JobSpy/jobspy/__init__.py

203 lines
7.1 KiB
Python

from __future__ import annotations
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Tuple
import pandas as pd
from jobspy.bayt import BaytScraper
from jobspy.glassdoor import Glassdoor
from jobspy.google import Google
from jobspy.indeed import Indeed
from jobspy.linkedin import LinkedIn
from jobspy.model import JobType, Location, JobResponse, Country
from jobspy.model import SalarySource, ScraperInput, Site
from jobspy.util import (
set_logger_level,
extract_salary,
create_logger,
get_enum_from_value,
map_str_to_site,
convert_to_annual,
desired_order,
)
from jobspy.ziprecruiter import ZipRecruiter
def scrape_jobs(
site_name: str | list[str] | Site | list[Site] | None = None,
search_term: str | None = None,
google_search_term: str | None = None,
location: str | None = None,
distance: int | None = 50,
is_remote: bool = False,
job_type: str | None = None,
easy_apply: bool | None = None,
results_wanted: int = 15,
country_indeed: str = "usa",
proxies: list[str] | str | None = None,
ca_cert: str | None = None,
description_format: str = "markdown",
linkedin_fetch_description: bool | None = False,
linkedin_company_ids: list[int] | None = None,
offset: int | None = 0,
hours_old: int = None,
enforce_annual_salary: bool = False,
verbose: int = 0,
**kwargs,
) -> pd.DataFrame:
"""
Scrapes job data from job boards concurrently
:return: Pandas DataFrame containing job data
"""
SCRAPER_MAPPING = {
Site.LINKEDIN: LinkedIn,
Site.INDEED: Indeed,
Site.ZIP_RECRUITER: ZipRecruiter,
Site.GLASSDOOR: Glassdoor,
Site.GOOGLE: Google,
Site.BAYT: BaytScraper,
}
set_logger_level(verbose)
job_type = get_enum_from_value(job_type) if job_type else None
def get_site_type():
site_types = list(Site)
if isinstance(site_name, str):
site_types = [map_str_to_site(site_name)]
elif isinstance(site_name, Site):
site_types = [site_name]
elif isinstance(site_name, list):
site_types = [
map_str_to_site(site) if isinstance(site, str) else site
for site in site_name
]
return site_types
country_enum = Country.from_string(country_indeed)
scraper_input = ScraperInput(
site_type=get_site_type(),
country=country_enum,
search_term=search_term,
google_search_term=google_search_term,
location=location,
distance=distance,
is_remote=is_remote,
job_type=job_type,
easy_apply=easy_apply,
description_format=description_format,
linkedin_fetch_description=linkedin_fetch_description,
results_wanted=results_wanted,
linkedin_company_ids=linkedin_company_ids,
offset=offset,
hours_old=hours_old,
)
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
scraper_class = SCRAPER_MAPPING[site]
scraper = scraper_class(proxies=proxies, ca_cert=ca_cert)
scraped_data: JobResponse = scraper.scrape(scraper_input)
cap_name = site.value.capitalize()
site_name = "ZipRecruiter" if cap_name == "Zip_recruiter" else cap_name
create_logger(site_name).info(f"finished scraping")
return site.value, scraped_data
site_to_jobs_dict = {}
def worker(site):
site_val, scraped_info = scrape_site(site)
return site_val, scraped_info
with ThreadPoolExecutor() as executor:
future_to_site = {
executor.submit(worker, site): site for site in scraper_input.site_type
}
for future in as_completed(future_to_site):
site_value, scraped_data = future.result()
site_to_jobs_dict[site_value] = scraped_data
jobs_dfs: list[pd.DataFrame] = []
for site, job_response in site_to_jobs_dict.items():
for job in job_response.jobs:
job_data = job.dict()
job_url = job_data["job_url"]
job_data["site"] = site
job_data["company"] = job_data["company_name"]
job_data["job_type"] = (
", ".join(job_type.value[0] for job_type in job_data["job_type"])
if job_data["job_type"]
else None
)
job_data["emails"] = (
", ".join(job_data["emails"]) if job_data["emails"] else None
)
if job_data["location"]:
job_data["location"] = Location(
**job_data["location"]
).display_location()
compensation_obj = job_data.get("compensation")
if compensation_obj and isinstance(compensation_obj, dict):
job_data["interval"] = (
compensation_obj.get("interval").value
if compensation_obj.get("interval")
else None
)
job_data["min_amount"] = compensation_obj.get("min_amount")
job_data["max_amount"] = compensation_obj.get("max_amount")
job_data["currency"] = compensation_obj.get("currency", "USD")
job_data["salary_source"] = SalarySource.DIRECT_DATA.value
if enforce_annual_salary and (
job_data["interval"]
and job_data["interval"] != "yearly"
and job_data["min_amount"]
and job_data["max_amount"]
):
convert_to_annual(job_data)
else:
if country_enum == Country.USA:
(
job_data["interval"],
job_data["min_amount"],
job_data["max_amount"],
job_data["currency"],
) = extract_salary(
job_data["description"],
enforce_annual_salary=enforce_annual_salary,
)
job_data["salary_source"] = SalarySource.DESCRIPTION.value
job_data["salary_source"] = (
job_data["salary_source"]
if "min_amount" in job_data and job_data["min_amount"]
else None
)
job_df = pd.DataFrame([job_data])
jobs_dfs.append(job_df)
if jobs_dfs:
# Step 1: Filter out all-NA columns from each DataFrame before concatenation
filtered_dfs = [df.dropna(axis=1, how="all") for df in jobs_dfs]
# Step 2: Concatenate the filtered DataFrames
jobs_df = pd.concat(filtered_dfs, ignore_index=True)
# Step 3: Ensure all desired columns are present, adding missing ones as empty
for column in desired_order:
if column not in jobs_df.columns:
jobs_df[column] = None # Add missing columns as empty
# Reorder the DataFrame according to the desired order
jobs_df = jobs_df[desired_order]
# Step 4: Sort the DataFrame as required
return jobs_df.sort_values(
by=["site", "date_posted"], ascending=[True, False]
).reset_index(drop=True)
else:
return pd.DataFrame()