_amount=max_amount,
currency=currency,
)
@staticmethod
def get_job_type_enum(job_type_str: str) -> list[JobType] | None:
for job_type in JobType:
if job_type_str in job_type.value:
return [job_type]
@staticmethod
def parse_location(location_name: str) -> Location | None:
if not location_name or location_name == "Remote":
return
city, _, state = location_name.partition(", ")
return Location(city=city, state=state)
@staticmethod
def get_cursor_for_page(pagination_cursors, page_num):
for cursor_data in pagination_cursors:
if cursor_data["pageNumber"] == page_num:
return cursor_data["cursor"]

42
jobspy/glassdoor/util.py Normal file
View File

@ -0,0 +1,42 @@
from jobspy.model import Compensation, CompensationInterval, Location, JobType
def parse_compensation(data: dict) -> Compensation | None:
pay_period = data.get("payPeriod")
adjusted_pay = data.get("payPeriodAdjustedPay")
currency = data.get("payCurrency", "USD")
if not pay_period or not adjusted_pay:
return None
interval = None
if pay_period == "ANNUAL":
interval = CompensationInterval.YEARLY
elif pay_period:
interval = CompensationInterval.get_interval(pay_period)
min_amount = int(adjusted_pay.get("p10") // 1)
max_amount = int(adjusted_pay.get("p90") // 1)
return Compensation(
interval=interval,
min_amount=min_amount,
max_amount=max_amount,
currency=currency,
)
def get_job_type_enum(job_type_str: str) -> list[JobType] | None:
for job_type in JobType:
if job_type_str in job_type.value:
return [job_type]
def parse_location(location_name: str) -> Location | None:
if not location_name or location_name == "Remote":
return
city, _, state = location_name.partition(", ")
return Location(city=city, state=state)
def get_cursor_for_page(pagination_cursors, page_num):
for cursor_data in pagination_cursors:
if cursor_data["pageNumber"] == page_num:
return cursor_data["cursor"]

View File

@ -1,10 +1,3 @@
"""
jobspy.scrapers.google
~~~~~~~~~~~~~~~~~~~
This module contains routines to scrape Google.
"""
from __future__ import annotations
import math
@ -13,23 +6,21 @@ import json
from typing import Tuple
from datetime import datetime, timedelta
from .constants import headers_jobs, headers_initial, async_param
from .. import Scraper, ScraperInput, Site
from ..utils import extract_emails_from_text, create_logger, extract_job_type
from ..utils import (
create_session,
)
from ...jobs import (
from jobspy.google.constant import headers_jobs, headers_initial, async_param
from jobspy.model import (
Scraper,
ScraperInput,
Site,
JobPost,
JobResponse,
Location,
JobType,
)
logger = create_logger("Google")
from jobspy.util import extract_emails_from_text, extract_job_type, create_session
from jobspy.google.util import log, find_job_info_initial_page, find_job_info
class GoogleJobsScraper(Scraper):
class Google(Scraper):
def __init__(
self, proxies: list[str] | str | None = None, ca_cert: str | None = None
):
@ -61,7 +52,7 @@ class GoogleJobsScraper(Scraper):
)
forward_cursor, job_list = self._get_initial_cursor_and_jobs()
if forward_cursor is None:
logger.warning(
log.warning(
"initial cursor not found, try changing your query or there was at most 10 results"
)
return JobResponse(jobs=job_list)
@ -72,16 +63,16 @@ class GoogleJobsScraper(Scraper):
len(self.seen_urls) < scraper_input.results_wanted + scraper_input.offset
and forward_cursor
):
logger.info(
log.info(
f"search page: {page} / {math.ceil(scraper_input.results_wanted / self.jobs_per_page)}"
)
try:
jobs, forward_cursor = self._get_jobs_next_page(forward_cursor)
except Exception as e:
logger.error(f"failed to get jobs on page: {page}, {e}")
log.error(f"failed to get jobs on page: {page}, {e}")
break
if not jobs:
logger.info(f"found no jobs on page: {page}")
log.info(f"found no jobs on page: {page}")
break
job_list += jobs
page += 1
@ -135,7 +126,7 @@ class GoogleJobsScraper(Scraper):
pattern_fc = r'<div jsname="Yust4d"[^>]+data-async-fc="([^"]+)"'
match_fc = re.search(pattern_fc, response.text)
data_async_fc = match_fc.group(1) if match_fc else None
jobs_raw = self._find_job_info_initial_page(response.text)
jobs_raw = find_job_info_initial_page(response.text)
jobs = []
for job_raw in jobs_raw:
job_post = self._parse_job(job_raw)
@ -167,7 +158,7 @@ class GoogleJobsScraper(Scraper):
continue
job_d = json.loads(job_data)
job_info = self._find_job_info(job_d)
job_info = find_job_info(job_d)
job_post = self._parse_job(job_info)
if job_post:
jobs_on_page.append(job_post)
@ -209,42 +200,3 @@ class GoogleJobsScraper(Scraper):
job_type=extract_job_type(description),
)
return job_post
@staticmethod
def _find_job_info(jobs_data: list | dict) -> list | None:
"""Iterates through the JSON data to find the job listings"""
if isinstance(jobs_data, dict):
for key, value in jobs_data.items():
if key == "520084652" and isinstance(value, list):
return value
else:
result = GoogleJobsScraper._find_job_info(value)
if result:
return result
elif isinstance(jobs_data, list):
for item in jobs_data:
result = GoogleJobsScraper._find_job_info(item)
if result:
return result
return None
@staticmethod
def _find_job_info_initial_page(html_text: str):
pattern = (
f'520084652":('
+ r"\[.*?\]\s*])\s*}\s*]\s*]\s*]\s*]\s*]"
)
results = []
matches = re.finditer(pattern, html_text)
import json
for match in matches:
try:
parsed_data = json.loads(match.group(1))
results.append(parsed_data)
except json.JSONDecodeError as e:
logger.error(f"Failed to parse match: {str(e)}")
results.append({"raw_match": match.group(0), "error": str(e)})
return results

41
jobspy/google/util.py Normal file
View File

@ -0,0 +1,41 @@
import re
from jobspy.util import create_logger
log = create_logger("Google")
def find_job_info(jobs_data: list | dict) -> list | None:
"""Iterates through the JSON data to find the job listings"""
if isinstance(jobs_data, dict):
for key, value in jobs_data.items():
if key == "520084652" and isinstance(value, list):
return value
else:
result = find_job_info(value)
if result:
return result
elif isinstance(jobs_data, list):
for item in jobs_data:
result = find_job_info(item)
if result:
return result
return None
def find_job_info_initial_page(html_text: str):
pattern = f'520084652":(' + r"\[.*?\]\s*])\s*}\s*]\s*]\s*]\s*]\s*]"
results = []
matches = re.finditer(pattern, html_text)
import json
for match in matches:
try:
parsed_data = json.loads(match.group(1))
results.append(parsed_data)
except json.JSONDecodeError as e:
log.error(f"Failed to parse match: {str(e)}")
results.append({"raw_match": match.group(0), "error": str(e)})
return results

View File

@ -1,39 +1,32 @@
"""
jobspy.scrapers.indeed
~~~~~~~~~~~~~~~~~~~
This module contains routines to scrape Indeed.
"""
from __future__ import annotations
import math
from typing import Tuple
from datetime import datetime
from typing import Tuple
from .constants import job_search_query, api_headers
from .. import Scraper, ScraperInput, Site
from ..utils import (
extract_emails_from_text,
get_enum_from_job_type,
markdown_converter,
create_session,
create_logger,
)
from ...jobs import (
from jobspy.indeed.constant import job_search_query, api_headers
from jobspy.indeed.util import is_job_remote, get_compensation, get_job_type
from jobspy.model import (
Scraper,
ScraperInput,
Site,
JobPost,
Compensation,
CompensationInterval,
Location,
JobResponse,
JobType,
DescriptionFormat,
)
from jobspy.util import (
extract_emails_from_text,
markdown_converter,
create_session,
create_logger,
)
logger = create_logger("Indeed")
log = create_logger("Indeed")
class IndeedScraper(Scraper):
class Indeed(Scraper):
def __init__(
self, proxies: list[str] | str | None = None, ca_cert: str | None = None
):
@ -71,12 +64,12 @@ class IndeedScraper(Scraper):
cursor = None
while len(self.seen_urls) < scraper_input.results_wanted + scraper_input.offset:
logger.info(
log.info(
f"search page: {page} / {math.ceil(scraper_input.results_wanted / self.jobs_per_page)}"
)
jobs, cursor = self._scrape_page(cursor)
if not jobs:
logger.info(f"found no jobs on page: {page}")
log.info(f"found no jobs on page: {page}")
break
job_list += jobs
page += 1
@ -122,9 +115,10 @@ class IndeedScraper(Scraper):
headers=api_headers_temp,
json=payload,
timeout=10,
verify=False,
)
if not response.ok:
logger.info(
log.info(
f"responded with status code: {response.status_code} (submit GitHub issue if this appears to be a bug)"
)
return jobs, new_cursor
@ -212,7 +206,7 @@ class IndeedScraper(Scraper):
if self.scraper_input.description_format == DescriptionFormat.MARKDOWN:
description = markdown_converter(description)
job_type = self._get_job_type(job["attributes"])
job_type = get_job_type(job["attributes"])
timestamp_seconds = job["datePublished"] / 1000
date_posted = datetime.fromtimestamp(timestamp_seconds).strftime("%Y-%m-%d")
employer = job["employer"].get("dossier") if job["employer"] else None
@ -233,14 +227,14 @@ class IndeedScraper(Scraper):
country=job.get("location", {}).get("countryCode"),
),
job_type=job_type,
compensation=self._get_compensation(job["compensation"]),
compensation=get_compensation(job["compensation"]),
date_posted=date_posted,
job_url=job_url,
job_url_direct=(
job["recruit"].get("viewJobUrl") if job.get("recruit") else None
),
emails=extract_emails_from_text(description) if description else None,
is_remote=self._is_job_remote(job, description),
is_remote=is_job_remote(job, description),
company_addresses=(
employer_details["addresses"][0]
if employer_details.get("addresses")
@ -264,86 +258,3 @@ class IndeedScraper(Scraper):
else None
),
)
@staticmethod
def _get_job_type(attributes: list) -> list[JobType]:
"""
Parses the attributes to get list of job types
:param attributes:
:return: list of JobType
"""
job_types: list[JobType] = []
for attribute in attributes:
job_type_str = attribute["label"].replace("-", "").replace(" ", "").lower()
job_type = get_enum_from_job_type(job_type_str)
if job_type:
job_types.append(job_type)
return job_types
@staticmethod
def _get_compensation(compensation: dict) -> Compensation | None:
"""
Parses the job to get compensation
:param job:
:return: compensation object
"""
if not compensation["baseSalary"] and not compensation["estimated"]:
return None
comp = (
compensation["baseSalary"]
if compensation["baseSalary"]
else compensation["estimated"]["baseSalary"]
)
if not comp:
return None
interval = IndeedScraper._get_compensation_interval(comp["unitOfWork"])
if not interval:
return None
min_range = comp["range"].get("min")
max_range = comp["range"].get("max")
return Compensation(
interval=interval,
min_amount=int(min_range) if min_range is not None else None,
max_amount=int(max_range) if max_range is not None else None,
currency=(
compensation["estimated"]["currencyCode"]
if compensation["estimated"]
else compensation["currencyCode"]
),
)
@staticmethod
def _is_job_remote(job: dict, description: str) -> bool:
"""
Searches the description, location, and attributes to check if job is remote
"""
remote_keywords = ["remote", "work from home", "wfh"]
is_remote_in_attributes = any(
any(keyword in attr["label"].lower() for keyword in remote_keywords)
for attr in job["attributes"]
)
is_remote_in_description = any(
keyword in description.lower() for keyword in remote_keywords
)
is_remote_in_location = any(
keyword in job["location"]["formatted"]["long"].lower()
for keyword in remote_keywords
)
return (
is_remote_in_attributes or is_remote_in_description or is_remote_in_location
)
@staticmethod
def _get_compensation_interval(interval: str) -> CompensationInterval:
interval_mapping = {
"DAY": "DAILY",
"YEAR": "YEARLY",
"HOUR": "HOURLY",
"WEEK": "WEEKLY",
"MONTH": "MONTHLY",
}
mapped_interval = interval_mapping.get(interval.upper(), None)
if mapped_interval and mapped_interval in CompensationInterval.__members__:
return CompensationInterval[mapped_interval]
else:
raise ValueError(f"Unsupported interval: {interval}")

83
jobspy/indeed/util.py Normal file
View File

@ -0,0 +1,83 @@
from jobspy.model import CompensationInterval, JobType, Compensation
from jobspy.util import get_enum_from_job_type
def get_job_type(attributes: list) -> list[JobType]:
"""
Parses the attributes to get list of job types
:param attributes:
:return: list of JobType
"""
job_types: list[JobType] = []
for attribute in attributes:
job_type_str = attribute["label"].replace("-", "").replace(" ", "").lower()
job_type = get_enum_from_job_type(job_type_str)
if job_type:
job_types.append(job_type)
return job_types
def get_compensation(compensation: dict) -> Compensation | None:
"""
Parses the job to get compensation
:param sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrompensation:
:return: compensation object
"""
if not compensation["baseSalary"] and not compensation["estimated"]:
return None
comp = (
compensation["baseSalary"]
if compensation["baseSalary"]
else compensation["estimated"]["baseSalary"]
)
if not comp:
return None
interval = get_compensation_interval(comp["unitOfWork"])
if not interval:
return None
min_range = comp["range"].get("min")
max_range = comp["range"].get("max")
return Compensation(
interval=interval,
min_amount=int(min_range) if min_range is not None else None,
max_amount=int(max_range) if max_range is not None else None,
currency=(
compensation["estimated"]["currencyCode"]
if compensation["estimated"]
else compensation["currencyCode"]
),
)
def is_job_remote(job: dict, description: str) -> bool:
"""
Searches the description, location, and attributes to check if job is remote
"""
remote_keywords = ["remote", "work from home", "wfh"]
is_remote_in_attributes = any(
any(keyword in attr["label"].lower() for keyword in remote_keywords)
for attr in job["attributes"]
)
is_remote_in_description = any(
keyword in description.lower() for keyword in remote_keywords
)
is_remote_in_location = any(
keyword in job["location"]["formatted"]["long"].lower()
for keyword in remote_keywords
)
return is_remote_in_attributes or is_remote_in_description or is_remote_in_location
def get_compensation_interval(interval: str) -> CompensationInterval:
interval_mapping = {
"DAY": "DAILY",
"YEAR": "YEARLY",
"HOUR": "HOURLY",
"WEEK": "WEEKLY",
"MONTH": "MONTHLY",
}
mapped_interval = interval_mapping.get(interval.upper(), None)
if mapped_interval and mapped_interval in CompensationInterval.__members__:
return CompensationInterval[mapped_interval]
else:
raise ValueError(f"Unsupported interval: {interval}")

View File

@ -1,47 +1,48 @@
"""
jobspy.scrapers.linkedin
~~~~~~~~~~~~~~~~~~~
This module contains routines to scrape LinkedIn.
"""
from __future__ import annotations
import math
import time
import random
import regex as re
from typing import Optional
import time
from datetime import datetime
from bs4.element import Tag
from bs4 import BeautifulSoup
from typing import Optional
from urllib.parse import urlparse, urlunparse, unquote
from .constants import headers
from .. import Scraper, ScraperInput, Site
from ..exceptions import LinkedInException
from ..utils import create_session, remove_attributes, create_logger
from ...jobs import (
import regex as re
from bs4 import BeautifulSoup
from bs4.element import Tag
from jobspy.exception import LinkedInException
from jobspy.linkedin.constant import headers
from jobspy.linkedin.util import (
job_type_code,
parse_job_type,
parse_job_level,
parse_company_industry,
)
from jobspy.model import (
JobPost,
Location,
JobResponse,
JobType,
Country,
Compensation,
DescriptionFormat,
Scraper,
ScraperInput,
Site,
)
from ..utils import (
from jobspy.util import (
extract_emails_from_text,
get_enum_from_job_type,
currency_parser,
markdown_converter,
create_session,
remove_attributes,
create_logger,
)
logger = create_logger("LinkedIn")
log = create_logger("LinkedIn")
class LinkedInScraper(Scraper):
class LinkedIn(Scraper):
base_url = "https://www.linkedin.com"
delay = 3
band_delay = 4
@ -86,7 +87,7 @@ class LinkedInScraper(Scraper):
)
while continue_search():
request_count += 1
logger.info(
log.info(
f"search page: {request_count} / {math.ceil(scraper_input.results_wanted / 10)}"
)
params = {
@ -95,7 +96,7 @@ class LinkedInScraper(Scraper):
"distance": scraper_input.distance,
"f_WT": 2 if scraper_input.is_remote else None,
"f_JT": (
self.job_type_code(scraper_input.job_type)
job_type_code(scraper_input.job_type)
if scraper_input.job_type
else None
),
@ -126,13 +127,13 @@ class LinkedInScraper(Scraper):
else:
err = f"LinkedIn response status code {response.status_code}"
err += f" - {response.text}"
logger.error(err)
log.error(err)
return JobResponse(jobs=job_list)
except Exception as e:
if "Proxy responded with" in str(e):
logger.error(f"LinkedIn: Bad proxy")
log.error(f"LinkedIn: Bad proxy")
else:
logger.error(f"LinkedIn: {str(e)}")
log.error(f"LinkedIn: {str(e)}")
return JobResponse(jobs=job_list)
soup = BeautifulSoup(response.text, "html.parser")
@ -282,9 +283,9 @@ class LinkedInScraper(Scraper):
)
return {
"description": description,
"job_level": self._parse_job_level(soup),
"company_industry": self._parse_company_industry(soup),
"job_type": self._parse_job_type(soup),
"job_level": parse_job_level(soup),
"company_industry": parse_company_industry(soup),
"job_type": parse_job_type(soup),
"job_url_direct": self._parse_job_url_direct(soup),
"company_logo": company_logo,
"job_function": job_function,
@ -316,77 +317,6 @@ class LinkedInScraper(Scraper):
location = Location(city=city, state=state, country=country)
return location
@staticmethod
def _parse_job_type(soup_job_type: BeautifulSoup) -> list[JobType] | None:
"""
Gets the job type from job page
:param soup_job_type:
:return: JobType
"""
h3_tag = soup_job_type.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Employment type" in text,
)
employment_type = None
if h3_tag:
employment_type_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if employment_type_span:
employment_type = employment_type_span.get_text(strip=True)
employment_type = employment_type.lower()
employment_type = employment_type.replace("-", "")
return [get_enum_from_job_type(employment_type)] if employment_type else []
@staticmethod
def _parse_job_level(soup_job_level: BeautifulSoup) -> str | None:
"""
Gets the job level from job page
:param soup_job_level:
:return: str
"""
h3_tag = soup_job_level.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Seniority level" in text,
)
job_level = None
if h3_tag:
job_level_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if job_level_span:
job_level = job_level_span.get_text(strip=True)
return job_level
@staticmethod
def _parse_company_industry(soup_industry: BeautifulSoup) -> str | None:
"""
Gets the company industry from job page
:param soup_industry:
:return: str
"""
h3_tag = soup_industry.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Industries" in text,
)
industry = None
if h3_tag:
industry_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if industry_span:
industry = industry_span.get_text(strip=True)
return industry
def _parse_job_url_direct(self, soup: BeautifulSoup) -> str | None:
"""
Gets the job url direct from job page
@ -403,13 +333,3 @@ class LinkedInScraper(Scraper):
job_url_direct = unquote(job_url_direct_match.group())
return job_url_direct
@staticmethod
def job_type_code(job_type_enum: JobType) -> str:
return {
JobType.FULL_TIME: "F",
JobType.PART_TIME: "P",
JobType.INTERNSHIP: "I",
JobType.CONTRACT: "C",
JobType.TEMPORARY: "T",
}.get(job_type_enum, "")

85
jobspy/linkedin/util.py Normal file
View File

@ -0,0 +1,85 @@
from bs4 import BeautifulSoup
from jobspy.model import JobType
from jobspy.util import get_enum_from_job_type
def job_type_code(job_type_enum: JobType) -> str:
return {
JobType.FULL_TIME: "F",
JobType.PART_TIME: "P",
JobType.INTERNSHIP: "I",
JobType.CONTRACT: "C",
JobType.TEMPORARY: "T",
}.get(job_type_enum, "")
def parse_job_type(soup_job_type: BeautifulSoup) -> list[JobType] | None:
"""
Gets the job type from job page
:param soup_job_type:
:return: JobType
"""
h3_tag = soup_job_type.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Employment type" in text,
)
employment_type = None
if h3_tag:
employment_type_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if employment_type_span:
employment_type = employment_type_span.get_text(strip=True)
employment_type = employment_type.lower()
employment_type = employment_type.replace("-", "")
return [get_enum_from_job_type(employment_type)] if employment_type else []
def parse_job_level(soup_job_level: BeautifulSoup) -> str | None:
"""
Gets the job level from job page
:param soup_job_level:
:return: str
"""
h3_tag = soup_job_level.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Seniority level" in text,
)
job_level = None
if h3_tag:
job_level_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if job_level_span:
job_level = job_level_span.get_text(strip=True)
return job_level
def parse_company_industry(soup_industry: BeautifulSoup) -> str | None:
"""
Gets the company industry from job page
:param soup_industry:
:return: str
"""
h3_tag = soup_industry.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Industries" in text,
)
industry = None
if h3_tag:
industry_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if industry_span:
industry = industry_span.get_text(strip=True)
return industry

View File

@ -1,5 +1,6 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Optional
from datetime import date
from enum import Enum
@ -265,3 +266,49 @@ class JobPost(BaseModel):
class JobResponse(BaseModel):
jobs: list[JobPost] = []
class Site(Enum):
LINKEDIN = "linkedin"
INDEED = "indeed"
ZIP_RECRUITER = "zip_recruiter"
GLASSDOOR = "glassdoor"
GOOGLE = "google"
BAYT = "bayt"
class SalarySource(Enum):
DIRECT_DATA = "direct_data"
DESCRIPTION = "description"
class ScraperInput(BaseModel):
site_type: list[Site]
search_term: str | None = None
google_search_term: str | None = None
location: str | None = None
country: Country | None = Country.USA
distance: int | None = None
is_remote: bool = False
job_type: JobType | None = None
easy_apply: bool | None = None
offset: int = 0
linkedin_fetch_description: bool = False
linkedin_company_ids: list[int] | None = None
description_format: DescriptionFormat | None = DescriptionFormat.MARKDOWN
results_wanted: int = 15
hours_old: int | None = None
class Scraper(ABC):
def __init__(
self, site: Site, proxies: list[str] | None = None, ca_cert: str | None = None
):
self.site = site
self.proxies = proxies
self.ca_cert = ca_cert
@abstractmethod
def scrape(self, scraper_input: ScraperInput) -> JobResponse: ...

View File

@ -1,16 +1,19 @@
from __future__ import annotations
import re
import logging
import re
from itertools import cycle
import numpy as np
import requests
import tls_client
import numpy as np
import urllib3
from markdownify import markdownify as md
from requests.adapters import HTTPAdapter, Retry
from ..jobs import CompensationInterval, JobType
from jobspy.model import CompensationInterval, JobType, Site
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
def create_logger(name: str):
@ -129,7 +132,7 @@ def create_session(
return session
def set_logger_level(verbose: int = 2):
def set_logger_level(verbose: int):
"""
Adjusts the logger's level. This function allows the logging level to be changed at runtime.
@ -283,3 +286,62 @@ def extract_job_type(description: str):
listing_types.append(key)
return listing_types if listing_types else None
def map_str_to_site(site_name: str) -> Site:
return Site[site_name.upper()]
def get_enum_from_value(value_str):
for job_type in JobType:
if value_str in job_type.value:
return job_type
raise Exception(f"Invalid job type: {value_str}")
def convert_to_annual(job_data: dict):
if job_data["interval"] == "hourly":
job_data["min_amount"] *= 2080
job_data["max_amount"] *= 2080
if job_data["interval"] == "monthly":
job_data["min_amount"] *= 12
job_data["max_amount"] *= 12
if job_data["interval"] == "weekly":
job_data["min_amount"] *= 52
job_data["max_amount"] *= 52
if job_data["interval"] == "daily":
job_data["min_amount"] *= 260
job_data["max_amount"] *= 260
job_data["interval"] = "yearly"
desired_order = [
"id",
"site",
"job_url",
"job_url_direct",
"title",
"company",
"location",
"date_posted",
"job_type",
"salary_source",
"interval",
"min_amount",
"max_amount",
"currency",
"is_remote",
"job_level",
"job_function",
"listing_type",
"emails",
"description",
"company_industry",
"company_url",
"company_logo",
"company_url_direct",
"company_addresses",
"company_num_employees",
"company_revenue",
"company_description",
]

View File

@ -1,46 +1,39 @@
"""
jobspy.scrapers.ziprecruiter
~~~~~~~~~~~~~~~~~~~
This module contains routines to scrape ZipRecruiter.
"""
from __future__ import annotations
import json
import math
import re
import time
from datetime import datetime
from typing import Optional, Tuple, Any
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from bs4 import BeautifulSoup
from .constants import headers
from .. import Scraper, ScraperInput, Site
from ..utils import (
from jobspy.ziprecruiter.constant import headers, get_cookie_data
from jobspy.util import (
extract_emails_from_text,
create_session,
markdown_converter,
remove_attributes,
create_logger,
)
from ...jobs import (
from jobspy.model import (
JobPost,
Compensation,
Location,
JobResponse,
JobType,
Country,
DescriptionFormat,
Scraper,
ScraperInput,
Site,
)
from jobspy.ziprecruiter.util import get_job_type_enum, add_params
logger = create_logger("ZipRecruiter")
log = create_logger("ZipRecruiter")
class ZipRecruiterScraper(Scraper):
class ZipRecruiter(Scraper):
base_url = "https://www.ziprecruiter.com"
api_url = "https://api.ziprecruiter.com"
@ -77,7 +70,7 @@ class ZipRecruiterScraper(Scraper):
break
if page > 1:
time.sleep(self.delay)
logger.info(f"search page: {page} / {max_pages}")
log.info(f"search page: {page} / {max_pages}")
jobs_on_page, continue_token = self._find_jobs_in_page(
scraper_input, continue_token
)
@ -91,7 +84,7 @@ class ZipRecruiterScraper(Scraper):
def _find_jobs_in_page(
self, scraper_input: ScraperInput, continue_token: str | None = None
) -> Tuple[list[JobPost], Optional[str]]:
) -> tuple[list[JobPost], str | None]:
"""
Scrapes a page of ZipRecruiter for jobs with scraper_input criteria
:param scraper_input:
@ -99,7 +92,7 @@ class ZipRecruiterScraper(Scraper):
:return: jobs found on page
"""
jobs_list = []
params = self._add_params(scraper_input)
params = add_params(scraper_input)
if continue_token:
params["continue_from"] = continue_token
try:
@ -110,13 +103,13 @@ class ZipRecruiterScraper(Scraper):
else:
err = f"ZipRecruiter response status code {res.status_code}"
err += f" with response: {res.text}" # ZipRecruiter likely not available in EU
logger.error(err)
log.error(err)
return jobs_list, ""
except Exception as e:
if "Proxy responded with" in str(e):
logger.error(f"Indeed: Bad proxy")
log.error(f"Indeed: Bad proxy")
else:
logger.error(f"Indeed: {str(e)}")
log.error(f"Indeed: {str(e)}")
return jobs_list, ""
res_data = res.json()
@ -152,7 +145,7 @@ class ZipRecruiterScraper(Scraper):
location = Location(
city=job.get("job_city"), state=job.get("job_state"), country=country_enum
)
job_type = self._get_job_type_enum(
job_type = get_job_type_enum(
job.get("employment_type", "").replace("_", "").lower()
)
date_posted = datetime.fromisoformat(job["posted_time"].rstrip("Z")).date()
@ -201,6 +194,8 @@ class ZipRecruiterScraper(Scraper):
else ""
)
description_full = job_description_clean + company_description_clean
try:
script_tag = soup.find("script", type="application/json")
if script_tag:
job_json = json.loads(script_tag.string)
@ -208,6 +203,8 @@ class ZipRecruiterScraper(Scraper):
m = re.search(r"job_url=(.+)", job_url_val)
if m:
job_url_direct = m.group(1)
except:
job_url_direct = None
if self.scraper_input.description_format == DescriptionFormat.MARKDOWN:
description_full = markdown_converter(description_full)
@ -215,33 +212,8 @@ class ZipRecruiterScraper(Scraper):
return description_full, job_url_direct
def _get_cookies(self):
data = "event_type=session&logged_in=false&number_of_retry=1&property=model%3AiPhone&property=os%3AiOS&property=locale%3Aen_us&property=app_build_number%3A4734&property=app_version%3A91.0&property=manufacturer%3AApple&property=timestamp%3A2024-01-12T12%3A04%3A42-06%3A00&property=screen_height%3A852&property=os_version%3A16.6.1&property=source%3Ainstall&property=screen_width%3A393&property=device_model%3AiPhone%2014%20Pro&property=brand%3AApple"
"""
Sends a session event to the API with device properties.
"""
url = f"{self.api_url}/jobs-app/event"
self.session.post(url, data=data)
@staticmethod
def _get_job_type_enum(job_type_str: str) -> list[JobType] | None:
for job_type in JobType:
if job_type_str in job_type.value:
return [job_type]
return None
@staticmethod
def _add_params(scraper_input) -> dict[str, str | Any]:
params = {
"search": scraper_input.search_term,
"location": scraper_input.location,
}
if scraper_input.hours_old:
params["days"] = max(scraper_input.hours_old // 24, 1)
job_type_map = {JobType.FULL_TIME: "full_time", JobType.PART_TIME: "part_time"}
if scraper_input.job_type:
job_type = scraper_input.job_type
params["employment_type"] = job_type_map.get(job_type, job_type.value[0])
if scraper_input.easy_apply:
params["zipapply"] = 1
if scraper_input.is_remote:
params["remote"] = 1
if scraper_input.distance:
params["radius"] = scraper_input.distance
return {k: v for k, v in params.items() if v is not None}
self.session.post(url, data=get_cookie_data)

View File

@ -0,0 +1,29 @@
headers = {
"Host": "api.ziprecruiter.com",
"accept": "*/*",
"x-zr-zva-override": "100000000;vid:ZT1huzm_EQlDTVEc",
"x-pushnotificationid": "0ff4983d38d7fc5b3370297f2bcffcf4b3321c418f5c22dd152a0264707602a0",
"x-deviceid": "D77B3A92-E589-46A4-8A39-6EF6F1D86006",
"user-agent": "Job Search/87.0 (iPhone; CPU iOS 16_6_1 like Mac OS X)",
"authorization": "Basic YTBlZjMyZDYtN2I0Yy00MWVkLWEyODMtYTI1NDAzMzI0YTcyOg==",
"accept-language": "en-US,en;q=0.9",
}
get_cookie_data = [
("event_type", "session"),
("logged_in", "false"),
("number_of_retry", "1"),
("property", "model:iPhone"),
("property", "os:iOS"),
("property", "locale:en_us"),
("property", "app_build_number:4734"),
("property", "app_version:91.0"),
("property", "manufacturer:Apple"),
("property", "timestamp:2025-01-12T12:04:42-06:00"),
("property", "screen_height:852"),
("property", "os_version:16.6.1"),
("property", "source:install"),
("property", "screen_width:393"),
("property", "device_model:iPhone 14 Pro"),
("property", "brand:Apple"),
]

View File

@ -0,0 +1,31 @@
from jobspy.model import JobType
def add_params(scraper_input) -> dict[str, str | int]:
params: dict[str, str | int] = {
"search": scraper_input.search_term,
"location": scraper_input.location,
}
if scraper_input.hours_old:
params["days"] = max(scraper_input.hours_old // 24, 1)
job_type_map = {JobType.FULL_TIME: "full_time", JobType.PART_TIME: "part_time"}
if scraper_input.job_type:
job_type = scraper_input.job_type
params["employment_type"] = job_type_map.get(job_type, job_type.value[0])
if scraper_input.easy_apply:
params["zipapply"] = 1
if scraper_input.is_remote:
params["remote"] = 1
if scraper_input.distance:
params["radius"] = scraper_input.distance
return {k: v for k, v in params.items() if v is not None}
def get_job_type_enum(job_type_str: str) -> list[JobType] | None:
for job_type in JobType:
if job_type_str in job_type.value:
return [job_type]
return None

View File

@ -4,15 +4,14 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "python-jobspy"
version = "1.1.76"
description = "Job scraper for LinkedIn, Indeed, Glassdoor & ZipRecruiter"
authors = [ "Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>",]
homepage = "https://github.com/Bunsly/JobSpy"
version = "1.1.77"
description = "Job scraper for LinkedIn, Indeed, Glassdoor, ZipRecruiter & Bayt"
authors = ["Cullen Watson <cullen@cullenwatson.com>", "Zachary Hampton <zachary@zacharysproducts.com>"]
homepage = "https://github.com/cullenwatson/JobSpy"
readme = "README.md"
keywords = [ "jobs-scraper", "linkedin", "indeed", "glassdoor", "ziprecruiter",]
keywords = [ "jobs-scraper", "linkedin", "indeed", "glassdoor", "ziprecruiter", "bayt"]
[[tool.poetry.packages]]
include = "jobspy"
from = "src"
[tool.black]
line-length = 88
@ -29,7 +28,6 @@ markdownify = "^0.13.1"
regex = "^2024.4.28"
[tool.poetry.group.dev.dependencies]
pytest = "^7.4.1"
jupyter = "^1.0.0"
black = "*"
pre-commit = "*"

View File

@ -1,57 +0,0 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from ..jobs import (
Enum,
BaseModel,
JobType,
JobResponse,
Country,
DescriptionFormat,
)
class Site(Enum):
LINKEDIN = "linkedin"
INDEED = "indeed"
ZIP_RECRUITER = "zip_recruiter"
GLASSDOOR = "glassdoor"
GOOGLE = "google"
class SalarySource(Enum):
DIRECT_DATA = "direct_data"
DESCRIPTION = "description"
class ScraperInput(BaseModel):
site_type: list[Site]
search_term: str | None = None
google_search_term: str | None = None
location: str | None = None
country: Country | None = Country.USA
distance: int | None = None
is_remote: bool = False
job_type: JobType | None = None
easy_apply: bool | None = None
offset: int = 0
linkedin_fetch_description: bool = False
linkedin_company_ids: list[int] | None = None
description_format: DescriptionFormat | None = DescriptionFormat.MARKDOWN
results_wanted: int = 15
hours_old: int | None = None
class Scraper(ABC):
def __init__(
self, site: Site, proxies: list[str] | None = None, ca_cert: str | None = None
):
self.site = site
self.proxies = proxies
self.ca_cert = ca_cert
@abstractmethod
def scrape(self, scraper_input: ScraperInput) -> JobResponse: ...

View File

@ -1,10 +0,0 @@
headers = {
"Host": "api.ziprecruiter.com",
"accept": "*/*",
"x-zr-zva-override": "100000000;vid:ZT1huzm_EQlDTVEc",
"x-pushnotificationid": "0ff4983d38d7fc5b3370297f2bcffcf4b3321c418f5c22dd152a0264707602a0",
"x-deviceid": "D77B3A92-E589-46A4-8A39-6EF6F1D86006",
"user-agent": "Job Search/87.0 (iPhone; CPU iOS 16_6_1 like Mac OS X)",
"authorization": "Basic YTBlZjMyZDYtN2I0Yy00MWVkLWEyODMtYTI1NDAzMzI0YTcyOg==",
"accept-language": "en-US,en;q=0.9",
}

View File

View File

@ -1,18 +0,0 @@
from jobspy import scrape_jobs
import pandas as pd
def test_all():
sites = [
"indeed",
"glassdoor",
] # ziprecruiter/linkedin needs good ip, and temp fix to pass test on ci
result = scrape_jobs(
site_name=sites,
search_term="engineer",
results_wanted=5,
)
assert (
isinstance(result, pd.DataFrame) and len(result) == len(sites) * 5
), "Result should be a non-empty DataFrame"

View File

@ -1,13 +0,0 @@
from jobspy import scrape_jobs
import pandas as pd
def test_glassdoor():
result = scrape_jobs(
site_name="glassdoor",
search_term="engineer",
results_wanted=5,
)
assert (
isinstance(result, pd.DataFrame) and len(result) == 5
), "Result should be a non-empty DataFrame"

View File

@ -1,12 +0,0 @@
from jobspy import scrape_jobs
import pandas as pd
def test_google():
result = scrape_jobs(
site_name="google", search_term="software engineer", results_wanted=5
)
assert (
isinstance(result, pd.DataFrame) and len(result) == 5
), "Result should be a non-empty DataFrame"

View File

@ -1,13 +0,0 @@
from jobspy import scrape_jobs
import pandas as pd
def test_indeed():
result = scrape_jobs(
site_name="indeed",
search_term="engineer",
results_wanted=5,
)
assert (
isinstance(result, pd.DataFrame) and len(result) == 5
), "Result should be a non-empty DataFrame"

View File

@ -1,9 +0,0 @@
from jobspy import scrape_jobs
import pandas as pd
def test_linkedin():
result = scrape_jobs(site_name="linkedin", search_term="engineer", results_wanted=5)
assert (
isinstance(result, pd.DataFrame) and len(result) == 5
), "Result should be a non-empty DataFrame"

View File

@ -1,12 +0,0 @@
from jobspy import scrape_jobs
import pandas as pd
def test_ziprecruiter():
result = scrape_jobs(
site_name="zip_recruiter", search_term="software engineer", results_wanted=5
)
assert (
isinstance(result, pd.DataFrame) and len(result) == 5
), "Result should be a non-empty DataFrame"