enh: property type (#102)
parent
1f717bd9e3
commit
8e04f6b117
17
README.md
17
README.md
|
@ -68,13 +68,24 @@ print(properties.head())
|
|||
```
|
||||
Required
|
||||
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
|
||||
└── listing_type (option): Choose the type of listing.
|
||||
├── listing_type (option): Choose the type of listing.
|
||||
- 'for_rent'
|
||||
- 'for_sale'
|
||||
- 'sold'
|
||||
- 'pending'
|
||||
- 'pending' (for pending/contingent sales)
|
||||
|
||||
Optional
|
||||
├── property_type (list): Choose the type of properties.
|
||||
- 'single_family'
|
||||
- 'multi_family'
|
||||
- 'condos'
|
||||
- 'condo_townhome_rowhome_coop'
|
||||
- 'condo_townhome'
|
||||
- 'townhomes'
|
||||
- 'duplex_triplex'
|
||||
- 'farm'
|
||||
- 'land'
|
||||
- 'mobile'
|
||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||
│
|
||||
|
@ -94,7 +105,7 @@ Optional
|
|||
│
|
||||
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
|
||||
│
|
||||
├── exclude_pending (True/False): If set, excludes pending properties from the results unless listing_type is 'pending'
|
||||
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
|
||||
│
|
||||
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
|
||||
```
|
||||
|
|
|
@ -1,141 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
|
||||
"metadata": {
|
||||
"is_executing": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from homeharvest import scrape_property\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.set_option('display.max_columns', None) # Show all columns\n",
|
||||
"pd.set_option('display.max_rows', None) # Show all rows\n",
|
||||
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
|
||||
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check for sale properties\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aaf86093",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# search a specific address\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"2530 Al Lipscomb Way\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check rentals\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"chicago, illinois\",\n",
|
||||
" listing_type=\"for_rent\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af280cd3",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check sold properties\n",
|
||||
"properties = scrape_property(\n",
|
||||
" location=\"90210\",\n",
|
||||
" listing_type=\"sold\",\n",
|
||||
" past_days=10\n",
|
||||
")\n",
|
||||
"display(properties)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "628c1ce2",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"is_executing": true,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# display clickable URLs\n",
|
||||
"from IPython.display import display, HTML\n",
|
||||
"properties['property_url'] = '<a href=\"' + properties['property_url'] + '\" target=\"_blank\">' + properties['property_url'] + '</a>'\n",
|
||||
"\n",
|
||||
"html = properties.to_html(escape=False)\n",
|
||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
||||
"display(HTML(truncate_width))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
from homeharvest import scrape_property
|
||||
from datetime import datetime
|
||||
|
||||
# Generate filename based on current timestamp
|
||||
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"HomeHarvest_{current_timestamp}.csv"
|
||||
|
||||
properties = scrape_property(
|
||||
location="San Diego, CA",
|
||||
listing_type="sold", # or (for_sale, for_rent)
|
||||
past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
|
||||
# pending_or_contingent=True # use on for_sale listings to find pending / contingent listings
|
||||
# mls_only=True, # only fetch MLS listings
|
||||
# proxy="http://user:pass@host:port" # use a proxy to change your IP address
|
||||
)
|
||||
print(f"Number of properties: {len(properties)}")
|
||||
|
||||
# Export to csv
|
||||
properties.to_csv(filename, index=False)
|
||||
print(properties.head())
|
|
@ -0,0 +1,104 @@
|
|||
"""
|
||||
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
|
||||
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
|
||||
"""
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
from homeharvest import scrape_property
|
||||
|
||||
|
||||
def get_property_details(zip: str, listing_type):
|
||||
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
|
||||
if not properties.empty:
|
||||
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
|
||||
|
||||
properties = properties[properties["sqft"].isnull()]
|
||||
properties["ppa"] = properties.apply(
|
||||
lambda row: (
|
||||
int(
|
||||
(
|
||||
row["sold_price"]
|
||||
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
|
||||
else row["list_price"]
|
||||
)
|
||||
/ row["lot_acres"]
|
||||
)
|
||||
if pd.notnull(row["lot_acres"])
|
||||
and row["lot_acres"] > 0
|
||||
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
|
||||
else None
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
properties["ppa"] = properties["ppa"].astype("Int64")
|
||||
selected_columns = [
|
||||
"property_url",
|
||||
"property_id",
|
||||
"style",
|
||||
"status",
|
||||
"street",
|
||||
"city",
|
||||
"state",
|
||||
"zip_code",
|
||||
"county",
|
||||
"list_date",
|
||||
"last_sold_date",
|
||||
"list_price",
|
||||
"sold_price",
|
||||
"lot_sqft",
|
||||
"lot_acres",
|
||||
"ppa",
|
||||
]
|
||||
properties = properties[selected_columns]
|
||||
return properties
|
||||
|
||||
|
||||
def output_to_excel(zip_code, sold_df, pending_df):
|
||||
root_folder = os.getcwd()
|
||||
zip_folder = os.path.join(root_folder, "zips", zip_code)
|
||||
|
||||
# Create zip code folder if it doesn't exist
|
||||
os.makedirs(zip_folder, exist_ok=True)
|
||||
|
||||
# Define file paths
|
||||
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
|
||||
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
|
||||
|
||||
# Save individual sold and pending files
|
||||
sold_df.to_excel(sold_file, index=False)
|
||||
pending_df.to_excel(pending_file, index=False)
|
||||
|
||||
|
||||
zip_codes = map(
|
||||
str,
|
||||
[
|
||||
22920,
|
||||
77024,
|
||||
78028,
|
||||
24553,
|
||||
22967,
|
||||
22971,
|
||||
22922,
|
||||
22958,
|
||||
22969,
|
||||
22949,
|
||||
22938,
|
||||
24599,
|
||||
24562,
|
||||
22976,
|
||||
24464,
|
||||
22964,
|
||||
24581,
|
||||
],
|
||||
)
|
||||
|
||||
combined_df = pd.DataFrame()
|
||||
for zip in zip_codes:
|
||||
sold_df = get_property_details(zip, "sold")
|
||||
pending_df = get_property_details(zip, "pending")
|
||||
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
|
||||
output_to_excel(zip, sold_df, pending_df)
|
||||
|
||||
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
|
||||
combined_df.to_excel(combined_file, index=False)
|
|
@ -3,12 +3,13 @@ import pandas as pd
|
|||
from .core.scrapers import ScraperInput
|
||||
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
||||
from .core.scrapers.realtor import RealtorScraper
|
||||
from .core.scrapers.models import ListingType
|
||||
from .core.scrapers.models import ListingType, SearchPropertyType
|
||||
|
||||
|
||||
def scrape_property(
|
||||
location: str,
|
||||
listing_type: str = "for_sale",
|
||||
property_type: list[str] | None = None,
|
||||
radius: float = None,
|
||||
mls_only: bool = False,
|
||||
past_days: int = None,
|
||||
|
@ -24,6 +25,7 @@ def scrape_property(
|
|||
Scrape properties from Realtor.com based on a given location and listing type.
|
||||
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
||||
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
||||
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||
:param proxy: Proxy to use for scraping
|
||||
|
@ -41,6 +43,7 @@ def scrape_property(
|
|||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
||||
proxy=proxy,
|
||||
radius=radius,
|
||||
mls_only=mls_only,
|
||||
|
@ -63,4 +66,6 @@ def scrape_property(
|
|||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", category=FutureWarning)
|
||||
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": pd.NA, None: pd.NA, "": pd.NA})
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
|
||||
{"None": pd.NA, None: pd.NA, "": pd.NA}
|
||||
)
|
||||
|
|
|
@ -5,7 +5,7 @@ from requests.adapters import HTTPAdapter
|
|||
from urllib3.util.retry import Retry
|
||||
import uuid
|
||||
from ...exceptions import AuthenticationError
|
||||
from .models import Property, ListingType, SiteName
|
||||
from .models import Property, ListingType, SiteName, SearchPropertyType
|
||||
import json
|
||||
|
||||
|
||||
|
@ -13,6 +13,7 @@ import json
|
|||
class ScraperInput:
|
||||
location: str
|
||||
listing_type: ListingType
|
||||
property_type: list[SearchPropertyType] | None = None
|
||||
radius: float | None = None
|
||||
mls_only: bool | None = False
|
||||
proxy: str | None = None
|
||||
|
@ -34,11 +35,12 @@ class Scraper:
|
|||
):
|
||||
self.location = scraper_input.location
|
||||
self.listing_type = scraper_input.listing_type
|
||||
self.property_type = scraper_input.property_type
|
||||
|
||||
if not self.session:
|
||||
Scraper.session = requests.Session()
|
||||
retries = Retry(
|
||||
total=3, backoff_factor=3, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
||||
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
||||
)
|
||||
|
||||
adapter = HTTPAdapter(max_retries=retries)
|
||||
|
@ -46,21 +48,21 @@ class Scraper:
|
|||
Scraper.session.mount("https://", adapter)
|
||||
Scraper.session.headers.update(
|
||||
{
|
||||
'accept': 'application/json, text/javascript',
|
||||
'accept-language': 'en-US,en;q=0.9',
|
||||
'cache-control': 'no-cache',
|
||||
'content-type': 'application/json',
|
||||
'origin': 'https://www.realtor.com',
|
||||
'pragma': 'no-cache',
|
||||
'priority': 'u=1, i',
|
||||
'rdc-ab-tests': 'commute_travel_time_variation:v1',
|
||||
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
||||
'sec-ch-ua-mobile': '?0',
|
||||
'sec-ch-ua-platform': '"Windows"',
|
||||
'sec-fetch-dest': 'empty',
|
||||
'sec-fetch-mode': 'cors',
|
||||
'sec-fetch-site': 'same-origin',
|
||||
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
||||
"accept": "application/json, text/javascript",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "no-cache",
|
||||
"content-type": "application/json",
|
||||
"origin": "https://www.realtor.com",
|
||||
"pragma": "no-cache",
|
||||
"priority": "u=1, i",
|
||||
"rdc-ab-tests": "commute_travel_time_variation:v1",
|
||||
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-fetch-dest": "empty",
|
||||
"sec-fetch-mode": "cors",
|
||||
"sec-fetch-site": "same-origin",
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -94,27 +96,29 @@ class Scraper:
|
|||
response = requests.post(
|
||||
"https://graph.realtor.com/auth/token",
|
||||
headers={
|
||||
'Host': 'graph.realtor.com',
|
||||
'Accept': '*/*',
|
||||
'Content-Type': 'Application/json',
|
||||
'X-Client-ID': 'rdc_mobile_native,iphone',
|
||||
'X-Visitor-ID': device_id,
|
||||
'X-Client-Version': '24.21.23.679885',
|
||||
'Accept-Language': 'en-US,en;q=0.9',
|
||||
'User-Agent': 'Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0',
|
||||
"Host": "graph.realtor.com",
|
||||
"Accept": "*/*",
|
||||
"Content-Type": "Application/json",
|
||||
"X-Client-ID": "rdc_mobile_native,iphone",
|
||||
"X-Visitor-ID": device_id,
|
||||
"X-Client-Version": "24.21.23.679885",
|
||||
"Accept-Language": "en-US,en;q=0.9",
|
||||
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
|
||||
},
|
||||
data=json.dumps({
|
||||
"grant_type": "device_mobile",
|
||||
"device_id": device_id,
|
||||
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone"
|
||||
}))
|
||||
data=json.dumps(
|
||||
{
|
||||
"grant_type": "device_mobile",
|
||||
"device_id": device_id,
|
||||
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
data = response.json()
|
||||
|
||||
if not (access_token := data.get("access_token")):
|
||||
raise AuthenticationError(
|
||||
"Failed to get access token, use a proxy/vpn or wait a moment and try again.",
|
||||
response=response
|
||||
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
|
||||
)
|
||||
|
||||
return access_token
|
||||
|
|
|
@ -17,6 +17,19 @@ class SiteName(Enum):
|
|||
raise ValueError(f"{value} not found in {cls}")
|
||||
|
||||
|
||||
class SearchPropertyType(Enum):
|
||||
SINGLE_FAMILY = "single_family"
|
||||
CONDOS = "condos"
|
||||
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
|
||||
CONDO_TOWNHOME = "condo_townhome"
|
||||
TOWNHOMES = "townhomes"
|
||||
DUPLEX_TRIPLEX = "duplex_triplex"
|
||||
FARM = "farm"
|
||||
LAND = "land"
|
||||
MULTI_FAMILY = "multi_family"
|
||||
MOBILE = "mobile"
|
||||
|
||||
|
||||
class ListingType(Enum):
|
||||
FOR_SALE = "FOR_SALE"
|
||||
FOR_RENT = "FOR_RENT"
|
||||
|
|
|
@ -6,12 +6,28 @@ This module implements the scraper for realtor.com
|
|||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from datetime import datetime
|
||||
from json import JSONDecodeError
|
||||
from typing import Dict, Union, Optional
|
||||
|
||||
from tenacity import retry, retry_if_exception_type, wait_exponential, stop_after_attempt
|
||||
|
||||
from .. import Scraper
|
||||
from ..models import Property, Address, ListingType, Description, PropertyType, Agent, Broker, Builder, Advertisers, Office
|
||||
from ..models import (
|
||||
Property,
|
||||
Address,
|
||||
ListingType,
|
||||
Description,
|
||||
PropertyType,
|
||||
Agent,
|
||||
Broker,
|
||||
Builder,
|
||||
Advertisers,
|
||||
Office,
|
||||
)
|
||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
|
||||
|
||||
|
||||
|
@ -81,9 +97,12 @@ class RealtorScraper(Scraper):
|
|||
return property_info["listings"][0]["listing_id"]
|
||||
|
||||
def handle_home(self, property_id: str) -> list[Property]:
|
||||
query = """query Home($property_id: ID!) {
|
||||
query = (
|
||||
"""query Home($property_id: ID!) {
|
||||
home(property_id: $property_id) %s
|
||||
}""" % HOMES_DATA
|
||||
}"""
|
||||
% HOMES_DATA
|
||||
)
|
||||
|
||||
variables = {"property_id": property_id}
|
||||
payload = {
|
||||
|
@ -96,9 +115,7 @@ class RealtorScraper(Scraper):
|
|||
|
||||
property_info = response_json["data"]["home"]
|
||||
|
||||
return [
|
||||
self.process_property(property_info, "home")
|
||||
]
|
||||
return [self.process_property(property_info, "home")]
|
||||
|
||||
@staticmethod
|
||||
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
||||
|
@ -122,7 +139,7 @@ class RealtorScraper(Scraper):
|
|||
phones=advertiser.get("phones"),
|
||||
)
|
||||
|
||||
if advertiser.get('broker') and advertiser["broker"].get('name'): #: has a broker
|
||||
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
|
||||
processed_advertisers.broker = Broker(
|
||||
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
|
||||
name=advertiser["broker"].get("name"),
|
||||
|
@ -153,15 +170,16 @@ class RealtorScraper(Scraper):
|
|||
return
|
||||
|
||||
able_to_get_lat_long = (
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
)
|
||||
|
||||
is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
|
||||
is_pending = result["flags"].get("is_pending")
|
||||
is_contingent = result["flags"].get("is_contingent")
|
||||
|
||||
if is_pending and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
||||
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
||||
return
|
||||
|
||||
property_id = result["property_id"]
|
||||
|
@ -184,7 +202,7 @@ class RealtorScraper(Scraper):
|
|||
property_url=result["href"],
|
||||
property_id=property_id,
|
||||
listing_id=result.get("listing_id"),
|
||||
status="PENDING" if is_pending else result["status"].upper(),
|
||||
status="PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper(),
|
||||
list_price=result["list_price"],
|
||||
list_price_min=result["list_price_min"],
|
||||
list_price_max=result["list_price_max"],
|
||||
|
@ -225,6 +243,11 @@ class RealtorScraper(Scraper):
|
|||
elif self.last_x_days:
|
||||
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
|
||||
|
||||
property_type_param = ""
|
||||
if self.property_type:
|
||||
property_types = [pt.value for pt in self.property_type]
|
||||
property_type_param = f"type: {json.dumps(property_types)}"
|
||||
|
||||
sort_param = (
|
||||
"sort: [{ field: sold_date, direction: desc }]"
|
||||
if self.listing_type == ListingType.SOLD
|
||||
|
@ -259,6 +282,7 @@ class RealtorScraper(Scraper):
|
|||
status: %s
|
||||
%s
|
||||
%s
|
||||
%s
|
||||
}
|
||||
%s
|
||||
limit: 200
|
||||
|
@ -268,6 +292,7 @@ class RealtorScraper(Scraper):
|
|||
is_foreclosure,
|
||||
listing_type.value.lower(),
|
||||
date_param,
|
||||
property_type_param,
|
||||
pending_or_contingent_param,
|
||||
sort_param,
|
||||
GENERAL_RESULTS_QUERY,
|
||||
|
@ -290,6 +315,7 @@ class RealtorScraper(Scraper):
|
|||
status: %s
|
||||
%s
|
||||
%s
|
||||
%s
|
||||
}
|
||||
%s
|
||||
limit: 200
|
||||
|
@ -299,13 +325,14 @@ class RealtorScraper(Scraper):
|
|||
is_foreclosure,
|
||||
listing_type.value.lower(),
|
||||
date_param,
|
||||
property_type_param,
|
||||
pending_or_contingent_param,
|
||||
sort_param,
|
||||
GENERAL_RESULTS_QUERY,
|
||||
)
|
||||
else: #: general search, came from an address
|
||||
query = (
|
||||
"""query Property_search(
|
||||
"""query Property_search(
|
||||
$property_id: [ID]!
|
||||
$offset: Int!,
|
||||
) {
|
||||
|
@ -315,9 +342,9 @@ class RealtorScraper(Scraper):
|
|||
}
|
||||
limit: 1
|
||||
offset: $offset
|
||||
) %s
|
||||
) %s
|
||||
}"""
|
||||
% GENERAL_RESULTS_QUERY
|
||||
% GENERAL_RESULTS_QUERY
|
||||
)
|
||||
|
||||
payload = {
|
||||
|
@ -332,12 +359,12 @@ class RealtorScraper(Scraper):
|
|||
properties: list[Property] = []
|
||||
|
||||
if (
|
||||
response_json is None
|
||||
or "data" not in response_json
|
||||
or response_json["data"] is None
|
||||
or search_key not in response_json["data"]
|
||||
or response_json["data"][search_key] is None
|
||||
or "results" not in response_json["data"][search_key]
|
||||
response_json is None
|
||||
or "data" not in response_json
|
||||
or response_json["data"] is None
|
||||
or search_key not in response_json["data"]
|
||||
or response_json["data"][search_key] is None
|
||||
or "results" not in response_json["data"][search_key]
|
||||
):
|
||||
return {"total": 0, "properties": []}
|
||||
|
||||
|
@ -347,12 +374,10 @@ class RealtorScraper(Scraper):
|
|||
|
||||
#: limit the number of properties to be processed
|
||||
#: example, if your offset is 200, and your limit is 250, return 50
|
||||
properties_list = properties_list[:self.limit - offset]
|
||||
properties_list = properties_list[: self.limit - offset]
|
||||
|
||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||
futures = [
|
||||
executor.submit(self.process_property, result, search_key) for result in properties_list
|
||||
]
|
||||
futures = [executor.submit(self.process_property, result, search_key) for result in properties_list]
|
||||
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
|
@ -451,6 +476,9 @@ class RealtorScraper(Scraper):
|
|||
"assessed_value": assessed_value if assessed_value else None,
|
||||
}
|
||||
|
||||
@retry(
|
||||
retry=retry_if_exception_type(JSONDecodeError), wait=wait_exponential(min=4, max=10), stop=stop_after_attempt(3)
|
||||
)
|
||||
def get_prop_details(self, property_id: str) -> dict:
|
||||
if not self.extra_property_data:
|
||||
return {}
|
||||
|
@ -534,7 +562,9 @@ class RealtorScraper(Scraper):
|
|||
style = style.upper()
|
||||
|
||||
primary_photo = ""
|
||||
if (primary_photo_info := result.get('primary_photo')) and (primary_photo_href := primary_photo_info.get("href")):
|
||||
if (primary_photo_info := result.get("primary_photo")) and (
|
||||
primary_photo_href := primary_photo_info.get("href")
|
||||
):
|
||||
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
|
||||
return Description(
|
||||
|
@ -547,7 +577,7 @@ class RealtorScraper(Scraper):
|
|||
sqft=description_data.get("sqft"),
|
||||
lot_sqft=description_data.get("lot_sqft"),
|
||||
sold_price=(
|
||||
result.get('last_sold_price') or description_data.get("sold_price")
|
||||
result.get("last_sold_price") or description_data.get("sold_price")
|
||||
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
|
||||
else None
|
||||
), #: has a sold date or list and sold price are different
|
||||
|
@ -581,4 +611,8 @@ class RealtorScraper(Scraper):
|
|||
if not photos_info:
|
||||
return None
|
||||
|
||||
return [photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75") for photo_info in photos_info if photo_info.get("href")]
|
||||
return [
|
||||
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
for photo_info in photos_info
|
||||
if photo_info.get("href")
|
||||
]
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
|
@ -667,6 +667,21 @@ files = [
|
|||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tenacity"
|
||||
version = "9.0.0"
|
||||
description = "Retry code until it succeeds"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
|
||||
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
doc = ["reno", "sphinx"]
|
||||
test = ["pytest", "tornado (>=4.5)", "typeguard"]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.0.1"
|
||||
|
@ -740,4 +755,4 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.9,<3.13"
|
||||
content-hash = "21ef9cfb35c446a375a2b74c37691d7031afb1e4f66a8b63cb7c1669470689d2"
|
||||
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "homeharvest"
|
||||
version = "0.4.3"
|
||||
version = "0.4.4"
|
||||
description = "Real estate scraping library"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||
|
@ -14,6 +14,7 @@ python = ">=3.9,<3.13"
|
|||
requests = "^2.31.0"
|
||||
pandas = "^2.1.1"
|
||||
pydantic = "^2.7.4"
|
||||
tenacity = "^9.0.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
|
|
|
@ -105,8 +105,12 @@ def test_realtor():
|
|||
location="2530 Al Lipscomb Way",
|
||||
listing_type="for_sale",
|
||||
),
|
||||
scrape_property(location="Phoenix, AZ", listing_type="for_rent", limit=1000), #: does not support "city, state, USA" format
|
||||
scrape_property(location="Dallas, TX", listing_type="sold", limit=1000), #: does not support "city, state, USA" format
|
||||
scrape_property(
|
||||
location="Phoenix, AZ", listing_type="for_rent", limit=1000
|
||||
), #: does not support "city, state, USA" format
|
||||
scrape_property(
|
||||
location="Dallas, TX", listing_type="sold", limit=1000
|
||||
), #: does not support "city, state, USA" format
|
||||
scrape_property(location="85281"),
|
||||
]
|
||||
|
||||
|
@ -114,11 +118,13 @@ def test_realtor():
|
|||
|
||||
|
||||
def test_realtor_city():
|
||||
results = scrape_property(
|
||||
location="Atlanta, GA",
|
||||
listing_type="for_sale",
|
||||
limit=1000
|
||||
)
|
||||
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_realtor_land():
|
||||
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
@ -241,9 +247,10 @@ def test_apartment_list_price():
|
|||
results = results[results["style"] == "APARTMENT"]
|
||||
|
||||
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
|
||||
assert len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(
|
||||
results
|
||||
) > 0.5
|
||||
assert (
|
||||
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
|
||||
> 0.5
|
||||
)
|
||||
|
||||
|
||||
def test_builder_exists():
|
||||
|
|
Loading…
Reference in New Issue