Compare commits

...

8 Commits

Author SHA1 Message Date
zachary e378feeefe - bug fixes 2025-04-12 18:34:35 -07:00
zachary 8a5683fe79 - return type parameter
- optimized get extra fields with query clustering
2025-04-12 17:55:52 -07:00
Zachary Hampton 65f799a27d
Update README.md 2025-02-21 13:33:32 -07:00
Cullen Watson 0de916e590 enh:tax history 2025-01-06 05:28:36 -06:00
Cullen Watson 6a3f7df087 chore:yml 2024-11-05 23:55:59 -06:00
Cullen Watson a75bcc2aa0
docs:readme 2024-11-04 10:22:32 -06:00
Cullen Watson 1082b86fa1
docs:readme 2024-11-03 17:23:58 -06:00
Cullen Watson 8e04f6b117
enh: property type (#102) 2024-11-03 17:23:07 -06:00
14 changed files with 532 additions and 316 deletions

1
.github/FUNDING.yml vendored Normal file
View File

@ -0,0 +1 @@
github: Bunsly

View File

@ -2,10 +2,6 @@
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
**Not technical?** Try out the web scraping tool on our site at [tryhomeharvest.com](https://tryhomeharvest.com).
*Looking to build a data-focused software product?* **[Book a call](https://bunsly.com)** *to work with us.*
## HomeHarvest Features
- **Source**: Fetches properties directly from **Realtor.com**.
@ -40,6 +36,7 @@ properties = scrape_property(
listing_type="sold", # or (for_sale, for_rent, pending)
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
# property_type=['single_family','multi_family'],
# date_from="2023-05-01", # alternative to past_days
# date_to="2023-05-28",
# foreclosure=True
@ -68,13 +65,30 @@ print(properties.head())
```
Required
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
── listing_type (option): Choose the type of listing.
── listing_type (option): Choose the type of listing.
- 'for_rent'
- 'for_sale'
- 'sold'
- 'pending'
- 'pending' (for pending/contingent sales)
Optional
├── property_type (list): Choose the type of properties.
- 'single_family'
- 'multi_family'
- 'condos'
- 'condo_townhome_rowhome_coop'
- 'condo_townhome'
- 'townhomes'
- 'duplex_triplex'
- 'farm'
- 'land'
- 'mobile'
├── return_type (option): Choose the return type.
│ - 'pandas' (default)
│ - 'pydantic'
│ - 'raw' (json)
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
@ -94,7 +108,7 @@ Optional
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
├── exclude_pending (True/False): If set, excludes pending properties from the results unless listing_type is 'pending'
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
```
@ -141,6 +155,14 @@ Property
│ ├── new_construction
│ └── hoa_fee
├── Tax Information:
│ ├── year
│ ├── tax
│ ├── assessment
│ │ ├── building
│ │ ├── land
│ │ └── total
├── Location Details:
│ ├── latitude
│ ├── longitude

View File

@ -1,141 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
"metadata": {
"is_executing": true
},
"outputs": [],
"source": [
"from homeharvest import scrape_property\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
"metadata": {},
"outputs": [],
"source": [
"pd.set_option('display.max_columns', None) # Show all columns\n",
"pd.set_option('display.max_rows', None) # Show all rows\n",
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
"metadata": {},
"outputs": [],
"source": [
"# check for sale properties\n",
"scrape_property(\n",
" location=\"dallas\",\n",
" listing_type=\"for_sale\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaf86093",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# search a specific address\n",
"scrape_property(\n",
" location=\"2530 Al Lipscomb Way\",\n",
" listing_type=\"for_sale\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
"metadata": {},
"outputs": [],
"source": [
"# check rentals\n",
"scrape_property(\n",
" location=\"chicago, illinois\",\n",
" listing_type=\"for_rent\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af280cd3",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# check sold properties\n",
"properties = scrape_property(\n",
" location=\"90210\",\n",
" listing_type=\"sold\",\n",
" past_days=10\n",
")\n",
"display(properties)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "628c1ce2",
"metadata": {
"collapsed": false,
"is_executing": true,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# display clickable URLs\n",
"from IPython.display import display, HTML\n",
"properties['property_url'] = '<a href=\"' + properties['property_url'] + '\" target=\"_blank\">' + properties['property_url'] + '</a>'\n",
"\n",
"html = properties.to_html(escape=False)\n",
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
"display(HTML(truncate_width))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,20 +0,0 @@
from homeharvest import scrape_property
from datetime import datetime
# Generate filename based on current timestamp
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"HomeHarvest_{current_timestamp}.csv"
properties = scrape_property(
location="San Diego, CA",
listing_type="sold", # or (for_sale, for_rent)
past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
# pending_or_contingent=True # use on for_sale listings to find pending / contingent listings
# mls_only=True, # only fetch MLS listings
# proxy="http://user:pass@host:port" # use a proxy to change your IP address
)
print(f"Number of properties: {len(properties)}")
# Export to csv
properties.to_csv(filename, index=False)
print(properties.head())

104
examples/price_of_land.py Normal file
View File

@ -0,0 +1,104 @@
"""
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
"""
import os
import pandas as pd
from homeharvest import scrape_property
def get_property_details(zip: str, listing_type):
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
if not properties.empty:
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
properties = properties[properties["sqft"].isnull()]
properties["ppa"] = properties.apply(
lambda row: (
int(
(
row["sold_price"]
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
else row["list_price"]
)
/ row["lot_acres"]
)
if pd.notnull(row["lot_acres"])
and row["lot_acres"] > 0
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
else None
),
axis=1,
)
properties["ppa"] = properties["ppa"].astype("Int64")
selected_columns = [
"property_url",
"property_id",
"style",
"status",
"street",
"city",
"state",
"zip_code",
"county",
"list_date",
"last_sold_date",
"list_price",
"sold_price",
"lot_sqft",
"lot_acres",
"ppa",
]
properties = properties[selected_columns]
return properties
def output_to_excel(zip_code, sold_df, pending_df):
root_folder = os.getcwd()
zip_folder = os.path.join(root_folder, "zips", zip_code)
# Create zip code folder if it doesn't exist
os.makedirs(zip_folder, exist_ok=True)
# Define file paths
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
# Save individual sold and pending files
sold_df.to_excel(sold_file, index=False)
pending_df.to_excel(pending_file, index=False)
zip_codes = map(
str,
[
22920,
77024,
78028,
24553,
22967,
22971,
22922,
22958,
22969,
22949,
22938,
24599,
24562,
22976,
24464,
22964,
24581,
],
)
combined_df = pd.DataFrame()
for zip in zip_codes:
sold_df = get_property_details(zip, "sold")
pending_df = get_property_details(zip, "pending")
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
output_to_excel(zip, sold_df, pending_df)
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
combined_df.to_excel(combined_file, index=False)

View File

@ -3,12 +3,14 @@ import pandas as pd
from .core.scrapers import ScraperInput
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
from .core.scrapers.realtor import RealtorScraper
from .core.scrapers.models import ListingType
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property
def scrape_property(
location: str,
listing_type: str = "for_sale",
return_type: str = "pandas",
property_type: list[str] | None = None,
radius: float = None,
mls_only: bool = False,
past_days: int = None,
@ -18,12 +20,14 @@ def scrape_property(
foreclosure: bool = None,
extra_property_data: bool = True,
exclude_pending: bool = False,
limit: int = 10000,
) -> pd.DataFrame:
limit: int = 10000
) -> pd.DataFrame | list[dict] | list[Property]:
"""
Scrape properties from Realtor.com based on a given location and listing type.
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
:param return_type: Return type (pandas, pydantic, raw)
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
:param mls_only: If set, fetches only listings with MLS IDs.
:param proxy: Proxy to use for scraping
@ -40,7 +44,9 @@ def scrape_property(
scraper_input = ScraperInput(
location=location,
listing_type=ListingType[listing_type.upper()],
listing_type=ListingType(listing_type.upper()),
return_type=ReturnType(return_type.lower()),
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
proxy=proxy,
radius=radius,
mls_only=mls_only,
@ -56,6 +62,9 @@ def scrape_property(
site = RealtorScraper(scraper_input)
results = site.search()
if scraper_input.return_type != ReturnType.pandas:
return results
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
if not properties_dfs:
return pd.DataFrame()
@ -63,4 +72,6 @@ def scrape_property(
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": pd.NA, None: pd.NA, "": pd.NA})
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
{"None": pd.NA, None: pd.NA, "": pd.NA}
)

View File

@ -1,11 +1,13 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Union
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import uuid
from ...exceptions import AuthenticationError
from .models import Property, ListingType, SiteName
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
import json
@ -13,6 +15,7 @@ import json
class ScraperInput:
location: str
listing_type: ListingType
property_type: list[SearchPropertyType] | None = None
radius: float | None = None
mls_only: bool | None = False
proxy: str | None = None
@ -23,6 +26,7 @@ class ScraperInput:
extra_property_data: bool | None = True
exclude_pending: bool | None = False
limit: int = 10000
return_type: ReturnType = ReturnType.pandas
class Scraper:
@ -34,11 +38,12 @@ class Scraper:
):
self.location = scraper_input.location
self.listing_type = scraper_input.listing_type
self.property_type = scraper_input.property_type
if not self.session:
Scraper.session = requests.Session()
retries = Retry(
total=3, backoff_factor=3, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
)
adapter = HTTPAdapter(max_retries=retries)
@ -46,21 +51,21 @@ class Scraper:
Scraper.session.mount("https://", adapter)
Scraper.session.headers.update(
{
'accept': 'application/json, text/javascript',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'content-type': 'application/json',
'origin': 'https://www.realtor.com',
'pragma': 'no-cache',
'priority': 'u=1, i',
'rdc-ab-tests': 'commute_travel_time_variation:v1',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
"accept": "application/json, text/javascript",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": "https://www.realtor.com",
"pragma": "no-cache",
"priority": "u=1, i",
"rdc-ab-tests": "commute_travel_time_variation:v1",
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
}
)
@ -79,8 +84,9 @@ class Scraper:
self.extra_property_data = scraper_input.extra_property_data
self.exclude_pending = scraper_input.exclude_pending
self.limit = scraper_input.limit
self.return_type = scraper_input.return_type
def search(self) -> list[Property]: ...
def search(self) -> list[Union[Property | dict]]: ...
@staticmethod
def _parse_home(home) -> Property: ...
@ -94,27 +100,29 @@ class Scraper:
response = requests.post(
"https://graph.realtor.com/auth/token",
headers={
'Host': 'graph.realtor.com',
'Accept': '*/*',
'Content-Type': 'Application/json',
'X-Client-ID': 'rdc_mobile_native,iphone',
'X-Visitor-ID': device_id,
'X-Client-Version': '24.21.23.679885',
'Accept-Language': 'en-US,en;q=0.9',
'User-Agent': 'Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0',
"Host": "graph.realtor.com",
"Accept": "*/*",
"Content-Type": "Application/json",
"X-Client-ID": "rdc_mobile_native,iphone",
"X-Visitor-ID": device_id,
"X-Client-Version": "24.21.23.679885",
"Accept-Language": "en-US,en;q=0.9",
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
},
data=json.dumps({
data=json.dumps(
{
"grant_type": "device_mobile",
"device_id": device_id,
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone"
}))
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
}
),
)
data = response.json()
if not (access_token := data.get("access_token")):
raise AuthenticationError(
"Failed to get access token, use a proxy/vpn or wait a moment and try again.",
response=response
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
)
return access_token

View File

@ -4,6 +4,12 @@ from enum import Enum
from typing import Optional
class ReturnType(Enum):
pydantic = "pydantic"
pandas = "pandas"
raw = "raw"
class SiteName(Enum):
ZILLOW = "zillow"
REDFIN = "redfin"
@ -17,6 +23,20 @@ class SiteName(Enum):
raise ValueError(f"{value} not found in {cls}")
class SearchPropertyType(Enum):
SINGLE_FAMILY = "single_family"
APARTMENT = "apartment"
CONDOS = "condos"
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
CONDO_TOWNHOME = "condo_townhome"
TOWNHOMES = "townhomes"
DUPLEX_TRIPLEX = "duplex_triplex"
FARM = "farm"
LAND = "land"
MULTI_FAMILY = "multi_family"
MOBILE = "mobile"
class ListingType(Enum):
FOR_SALE = "FOR_SALE"
FOR_RENT = "FOR_RENT"
@ -135,6 +155,9 @@ class Property:
property_url: str
property_id: str
#: allows_cats: bool
#: allows_dogs: bool
listing_id: str | None = None
mls: str | None = None
@ -154,6 +177,8 @@ class Property:
hoa_fee: int | None = None
days_on_mls: int | None = None
description: Description | None = None
tags: list[str] | None = None
details: list[dict] | None = None
latitude: float | None = None
longitude: float | None = None
@ -163,5 +188,7 @@ class Property:
nearby_schools: list[str] = None
assessed_value: int | None = None
estimated_value: int | None = None
tax: int | None = None
tax_history: list[dict] | None = None
advertisers: Advertisers | None = None

View File

@ -6,13 +6,35 @@ This module implements the scraper for realtor.com
"""
from __future__ import annotations
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from json import JSONDecodeError
from typing import Dict, Union, Optional
from tenacity import (
retry,
retry_if_exception_type,
wait_exponential,
stop_after_attempt,
)
from .. import Scraper
from ..models import Property, Address, ListingType, Description, PropertyType, Agent, Broker, Builder, Advertisers, Office
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
from ..models import (
Property,
Address,
ListingType,
Description,
PropertyType,
Agent,
Broker,
Builder,
Advertisers,
Office,
ReturnType
)
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
class RealtorScraper(Scraper):
@ -81,9 +103,12 @@ class RealtorScraper(Scraper):
return property_info["listings"][0]["listing_id"]
def handle_home(self, property_id: str) -> list[Property]:
query = """query Home($property_id: ID!) {
query = (
"""query Home($property_id: ID!) {
home(property_id: $property_id) %s
}""" % HOMES_DATA
}"""
% HOMES_DATA
)
variables = {"property_id": property_id}
payload = {
@ -96,9 +121,7 @@ class RealtorScraper(Scraper):
property_info = response_json["data"]["home"]
return [
self.process_property(property_info, "home")
]
return [self.process_property(property_info)]
@staticmethod
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
@ -122,7 +145,7 @@ class RealtorScraper(Scraper):
phones=advertiser.get("phones"),
)
if advertiser.get('broker') and advertiser["broker"].get('name'): #: has a broker
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
processed_advertisers.broker = Broker(
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
name=advertiser["broker"].get("name"),
@ -146,7 +169,7 @@ class RealtorScraper(Scraper):
return processed_advertisers
def process_property(self, result: dict, query_name: str) -> Property | None:
def process_property(self, result: dict) -> Property | None:
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
if not mls and self.mls_only:
@ -159,15 +182,14 @@ class RealtorScraper(Scraper):
and result["location"]["address"].get("coordinate")
)
is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
is_pending = result["flags"].get("is_pending")
is_contingent = result["flags"].get("is_contingent")
if is_pending and (self.exclude_pending and self.listing_type != ListingType.PENDING):
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
return
property_id = result["property_id"]
prop_details = self.get_prop_details(property_id) if self.extra_property_data and query_name != "home" else {}
if not prop_details:
prop_details = self.process_extra_property_details(result)
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
@ -184,31 +206,33 @@ class RealtorScraper(Scraper):
property_url=result["href"],
property_id=property_id,
listing_id=result.get("listing_id"),
status="PENDING" if is_pending else result["status"].upper(),
status=("PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper()),
list_price=result["list_price"],
list_price_min=result["list_price_min"],
list_price_max=result["list_price_max"],
list_date=result["list_date"].split("T")[0] if result.get("list_date") else None,
list_date=(result["list_date"].split("T")[0] if result.get("list_date") else None),
prc_sqft=result.get("price_per_sqft"),
last_sold_date=result.get("last_sold_date"),
new_construction=result["flags"].get("is_new_construction") is True,
hoa_fee=result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None,
latitude=result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None,
longitude=result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None,
hoa_fee=(result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None),
latitude=(result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None),
longitude=(result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None),
address=self._parse_address(result, search_type="general_search"),
description=self._parse_description(result),
neighborhoods=self._parse_neighborhoods(result),
county=result["location"]["county"].get("name") if result["location"]["county"] else None,
fips_code=result["location"]["county"].get("fips_code") if result["location"]["county"] else None,
county=(result["location"]["county"].get("name") if result["location"]["county"] else None),
fips_code=(result["location"]["county"].get("fips_code") if result["location"]["county"] else None),
days_on_mls=self.calculate_days_on_mls(result),
nearby_schools=prop_details.get("schools"),
assessed_value=prop_details.get("assessed_value"),
estimated_value=estimated_value if estimated_value else None,
advertisers=advertisers,
tax=prop_details.get("tax"),
tax_history=prop_details.get("tax_history"),
)
return realty_property
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, list[Property]]]:
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]:
"""
Handles a location area & returns a list of properties
"""
@ -225,10 +249,15 @@ class RealtorScraper(Scraper):
elif self.last_x_days:
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
property_type_param = ""
if self.property_type:
property_types = [pt.value for pt in self.property_type]
property_type_param = f"type: {json.dumps(property_types)}"
sort_param = (
"sort: [{ field: sold_date, direction: desc }]"
if self.listing_type == ListingType.SOLD
else "sort: [{ field: list_date, direction: desc }]"
else "" #: "sort: [{ field: list_date, direction: desc }]" #: prioritize normal fractal sort from realtor
)
pending_or_contingent_param = (
@ -259,6 +288,7 @@ class RealtorScraper(Scraper):
status: %s
%s
%s
%s
}
%s
limit: 200
@ -268,29 +298,27 @@ class RealtorScraper(Scraper):
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
)
elif search_type == "area": #: general search, came from a general location
query = """query Home_search(
$city: String,
$county: [String],
$state_code: String,
$postal_code: String
$location: String!,
$offset: Int,
) {
home_search(
query: {
%s
city: $city
county: $county
postal_code: $postal_code
state_code: $state_code
search_location: {location: $location}
status: %s
unique: true
%s
%s
%s
}
bucket: { sort: "fractal_v1.1.3_fr" }
%s
limit: 200
offset: $offset
@ -299,6 +327,7 @@ class RealtorScraper(Scraper):
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
@ -329,7 +358,7 @@ class RealtorScraper(Scraper):
response_json = response.json()
search_key = "home_search" if "home_search" in query else "property_search"
properties: list[Property] = []
properties: list[Union[Property, dict]] = []
if (
response_json is None
@ -347,17 +376,25 @@ class RealtorScraper(Scraper):
#: limit the number of properties to be processed
#: example, if your offset is 200, and your limit is 250, return 50
properties_list = properties_list[:self.limit - offset]
properties_list: list[dict] = properties_list[: self.limit - offset]
if self.extra_property_data:
property_ids = [data["property_id"] for data in properties_list]
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
for result in properties_list:
result.update(extra_property_details.get(result["property_id"], {}))
if self.return_type != ReturnType.raw:
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
futures = [
executor.submit(self.process_property, result, search_key) for result in properties_list
]
futures = [executor.submit(self.process_property, result) for result in properties_list]
for future in as_completed(futures):
result = future.result()
if result:
properties.append(result)
else:
properties = properties_list
return {
"total": total_properties,
@ -402,10 +439,7 @@ class RealtorScraper(Scraper):
else: #: general search, location
search_variables |= {
"city": location_info.get("city"),
"county": location_info.get("county"),
"state_code": location_info.get("state_code"),
"postal_code": location_info.get("postal_code"),
"location": self.location,
}
if self.foreclosure:
@ -422,7 +456,11 @@ class RealtorScraper(Scraper):
variables=search_variables | {"offset": i},
search_type=search_type,
)
for i in range(self.DEFAULT_PAGE_SIZE, min(total, self.limit), self.DEFAULT_PAGE_SIZE)
for i in range(
self.DEFAULT_PAGE_SIZE,
min(total, self.limit),
self.DEFAULT_PAGE_SIZE,
)
]
for future in as_completed(futures):
@ -444,35 +482,75 @@ class RealtorScraper(Scraper):
def process_extra_property_details(self, result: dict) -> dict:
schools = self.get_key(result, ["nearbySchools", "schools"])
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
tax_history = self.get_key(result, ["taxHistory"])
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
# Process tax history
latest_tax = None
processed_tax_history = None
if tax_history and isinstance(tax_history, list):
tax_history = sorted(tax_history, key=lambda x: x.get("year", 0), reverse=True)
if tax_history and "tax" in tax_history[0]:
latest_tax = tax_history[0]["tax"]
processed_tax_history = []
for entry in tax_history:
if "year" in entry and "tax" in entry:
processed_entry = {
"year": entry["year"],
"tax": entry["tax"],
}
if "assessment" in entry and isinstance(entry["assessment"], dict):
processed_entry["assessment"] = {
"building": entry["assessment"].get("building"),
"land": entry["assessment"].get("land"),
"total": entry["assessment"].get("total"),
}
processed_tax_history.append(processed_entry)
return {
"schools": schools if schools else None,
"assessed_value": assessed_value if assessed_value else None,
"tax": latest_tax,
"tax_history": processed_tax_history,
}
def get_prop_details(self, property_id: str) -> dict:
if not self.extra_property_data:
@retry(
retry=retry_if_exception_type(JSONDecodeError),
wait=wait_exponential(min=4, max=10),
stop=stop_after_attempt(3),
)
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
"""
Fetch extra property details for multiple properties in a single GraphQL query.
Returns a map of property_id to its details.
"""
if not self.extra_property_data or not property_ids:
return {}
query = """query GetHome($property_id: ID!) {
home(property_id: $property_id) {
__typename
property_ids = list(set(property_ids))
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
}
}"""
# Construct the bulk query
fragments = "\n".join(
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
for property_id in property_ids
)
query = f"""{HOME_FRAGMENT}
variables = {"property_id": property_id}
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query, "variables": variables})
query GetHomes {{
{fragments}
}}"""
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
data = response.json()
property_details = data["data"]["home"]
return self.process_extra_property_details(property_details)
if "data" not in data:
return {}
properties = data["data"]
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
@staticmethod
def _parse_neighborhoods(result: dict) -> Optional[str]:
@ -534,20 +612,22 @@ class RealtorScraper(Scraper):
style = style.upper()
primary_photo = ""
if (primary_photo_info := result.get('primary_photo')) and (primary_photo_href := primary_photo_info.get("href")):
if (primary_photo_info := result.get("primary_photo")) and (
primary_photo_href := primary_photo_info.get("href")
):
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
return Description(
primary_photo=primary_photo,
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
style=PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None,
style=(PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None),
beds=description_data.get("beds"),
baths_full=description_data.get("baths_full"),
baths_half=description_data.get("baths_half"),
sqft=description_data.get("sqft"),
lot_sqft=description_data.get("lot_sqft"),
sold_price=(
result.get('last_sold_price') or description_data.get("sold_price")
result.get("last_sold_price") or description_data.get("sold_price")
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
else None
), #: has a sold date or list and sold price are different
@ -581,4 +661,8 @@ class RealtorScraper(Scraper):
if not photos_info:
return None
return [photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75") for photo_info in photos_info if photo_info.get("href")]
return [
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
for photo_info in photos_info
if photo_info.get("href")
]

View File

@ -11,6 +11,34 @@ _SEARCH_HOMES_DATA_BASE = """{
list_price_max
list_price_min
price_per_sqft
tags
details {
category
text
parent_category
}
pet_policy {
cats
dogs
dogs_small
dogs_large
__typename
}
units {
availability {
date
__typename
}
description {
baths_consolidated
baths
beds
sqft
__typename
}
list_price
__typename
}
flags {
is_contingent
is_pending
@ -64,11 +92,14 @@ _SEARCH_HOMES_DATA_BASE = """{
tax_record {
public_record_id
}
primary_photo {
primary_photo(https: true) {
href
}
photos {
photos(https: true) {
href
tags {
label
}
}
advertisers {
email
@ -116,15 +147,63 @@ _SEARCH_HOMES_DATA_BASE = """{
}
rental_management {
name
href
fulfillment_id
}
}
"""
HOME_FRAGMENT = """
fragment HomeData on Home {
property_id
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
monthly_fees {
description
display_amount
}
one_time_fees {
description
display_amount
}
parking {
unassigned_space_rent
assigned_spaces_available
description
assigned_space_rent
}
terms {
text
category
}
}
"""
HOMES_DATA = """%s
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
monthly_fees {
description
display_amount
}
one_time_fees {
description
display_amount
}
parking {
unassigned_space_rent
assigned_spaces_available
description
assigned_space_rent
}
terms {
text
category
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
estimates {
__typename
@ -141,7 +220,7 @@ HOMES_DATA = """%s
}""" % _SEARCH_HOMES_DATA_BASE
SEARCH_HOMES_DATA = """%s
current_estimates {
current_estimates {
__typename
source {
__typename
@ -153,7 +232,7 @@ SEARCH_HOMES_DATA = """%s
estimateLow: estimate_low
date
isBestHomeValue: isbest_homevalue
}
}
}""" % _SEARCH_HOMES_DATA_BASE
GENERAL_RESULTS_QUERY = """{

View File

@ -33,6 +33,8 @@ ordered_properties = [
"last_sold_date",
"assessed_value",
"estimated_value",
"tax",
"tax_history",
"new_construction",
"lot_sqft",
"price_per_sqft",
@ -115,8 +117,11 @@ def process_result(result: Property) -> pd.DataFrame:
if description:
prop_data["primary_photo"] = description.primary_photo
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
prop_data["style"] = description.style if isinstance(description.style,
str) else description.style.value if description.style else None
prop_data["style"] = (
description.style
if isinstance(description.style, str)
else description.style.value if description.style else None
)
prop_data["beds"] = description.beds
prop_data["full_baths"] = description.baths_full
prop_data["half_baths"] = description.baths_half

19
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "annotated-types"
@ -667,6 +667,21 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "tenacity"
version = "9.0.0"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.8"
files = [
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
]
[package.extras]
doc = ["reno", "sphinx"]
test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tomli"
version = "2.0.1"
@ -740,4 +755,4 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<3.13"
content-hash = "21ef9cfb35c446a375a2b74c37691d7031afb1e4f66a8b63cb7c1669470689d2"
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "homeharvest"
version = "0.4.3"
version = "0.4.7"
description = "Real estate scraping library"
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
homepage = "https://github.com/Bunsly/HomeHarvest"
@ -14,6 +14,7 @@ python = ">=3.9,<3.13"
requests = "^2.31.0"
pandas = "^2.1.1"
pydantic = "^2.7.4"
tenacity = "^9.0.0"
[tool.poetry.group.dev.dependencies]

View File

@ -1,4 +1,5 @@
from homeharvest import scrape_property
from homeharvest import scrape_property, Property
import pandas as pd
def test_realtor_pending_or_contingent():
@ -105,8 +106,12 @@ def test_realtor():
location="2530 Al Lipscomb Way",
listing_type="for_sale",
),
scrape_property(location="Phoenix, AZ", listing_type="for_rent", limit=1000), #: does not support "city, state, USA" format
scrape_property(location="Dallas, TX", listing_type="sold", limit=1000), #: does not support "city, state, USA" format
scrape_property(
location="Phoenix, AZ", listing_type="for_rent", limit=1000
), #: does not support "city, state, USA" format
scrape_property(
location="Dallas, TX", listing_type="sold", limit=1000
), #: does not support "city, state, USA" format
scrape_property(location="85281"),
]
@ -114,11 +119,13 @@ def test_realtor():
def test_realtor_city():
results = scrape_property(
location="Atlanta, GA",
listing_type="for_sale",
limit=1000
)
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
assert results is not None and len(results) > 0
def test_realtor_land():
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
assert results is not None and len(results) > 0
@ -241,9 +248,10 @@ def test_apartment_list_price():
results = results[results["style"] == "APARTMENT"]
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
assert len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(
results
) > 0.5
assert (
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
> 0.5
)
def test_builder_exists():
@ -280,3 +288,15 @@ def test_phone_number_matching():
#: assert phone numbers are the same
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
def test_return_type():
results = {
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
}
assert isinstance(results["pandas"], pd.DataFrame)
assert isinstance(results["pydantic"][0], Property)
assert isinstance(results["raw"][0], dict)