Compare commits
10 Commits
Author | SHA1 | Date |
---|---|---|
|
e378feeefe | |
|
8a5683fe79 | |
|
65f799a27d | |
|
0de916e590 | |
|
6a3f7df087 | |
|
a75bcc2aa0 | |
|
1082b86fa1 | |
|
8e04f6b117 | |
|
1f717bd9e3 | |
|
8cfe056f79 |
|
@ -0,0 +1 @@
|
||||||
|
github: Bunsly
|
38
README.md
38
README.md
|
@ -2,10 +2,6 @@
|
||||||
|
|
||||||
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
|
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
|
||||||
|
|
||||||
**Not technical?** Try out the web scraping tool on our site at [tryhomeharvest.com](https://tryhomeharvest.com).
|
|
||||||
|
|
||||||
*Looking to build a data-focused software product?* **[Book a call](https://bunsly.com)** *to work with us.*
|
|
||||||
|
|
||||||
## HomeHarvest Features
|
## HomeHarvest Features
|
||||||
|
|
||||||
- **Source**: Fetches properties directly from **Realtor.com**.
|
- **Source**: Fetches properties directly from **Realtor.com**.
|
||||||
|
@ -40,6 +36,7 @@ properties = scrape_property(
|
||||||
listing_type="sold", # or (for_sale, for_rent, pending)
|
listing_type="sold", # or (for_sale, for_rent, pending)
|
||||||
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
|
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
|
||||||
|
|
||||||
|
# property_type=['single_family','multi_family'],
|
||||||
# date_from="2023-05-01", # alternative to past_days
|
# date_from="2023-05-01", # alternative to past_days
|
||||||
# date_to="2023-05-28",
|
# date_to="2023-05-28",
|
||||||
# foreclosure=True
|
# foreclosure=True
|
||||||
|
@ -68,13 +65,30 @@ print(properties.head())
|
||||||
```
|
```
|
||||||
Required
|
Required
|
||||||
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
|
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
|
||||||
└── listing_type (option): Choose the type of listing.
|
├── listing_type (option): Choose the type of listing.
|
||||||
- 'for_rent'
|
- 'for_rent'
|
||||||
- 'for_sale'
|
- 'for_sale'
|
||||||
- 'sold'
|
- 'sold'
|
||||||
- 'pending'
|
- 'pending' (for pending/contingent sales)
|
||||||
|
|
||||||
Optional
|
Optional
|
||||||
|
├── property_type (list): Choose the type of properties.
|
||||||
|
- 'single_family'
|
||||||
|
- 'multi_family'
|
||||||
|
- 'condos'
|
||||||
|
- 'condo_townhome_rowhome_coop'
|
||||||
|
- 'condo_townhome'
|
||||||
|
- 'townhomes'
|
||||||
|
- 'duplex_triplex'
|
||||||
|
- 'farm'
|
||||||
|
- 'land'
|
||||||
|
- 'mobile'
|
||||||
|
│
|
||||||
|
├── return_type (option): Choose the return type.
|
||||||
|
│ - 'pandas' (default)
|
||||||
|
│ - 'pydantic'
|
||||||
|
│ - 'raw' (json)
|
||||||
|
│
|
||||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||||
│
|
│
|
||||||
|
@ -94,7 +108,7 @@ Optional
|
||||||
│
|
│
|
||||||
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
|
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
|
||||||
│
|
│
|
||||||
├── exclude_pending (True/False): If set, excludes pending properties from the results unless listing_type is 'pending'
|
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
|
||||||
│
|
│
|
||||||
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
|
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
|
||||||
```
|
```
|
||||||
|
@ -104,6 +118,8 @@ Optional
|
||||||
Property
|
Property
|
||||||
├── Basic Information:
|
├── Basic Information:
|
||||||
│ ├── property_url
|
│ ├── property_url
|
||||||
|
│ ├── property_id
|
||||||
|
│ ├── listing_id
|
||||||
│ ├── mls
|
│ ├── mls
|
||||||
│ ├── mls_id
|
│ ├── mls_id
|
||||||
│ └── status
|
│ └── status
|
||||||
|
@ -139,6 +155,14 @@ Property
|
||||||
│ ├── new_construction
|
│ ├── new_construction
|
||||||
│ └── hoa_fee
|
│ └── hoa_fee
|
||||||
|
|
||||||
|
├── Tax Information:
|
||||||
|
│ ├── year
|
||||||
|
│ ├── tax
|
||||||
|
│ ├── assessment
|
||||||
|
│ │ ├── building
|
||||||
|
│ │ ├── land
|
||||||
|
│ │ └── total
|
||||||
|
|
||||||
├── Location Details:
|
├── Location Details:
|
||||||
│ ├── latitude
|
│ ├── latitude
|
||||||
│ ├── longitude
|
│ ├── longitude
|
||||||
|
|
|
@ -1,141 +0,0 @@
|
||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
|
|
||||||
"metadata": {
|
|
||||||
"is_executing": true
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from homeharvest import scrape_property\n",
|
|
||||||
"import pandas as pd"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"pd.set_option('display.max_columns', None) # Show all columns\n",
|
|
||||||
"pd.set_option('display.max_rows', None) # Show all rows\n",
|
|
||||||
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
|
|
||||||
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# check for sale properties\n",
|
|
||||||
"scrape_property(\n",
|
|
||||||
" location=\"dallas\",\n",
|
|
||||||
" listing_type=\"for_sale\"\n",
|
|
||||||
")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "aaf86093",
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false,
|
|
||||||
"jupyter": {
|
|
||||||
"outputs_hidden": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# search a specific address\n",
|
|
||||||
"scrape_property(\n",
|
|
||||||
" location=\"2530 Al Lipscomb Way\",\n",
|
|
||||||
" listing_type=\"for_sale\"\n",
|
|
||||||
")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# check rentals\n",
|
|
||||||
"scrape_property(\n",
|
|
||||||
" location=\"chicago, illinois\",\n",
|
|
||||||
" listing_type=\"for_rent\"\n",
|
|
||||||
")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "af280cd3",
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false,
|
|
||||||
"jupyter": {
|
|
||||||
"outputs_hidden": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# check sold properties\n",
|
|
||||||
"properties = scrape_property(\n",
|
|
||||||
" location=\"90210\",\n",
|
|
||||||
" listing_type=\"sold\",\n",
|
|
||||||
" past_days=10\n",
|
|
||||||
")\n",
|
|
||||||
"display(properties)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "628c1ce2",
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false,
|
|
||||||
"is_executing": true,
|
|
||||||
"jupyter": {
|
|
||||||
"outputs_hidden": false
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# display clickable URLs\n",
|
|
||||||
"from IPython.display import display, HTML\n",
|
|
||||||
"properties['property_url'] = '<a href=\"' + properties['property_url'] + '\" target=\"_blank\">' + properties['property_url'] + '</a>'\n",
|
|
||||||
"\n",
|
|
||||||
"html = properties.to_html(escape=False)\n",
|
|
||||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
|
||||||
"display(HTML(truncate_width))"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.10.11"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
|
@ -1,20 +0,0 @@
|
||||||
from homeharvest import scrape_property
|
|
||||||
from datetime import datetime
|
|
||||||
|
|
||||||
# Generate filename based on current timestamp
|
|
||||||
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
||||||
filename = f"HomeHarvest_{current_timestamp}.csv"
|
|
||||||
|
|
||||||
properties = scrape_property(
|
|
||||||
location="San Diego, CA",
|
|
||||||
listing_type="sold", # or (for_sale, for_rent)
|
|
||||||
past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
|
|
||||||
# pending_or_contingent=True # use on for_sale listings to find pending / contingent listings
|
|
||||||
# mls_only=True, # only fetch MLS listings
|
|
||||||
# proxy="http://user:pass@host:port" # use a proxy to change your IP address
|
|
||||||
)
|
|
||||||
print(f"Number of properties: {len(properties)}")
|
|
||||||
|
|
||||||
# Export to csv
|
|
||||||
properties.to_csv(filename, index=False)
|
|
||||||
print(properties.head())
|
|
|
@ -0,0 +1,104 @@
|
||||||
|
"""
|
||||||
|
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
|
||||||
|
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import pandas as pd
|
||||||
|
from homeharvest import scrape_property
|
||||||
|
|
||||||
|
|
||||||
|
def get_property_details(zip: str, listing_type):
|
||||||
|
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
|
||||||
|
if not properties.empty:
|
||||||
|
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
|
||||||
|
|
||||||
|
properties = properties[properties["sqft"].isnull()]
|
||||||
|
properties["ppa"] = properties.apply(
|
||||||
|
lambda row: (
|
||||||
|
int(
|
||||||
|
(
|
||||||
|
row["sold_price"]
|
||||||
|
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
|
||||||
|
else row["list_price"]
|
||||||
|
)
|
||||||
|
/ row["lot_acres"]
|
||||||
|
)
|
||||||
|
if pd.notnull(row["lot_acres"])
|
||||||
|
and row["lot_acres"] > 0
|
||||||
|
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
axis=1,
|
||||||
|
)
|
||||||
|
properties["ppa"] = properties["ppa"].astype("Int64")
|
||||||
|
selected_columns = [
|
||||||
|
"property_url",
|
||||||
|
"property_id",
|
||||||
|
"style",
|
||||||
|
"status",
|
||||||
|
"street",
|
||||||
|
"city",
|
||||||
|
"state",
|
||||||
|
"zip_code",
|
||||||
|
"county",
|
||||||
|
"list_date",
|
||||||
|
"last_sold_date",
|
||||||
|
"list_price",
|
||||||
|
"sold_price",
|
||||||
|
"lot_sqft",
|
||||||
|
"lot_acres",
|
||||||
|
"ppa",
|
||||||
|
]
|
||||||
|
properties = properties[selected_columns]
|
||||||
|
return properties
|
||||||
|
|
||||||
|
|
||||||
|
def output_to_excel(zip_code, sold_df, pending_df):
|
||||||
|
root_folder = os.getcwd()
|
||||||
|
zip_folder = os.path.join(root_folder, "zips", zip_code)
|
||||||
|
|
||||||
|
# Create zip code folder if it doesn't exist
|
||||||
|
os.makedirs(zip_folder, exist_ok=True)
|
||||||
|
|
||||||
|
# Define file paths
|
||||||
|
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
|
||||||
|
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
|
||||||
|
|
||||||
|
# Save individual sold and pending files
|
||||||
|
sold_df.to_excel(sold_file, index=False)
|
||||||
|
pending_df.to_excel(pending_file, index=False)
|
||||||
|
|
||||||
|
|
||||||
|
zip_codes = map(
|
||||||
|
str,
|
||||||
|
[
|
||||||
|
22920,
|
||||||
|
77024,
|
||||||
|
78028,
|
||||||
|
24553,
|
||||||
|
22967,
|
||||||
|
22971,
|
||||||
|
22922,
|
||||||
|
22958,
|
||||||
|
22969,
|
||||||
|
22949,
|
||||||
|
22938,
|
||||||
|
24599,
|
||||||
|
24562,
|
||||||
|
22976,
|
||||||
|
24464,
|
||||||
|
22964,
|
||||||
|
24581,
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
combined_df = pd.DataFrame()
|
||||||
|
for zip in zip_codes:
|
||||||
|
sold_df = get_property_details(zip, "sold")
|
||||||
|
pending_df = get_property_details(zip, "pending")
|
||||||
|
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
|
||||||
|
output_to_excel(zip, sold_df, pending_df)
|
||||||
|
|
||||||
|
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
|
||||||
|
combined_df.to_excel(combined_file, index=False)
|
|
@ -3,12 +3,14 @@ import pandas as pd
|
||||||
from .core.scrapers import ScraperInput
|
from .core.scrapers import ScraperInput
|
||||||
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
||||||
from .core.scrapers.realtor import RealtorScraper
|
from .core.scrapers.realtor import RealtorScraper
|
||||||
from .core.scrapers.models import ListingType
|
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property
|
||||||
|
|
||||||
|
|
||||||
def scrape_property(
|
def scrape_property(
|
||||||
location: str,
|
location: str,
|
||||||
listing_type: str = "for_sale",
|
listing_type: str = "for_sale",
|
||||||
|
return_type: str = "pandas",
|
||||||
|
property_type: list[str] | None = None,
|
||||||
radius: float = None,
|
radius: float = None,
|
||||||
mls_only: bool = False,
|
mls_only: bool = False,
|
||||||
past_days: int = None,
|
past_days: int = None,
|
||||||
|
@ -18,12 +20,14 @@ def scrape_property(
|
||||||
foreclosure: bool = None,
|
foreclosure: bool = None,
|
||||||
extra_property_data: bool = True,
|
extra_property_data: bool = True,
|
||||||
exclude_pending: bool = False,
|
exclude_pending: bool = False,
|
||||||
limit: int = 10000,
|
limit: int = 10000
|
||||||
) -> pd.DataFrame:
|
) -> pd.DataFrame | list[dict] | list[Property]:
|
||||||
"""
|
"""
|
||||||
Scrape properties from Realtor.com based on a given location and listing type.
|
Scrape properties from Realtor.com based on a given location and listing type.
|
||||||
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
||||||
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
||||||
|
:param return_type: Return type (pandas, pydantic, raw)
|
||||||
|
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
||||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||||
:param proxy: Proxy to use for scraping
|
:param proxy: Proxy to use for scraping
|
||||||
|
@ -40,7 +44,9 @@ def scrape_property(
|
||||||
|
|
||||||
scraper_input = ScraperInput(
|
scraper_input = ScraperInput(
|
||||||
location=location,
|
location=location,
|
||||||
listing_type=ListingType[listing_type.upper()],
|
listing_type=ListingType(listing_type.upper()),
|
||||||
|
return_type=ReturnType(return_type.lower()),
|
||||||
|
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
||||||
proxy=proxy,
|
proxy=proxy,
|
||||||
radius=radius,
|
radius=radius,
|
||||||
mls_only=mls_only,
|
mls_only=mls_only,
|
||||||
|
@ -56,6 +62,9 @@ def scrape_property(
|
||||||
site = RealtorScraper(scraper_input)
|
site = RealtorScraper(scraper_input)
|
||||||
results = site.search()
|
results = site.search()
|
||||||
|
|
||||||
|
if scraper_input.return_type != ReturnType.pandas:
|
||||||
|
return results
|
||||||
|
|
||||||
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
|
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
|
||||||
if not properties_dfs:
|
if not properties_dfs:
|
||||||
return pd.DataFrame()
|
return pd.DataFrame()
|
||||||
|
@ -63,4 +72,6 @@ def scrape_property(
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore", category=FutureWarning)
|
warnings.simplefilter("ignore", category=FutureWarning)
|
||||||
|
|
||||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": pd.NA, None: pd.NA, "": pd.NA})
|
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
|
||||||
|
{"None": pd.NA, None: pd.NA, "": pd.NA}
|
||||||
|
)
|
||||||
|
|
|
@ -1,11 +1,13 @@
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
from requests.adapters import HTTPAdapter
|
from requests.adapters import HTTPAdapter
|
||||||
from urllib3.util.retry import Retry
|
from urllib3.util.retry import Retry
|
||||||
import uuid
|
import uuid
|
||||||
from ...exceptions import AuthenticationError
|
from ...exceptions import AuthenticationError
|
||||||
from .models import Property, ListingType, SiteName
|
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
@ -13,6 +15,7 @@ import json
|
||||||
class ScraperInput:
|
class ScraperInput:
|
||||||
location: str
|
location: str
|
||||||
listing_type: ListingType
|
listing_type: ListingType
|
||||||
|
property_type: list[SearchPropertyType] | None = None
|
||||||
radius: float | None = None
|
radius: float | None = None
|
||||||
mls_only: bool | None = False
|
mls_only: bool | None = False
|
||||||
proxy: str | None = None
|
proxy: str | None = None
|
||||||
|
@ -23,6 +26,7 @@ class ScraperInput:
|
||||||
extra_property_data: bool | None = True
|
extra_property_data: bool | None = True
|
||||||
exclude_pending: bool | None = False
|
exclude_pending: bool | None = False
|
||||||
limit: int = 10000
|
limit: int = 10000
|
||||||
|
return_type: ReturnType = ReturnType.pandas
|
||||||
|
|
||||||
|
|
||||||
class Scraper:
|
class Scraper:
|
||||||
|
@ -34,11 +38,12 @@ class Scraper:
|
||||||
):
|
):
|
||||||
self.location = scraper_input.location
|
self.location = scraper_input.location
|
||||||
self.listing_type = scraper_input.listing_type
|
self.listing_type = scraper_input.listing_type
|
||||||
|
self.property_type = scraper_input.property_type
|
||||||
|
|
||||||
if not self.session:
|
if not self.session:
|
||||||
Scraper.session = requests.Session()
|
Scraper.session = requests.Session()
|
||||||
retries = Retry(
|
retries = Retry(
|
||||||
total=3, backoff_factor=3, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
||||||
)
|
)
|
||||||
|
|
||||||
adapter = HTTPAdapter(max_retries=retries)
|
adapter = HTTPAdapter(max_retries=retries)
|
||||||
|
@ -46,8 +51,21 @@ class Scraper:
|
||||||
Scraper.session.mount("https://", adapter)
|
Scraper.session.mount("https://", adapter)
|
||||||
Scraper.session.headers.update(
|
Scraper.session.headers.update(
|
||||||
{
|
{
|
||||||
"auth": f"Bearer {self.get_access_token()}",
|
"accept": "application/json, text/javascript",
|
||||||
"apollographql-client-name": "com.move.Realtor-apollo-ios",
|
"accept-language": "en-US,en;q=0.9",
|
||||||
|
"cache-control": "no-cache",
|
||||||
|
"content-type": "application/json",
|
||||||
|
"origin": "https://www.realtor.com",
|
||||||
|
"pragma": "no-cache",
|
||||||
|
"priority": "u=1, i",
|
||||||
|
"rdc-ab-tests": "commute_travel_time_variation:v1",
|
||||||
|
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
||||||
|
"sec-ch-ua-mobile": "?0",
|
||||||
|
"sec-ch-ua-platform": '"Windows"',
|
||||||
|
"sec-fetch-dest": "empty",
|
||||||
|
"sec-fetch-mode": "cors",
|
||||||
|
"sec-fetch-site": "same-origin",
|
||||||
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -66,8 +84,9 @@ class Scraper:
|
||||||
self.extra_property_data = scraper_input.extra_property_data
|
self.extra_property_data = scraper_input.extra_property_data
|
||||||
self.exclude_pending = scraper_input.exclude_pending
|
self.exclude_pending = scraper_input.exclude_pending
|
||||||
self.limit = scraper_input.limit
|
self.limit = scraper_input.limit
|
||||||
|
self.return_type = scraper_input.return_type
|
||||||
|
|
||||||
def search(self) -> list[Property]: ...
|
def search(self) -> list[Union[Property | dict]]: ...
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _parse_home(home) -> Property: ...
|
def _parse_home(home) -> Property: ...
|
||||||
|
@ -81,27 +100,29 @@ class Scraper:
|
||||||
response = requests.post(
|
response = requests.post(
|
||||||
"https://graph.realtor.com/auth/token",
|
"https://graph.realtor.com/auth/token",
|
||||||
headers={
|
headers={
|
||||||
'Host': 'graph.realtor.com',
|
"Host": "graph.realtor.com",
|
||||||
'Accept': '*/*',
|
"Accept": "*/*",
|
||||||
'Content-Type': 'Application/json',
|
"Content-Type": "Application/json",
|
||||||
'X-Client-ID': 'rdc_mobile_native,iphone',
|
"X-Client-ID": "rdc_mobile_native,iphone",
|
||||||
'X-Visitor-ID': device_id,
|
"X-Visitor-ID": device_id,
|
||||||
'X-Client-Version': '24.21.23.679885',
|
"X-Client-Version": "24.21.23.679885",
|
||||||
'Accept-Language': 'en-US,en;q=0.9',
|
"Accept-Language": "en-US,en;q=0.9",
|
||||||
'User-Agent': 'Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0',
|
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
|
||||||
},
|
},
|
||||||
data=json.dumps({
|
data=json.dumps(
|
||||||
|
{
|
||||||
"grant_type": "device_mobile",
|
"grant_type": "device_mobile",
|
||||||
"device_id": device_id,
|
"device_id": device_id,
|
||||||
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone"
|
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
|
||||||
}))
|
}
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
data = response.json()
|
data = response.json()
|
||||||
|
|
||||||
if not (access_token := data.get("access_token")):
|
if not (access_token := data.get("access_token")):
|
||||||
raise AuthenticationError(
|
raise AuthenticationError(
|
||||||
"Failed to get access token, use a proxy/vpn or wait a moment and try again.",
|
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
|
||||||
response=response
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return access_token
|
return access_token
|
||||||
|
|
|
@ -4,6 +4,12 @@ from enum import Enum
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
|
||||||
|
class ReturnType(Enum):
|
||||||
|
pydantic = "pydantic"
|
||||||
|
pandas = "pandas"
|
||||||
|
raw = "raw"
|
||||||
|
|
||||||
|
|
||||||
class SiteName(Enum):
|
class SiteName(Enum):
|
||||||
ZILLOW = "zillow"
|
ZILLOW = "zillow"
|
||||||
REDFIN = "redfin"
|
REDFIN = "redfin"
|
||||||
|
@ -17,6 +23,20 @@ class SiteName(Enum):
|
||||||
raise ValueError(f"{value} not found in {cls}")
|
raise ValueError(f"{value} not found in {cls}")
|
||||||
|
|
||||||
|
|
||||||
|
class SearchPropertyType(Enum):
|
||||||
|
SINGLE_FAMILY = "single_family"
|
||||||
|
APARTMENT = "apartment"
|
||||||
|
CONDOS = "condos"
|
||||||
|
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
|
||||||
|
CONDO_TOWNHOME = "condo_townhome"
|
||||||
|
TOWNHOMES = "townhomes"
|
||||||
|
DUPLEX_TRIPLEX = "duplex_triplex"
|
||||||
|
FARM = "farm"
|
||||||
|
LAND = "land"
|
||||||
|
MULTI_FAMILY = "multi_family"
|
||||||
|
MOBILE = "mobile"
|
||||||
|
|
||||||
|
|
||||||
class ListingType(Enum):
|
class ListingType(Enum):
|
||||||
FOR_SALE = "FOR_SALE"
|
FOR_SALE = "FOR_SALE"
|
||||||
FOR_RENT = "FOR_RENT"
|
FOR_RENT = "FOR_RENT"
|
||||||
|
@ -106,6 +126,7 @@ class Agent(Entity):
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Office(Entity):
|
class Office(Entity):
|
||||||
|
mls_set: str | None = None
|
||||||
email: str | None = None
|
email: str | None = None
|
||||||
href: str | None = None
|
href: str | None = None
|
||||||
phones: list[dict] | AgentPhone | None = None
|
phones: list[dict] | AgentPhone | None = None
|
||||||
|
@ -132,6 +153,13 @@ class Advertisers:
|
||||||
@dataclass
|
@dataclass
|
||||||
class Property:
|
class Property:
|
||||||
property_url: str
|
property_url: str
|
||||||
|
|
||||||
|
property_id: str
|
||||||
|
#: allows_cats: bool
|
||||||
|
#: allows_dogs: bool
|
||||||
|
|
||||||
|
listing_id: str | None = None
|
||||||
|
|
||||||
mls: str | None = None
|
mls: str | None = None
|
||||||
mls_id: str | None = None
|
mls_id: str | None = None
|
||||||
status: str | None = None
|
status: str | None = None
|
||||||
|
@ -149,6 +177,8 @@ class Property:
|
||||||
hoa_fee: int | None = None
|
hoa_fee: int | None = None
|
||||||
days_on_mls: int | None = None
|
days_on_mls: int | None = None
|
||||||
description: Description | None = None
|
description: Description | None = None
|
||||||
|
tags: list[str] | None = None
|
||||||
|
details: list[dict] | None = None
|
||||||
|
|
||||||
latitude: float | None = None
|
latitude: float | None = None
|
||||||
longitude: float | None = None
|
longitude: float | None = None
|
||||||
|
@ -158,5 +188,7 @@ class Property:
|
||||||
nearby_schools: list[str] = None
|
nearby_schools: list[str] = None
|
||||||
assessed_value: int | None = None
|
assessed_value: int | None = None
|
||||||
estimated_value: int | None = None
|
estimated_value: int | None = None
|
||||||
|
tax: int | None = None
|
||||||
|
tax_history: list[dict] | None = None
|
||||||
|
|
||||||
advertisers: Advertisers | None = None
|
advertisers: Advertisers | None = None
|
||||||
|
|
|
@ -6,13 +6,35 @@ This module implements the scraper for realtor.com
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import json
|
||||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
from json import JSONDecodeError
|
||||||
from typing import Dict, Union, Optional
|
from typing import Dict, Union, Optional
|
||||||
|
|
||||||
|
from tenacity import (
|
||||||
|
retry,
|
||||||
|
retry_if_exception_type,
|
||||||
|
wait_exponential,
|
||||||
|
stop_after_attempt,
|
||||||
|
)
|
||||||
|
|
||||||
from .. import Scraper
|
from .. import Scraper
|
||||||
from ..models import Property, Address, ListingType, Description, PropertyType, Agent, Broker, Builder, Advertisers, Office
|
from ..models import (
|
||||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
|
Property,
|
||||||
|
Address,
|
||||||
|
ListingType,
|
||||||
|
Description,
|
||||||
|
PropertyType,
|
||||||
|
Agent,
|
||||||
|
Broker,
|
||||||
|
Builder,
|
||||||
|
Advertisers,
|
||||||
|
Office,
|
||||||
|
ReturnType
|
||||||
|
)
|
||||||
|
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
|
||||||
|
|
||||||
|
|
||||||
class RealtorScraper(Scraper):
|
class RealtorScraper(Scraper):
|
||||||
|
@ -81,9 +103,12 @@ class RealtorScraper(Scraper):
|
||||||
return property_info["listings"][0]["listing_id"]
|
return property_info["listings"][0]["listing_id"]
|
||||||
|
|
||||||
def handle_home(self, property_id: str) -> list[Property]:
|
def handle_home(self, property_id: str) -> list[Property]:
|
||||||
query = """query Home($property_id: ID!) {
|
query = (
|
||||||
|
"""query Home($property_id: ID!) {
|
||||||
home(property_id: $property_id) %s
|
home(property_id: $property_id) %s
|
||||||
}""" % HOMES_DATA
|
}"""
|
||||||
|
% HOMES_DATA
|
||||||
|
)
|
||||||
|
|
||||||
variables = {"property_id": property_id}
|
variables = {"property_id": property_id}
|
||||||
payload = {
|
payload = {
|
||||||
|
@ -96,9 +121,7 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
property_info = response_json["data"]["home"]
|
property_info = response_json["data"]["home"]
|
||||||
|
|
||||||
return [
|
return [self.process_property(property_info)]
|
||||||
self.process_property(property_info, "home")
|
|
||||||
]
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
||||||
|
@ -122,7 +145,7 @@ class RealtorScraper(Scraper):
|
||||||
phones=advertiser.get("phones"),
|
phones=advertiser.get("phones"),
|
||||||
)
|
)
|
||||||
|
|
||||||
if advertiser.get('broker') and advertiser["broker"].get('name'): #: has a broker
|
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
|
||||||
processed_advertisers.broker = Broker(
|
processed_advertisers.broker = Broker(
|
||||||
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
|
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
|
||||||
name=advertiser["broker"].get("name"),
|
name=advertiser["broker"].get("name"),
|
||||||
|
@ -130,7 +153,8 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
if advertiser.get("office"): #: has an office
|
if advertiser.get("office"): #: has an office
|
||||||
processed_advertisers.office = Office(
|
processed_advertisers.office = Office(
|
||||||
uuid=_parse_fulfillment_id(advertiser["office"].get("fulfillment_id")) or advertiser["office"].get("mls_set"),
|
uuid=_parse_fulfillment_id(advertiser["office"].get("fulfillment_id")),
|
||||||
|
mls_set=advertiser["office"].get("mls_set"),
|
||||||
name=advertiser["office"].get("name"),
|
name=advertiser["office"].get("name"),
|
||||||
email=advertiser["office"].get("email"),
|
email=advertiser["office"].get("email"),
|
||||||
phones=advertiser["office"].get("phones"),
|
phones=advertiser["office"].get("phones"),
|
||||||
|
@ -145,7 +169,7 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
return processed_advertisers
|
return processed_advertisers
|
||||||
|
|
||||||
def process_property(self, result: dict, query_name: str) -> Property | None:
|
def process_property(self, result: dict) -> Property | None:
|
||||||
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
||||||
|
|
||||||
if not mls and self.mls_only:
|
if not mls and self.mls_only:
|
||||||
|
@ -158,15 +182,14 @@ class RealtorScraper(Scraper):
|
||||||
and result["location"]["address"].get("coordinate")
|
and result["location"]["address"].get("coordinate")
|
||||||
)
|
)
|
||||||
|
|
||||||
is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
|
is_pending = result["flags"].get("is_pending")
|
||||||
|
is_contingent = result["flags"].get("is_contingent")
|
||||||
|
|
||||||
if is_pending and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
||||||
return
|
return
|
||||||
|
|
||||||
property_id = result["property_id"]
|
property_id = result["property_id"]
|
||||||
prop_details = self.get_prop_details(property_id) if self.extra_property_data and query_name != "home" else {}
|
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
|
||||||
if not prop_details:
|
|
||||||
prop_details = self.process_extra_property_details(result)
|
|
||||||
|
|
||||||
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
||||||
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
||||||
|
@ -180,36 +203,36 @@ class RealtorScraper(Scraper):
|
||||||
if "source" in result and isinstance(result["source"], dict)
|
if "source" in result and isinstance(result["source"], dict)
|
||||||
else None
|
else None
|
||||||
),
|
),
|
||||||
property_url=(
|
property_url=result["href"],
|
||||||
f"{self.PROPERTY_URL}{property_id}"
|
property_id=property_id,
|
||||||
if self.listing_type != ListingType.FOR_RENT
|
listing_id=result.get("listing_id"),
|
||||||
else f"{self.PROPERTY_URL}M{property_id}?listing_status=rental"
|
status=("PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper()),
|
||||||
),
|
|
||||||
status="PENDING" if is_pending else result["status"].upper(),
|
|
||||||
list_price=result["list_price"],
|
list_price=result["list_price"],
|
||||||
list_price_min=result["list_price_min"],
|
list_price_min=result["list_price_min"],
|
||||||
list_price_max=result["list_price_max"],
|
list_price_max=result["list_price_max"],
|
||||||
list_date=result["list_date"].split("T")[0] if result.get("list_date") else None,
|
list_date=(result["list_date"].split("T")[0] if result.get("list_date") else None),
|
||||||
prc_sqft=result.get("price_per_sqft"),
|
prc_sqft=result.get("price_per_sqft"),
|
||||||
last_sold_date=result.get("last_sold_date"),
|
last_sold_date=result.get("last_sold_date"),
|
||||||
new_construction=result["flags"].get("is_new_construction") is True,
|
new_construction=result["flags"].get("is_new_construction") is True,
|
||||||
hoa_fee=result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None,
|
hoa_fee=(result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None),
|
||||||
latitude=result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None,
|
latitude=(result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None),
|
||||||
longitude=result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None,
|
longitude=(result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None),
|
||||||
address=self._parse_address(result, search_type="general_search"),
|
address=self._parse_address(result, search_type="general_search"),
|
||||||
description=self._parse_description(result),
|
description=self._parse_description(result),
|
||||||
neighborhoods=self._parse_neighborhoods(result),
|
neighborhoods=self._parse_neighborhoods(result),
|
||||||
county=result["location"]["county"].get("name") if result["location"]["county"] else None,
|
county=(result["location"]["county"].get("name") if result["location"]["county"] else None),
|
||||||
fips_code=result["location"]["county"].get("fips_code") if result["location"]["county"] else None,
|
fips_code=(result["location"]["county"].get("fips_code") if result["location"]["county"] else None),
|
||||||
days_on_mls=self.calculate_days_on_mls(result),
|
days_on_mls=self.calculate_days_on_mls(result),
|
||||||
nearby_schools=prop_details.get("schools"),
|
nearby_schools=prop_details.get("schools"),
|
||||||
assessed_value=prop_details.get("assessed_value"),
|
assessed_value=prop_details.get("assessed_value"),
|
||||||
estimated_value=estimated_value if estimated_value else None,
|
estimated_value=estimated_value if estimated_value else None,
|
||||||
advertisers=advertisers,
|
advertisers=advertisers,
|
||||||
|
tax=prop_details.get("tax"),
|
||||||
|
tax_history=prop_details.get("tax_history"),
|
||||||
)
|
)
|
||||||
return realty_property
|
return realty_property
|
||||||
|
|
||||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, list[Property]]]:
|
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]:
|
||||||
"""
|
"""
|
||||||
Handles a location area & returns a list of properties
|
Handles a location area & returns a list of properties
|
||||||
"""
|
"""
|
||||||
|
@ -226,10 +249,15 @@ class RealtorScraper(Scraper):
|
||||||
elif self.last_x_days:
|
elif self.last_x_days:
|
||||||
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
|
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
|
||||||
|
|
||||||
|
property_type_param = ""
|
||||||
|
if self.property_type:
|
||||||
|
property_types = [pt.value for pt in self.property_type]
|
||||||
|
property_type_param = f"type: {json.dumps(property_types)}"
|
||||||
|
|
||||||
sort_param = (
|
sort_param = (
|
||||||
"sort: [{ field: sold_date, direction: desc }]"
|
"sort: [{ field: sold_date, direction: desc }]"
|
||||||
if self.listing_type == ListingType.SOLD
|
if self.listing_type == ListingType.SOLD
|
||||||
else "sort: [{ field: list_date, direction: desc }]"
|
else "" #: "sort: [{ field: list_date, direction: desc }]" #: prioritize normal fractal sort from realtor
|
||||||
)
|
)
|
||||||
|
|
||||||
pending_or_contingent_param = (
|
pending_or_contingent_param = (
|
||||||
|
@ -260,6 +288,7 @@ class RealtorScraper(Scraper):
|
||||||
status: %s
|
status: %s
|
||||||
%s
|
%s
|
||||||
%s
|
%s
|
||||||
|
%s
|
||||||
}
|
}
|
||||||
%s
|
%s
|
||||||
limit: 200
|
limit: 200
|
||||||
|
@ -269,29 +298,27 @@ class RealtorScraper(Scraper):
|
||||||
is_foreclosure,
|
is_foreclosure,
|
||||||
listing_type.value.lower(),
|
listing_type.value.lower(),
|
||||||
date_param,
|
date_param,
|
||||||
|
property_type_param,
|
||||||
pending_or_contingent_param,
|
pending_or_contingent_param,
|
||||||
sort_param,
|
sort_param,
|
||||||
GENERAL_RESULTS_QUERY,
|
GENERAL_RESULTS_QUERY,
|
||||||
)
|
)
|
||||||
elif search_type == "area": #: general search, came from a general location
|
elif search_type == "area": #: general search, came from a general location
|
||||||
query = """query Home_search(
|
query = """query Home_search(
|
||||||
$city: String,
|
$location: String!,
|
||||||
$county: [String],
|
|
||||||
$state_code: String,
|
|
||||||
$postal_code: String
|
|
||||||
$offset: Int,
|
$offset: Int,
|
||||||
) {
|
) {
|
||||||
home_search(
|
home_search(
|
||||||
query: {
|
query: {
|
||||||
%s
|
%s
|
||||||
city: $city
|
search_location: {location: $location}
|
||||||
county: $county
|
|
||||||
postal_code: $postal_code
|
|
||||||
state_code: $state_code
|
|
||||||
status: %s
|
status: %s
|
||||||
|
unique: true
|
||||||
|
%s
|
||||||
%s
|
%s
|
||||||
%s
|
%s
|
||||||
}
|
}
|
||||||
|
bucket: { sort: "fractal_v1.1.3_fr" }
|
||||||
%s
|
%s
|
||||||
limit: 200
|
limit: 200
|
||||||
offset: $offset
|
offset: $offset
|
||||||
|
@ -300,6 +327,7 @@ class RealtorScraper(Scraper):
|
||||||
is_foreclosure,
|
is_foreclosure,
|
||||||
listing_type.value.lower(),
|
listing_type.value.lower(),
|
||||||
date_param,
|
date_param,
|
||||||
|
property_type_param,
|
||||||
pending_or_contingent_param,
|
pending_or_contingent_param,
|
||||||
sort_param,
|
sort_param,
|
||||||
GENERAL_RESULTS_QUERY,
|
GENERAL_RESULTS_QUERY,
|
||||||
|
@ -330,7 +358,7 @@ class RealtorScraper(Scraper):
|
||||||
response_json = response.json()
|
response_json = response.json()
|
||||||
search_key = "home_search" if "home_search" in query else "property_search"
|
search_key = "home_search" if "home_search" in query else "property_search"
|
||||||
|
|
||||||
properties: list[Property] = []
|
properties: list[Union[Property, dict]] = []
|
||||||
|
|
||||||
if (
|
if (
|
||||||
response_json is None
|
response_json is None
|
||||||
|
@ -348,17 +376,25 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
#: limit the number of properties to be processed
|
#: limit the number of properties to be processed
|
||||||
#: example, if your offset is 200, and your limit is 250, return 50
|
#: example, if your offset is 200, and your limit is 250, return 50
|
||||||
properties_list = properties_list[:self.limit - offset]
|
properties_list: list[dict] = properties_list[: self.limit - offset]
|
||||||
|
|
||||||
|
if self.extra_property_data:
|
||||||
|
property_ids = [data["property_id"] for data in properties_list]
|
||||||
|
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
|
||||||
|
|
||||||
|
for result in properties_list:
|
||||||
|
result.update(extra_property_details.get(result["property_id"], {}))
|
||||||
|
|
||||||
|
if self.return_type != ReturnType.raw:
|
||||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||||
futures = [
|
futures = [executor.submit(self.process_property, result) for result in properties_list]
|
||||||
executor.submit(self.process_property, result, search_key) for result in properties_list
|
|
||||||
]
|
|
||||||
|
|
||||||
for future in as_completed(futures):
|
for future in as_completed(futures):
|
||||||
result = future.result()
|
result = future.result()
|
||||||
if result:
|
if result:
|
||||||
properties.append(result)
|
properties.append(result)
|
||||||
|
else:
|
||||||
|
properties = properties_list
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"total": total_properties,
|
"total": total_properties,
|
||||||
|
@ -403,10 +439,7 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
else: #: general search, location
|
else: #: general search, location
|
||||||
search_variables |= {
|
search_variables |= {
|
||||||
"city": location_info.get("city"),
|
"location": self.location,
|
||||||
"county": location_info.get("county"),
|
|
||||||
"state_code": location_info.get("state_code"),
|
|
||||||
"postal_code": location_info.get("postal_code"),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if self.foreclosure:
|
if self.foreclosure:
|
||||||
|
@ -423,7 +456,11 @@ class RealtorScraper(Scraper):
|
||||||
variables=search_variables | {"offset": i},
|
variables=search_variables | {"offset": i},
|
||||||
search_type=search_type,
|
search_type=search_type,
|
||||||
)
|
)
|
||||||
for i in range(self.DEFAULT_PAGE_SIZE, min(total, self.limit), self.DEFAULT_PAGE_SIZE)
|
for i in range(
|
||||||
|
self.DEFAULT_PAGE_SIZE,
|
||||||
|
min(total, self.limit),
|
||||||
|
self.DEFAULT_PAGE_SIZE,
|
||||||
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
for future in as_completed(futures):
|
for future in as_completed(futures):
|
||||||
|
@ -445,35 +482,75 @@ class RealtorScraper(Scraper):
|
||||||
def process_extra_property_details(self, result: dict) -> dict:
|
def process_extra_property_details(self, result: dict) -> dict:
|
||||||
schools = self.get_key(result, ["nearbySchools", "schools"])
|
schools = self.get_key(result, ["nearbySchools", "schools"])
|
||||||
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
|
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
|
||||||
|
tax_history = self.get_key(result, ["taxHistory"])
|
||||||
|
|
||||||
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
|
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
|
||||||
|
|
||||||
|
# Process tax history
|
||||||
|
latest_tax = None
|
||||||
|
processed_tax_history = None
|
||||||
|
if tax_history and isinstance(tax_history, list):
|
||||||
|
tax_history = sorted(tax_history, key=lambda x: x.get("year", 0), reverse=True)
|
||||||
|
|
||||||
|
if tax_history and "tax" in tax_history[0]:
|
||||||
|
latest_tax = tax_history[0]["tax"]
|
||||||
|
|
||||||
|
processed_tax_history = []
|
||||||
|
for entry in tax_history:
|
||||||
|
if "year" in entry and "tax" in entry:
|
||||||
|
processed_entry = {
|
||||||
|
"year": entry["year"],
|
||||||
|
"tax": entry["tax"],
|
||||||
|
}
|
||||||
|
if "assessment" in entry and isinstance(entry["assessment"], dict):
|
||||||
|
processed_entry["assessment"] = {
|
||||||
|
"building": entry["assessment"].get("building"),
|
||||||
|
"land": entry["assessment"].get("land"),
|
||||||
|
"total": entry["assessment"].get("total"),
|
||||||
|
}
|
||||||
|
processed_tax_history.append(processed_entry)
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"schools": schools if schools else None,
|
"schools": schools if schools else None,
|
||||||
"assessed_value": assessed_value if assessed_value else None,
|
"assessed_value": assessed_value if assessed_value else None,
|
||||||
|
"tax": latest_tax,
|
||||||
|
"tax_history": processed_tax_history,
|
||||||
}
|
}
|
||||||
|
|
||||||
def get_prop_details(self, property_id: str) -> dict:
|
@retry(
|
||||||
if not self.extra_property_data:
|
retry=retry_if_exception_type(JSONDecodeError),
|
||||||
|
wait=wait_exponential(min=4, max=10),
|
||||||
|
stop=stop_after_attempt(3),
|
||||||
|
)
|
||||||
|
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
|
||||||
|
"""
|
||||||
|
Fetch extra property details for multiple properties in a single GraphQL query.
|
||||||
|
Returns a map of property_id to its details.
|
||||||
|
"""
|
||||||
|
if not self.extra_property_data or not property_ids:
|
||||||
return {}
|
return {}
|
||||||
|
|
||||||
query = """query GetHome($property_id: ID!) {
|
property_ids = list(set(property_ids))
|
||||||
home(property_id: $property_id) {
|
|
||||||
__typename
|
|
||||||
|
|
||||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
# Construct the bulk query
|
||||||
__typename schools { district { __typename id name } }
|
fragments = "\n".join(
|
||||||
}
|
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
|
||||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
for property_id in property_ids
|
||||||
}
|
)
|
||||||
}"""
|
query = f"""{HOME_FRAGMENT}
|
||||||
|
|
||||||
variables = {"property_id": property_id}
|
query GetHomes {{
|
||||||
response = self.session.post(self.PROPERTY_GQL, json={"query": query, "variables": variables})
|
{fragments}
|
||||||
|
}}"""
|
||||||
|
|
||||||
|
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
|
||||||
data = response.json()
|
data = response.json()
|
||||||
property_details = data["data"]["home"]
|
|
||||||
|
|
||||||
return self.process_extra_property_details(property_details)
|
if "data" not in data:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
properties = data["data"]
|
||||||
|
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
||||||
|
@ -535,20 +612,22 @@ class RealtorScraper(Scraper):
|
||||||
style = style.upper()
|
style = style.upper()
|
||||||
|
|
||||||
primary_photo = ""
|
primary_photo = ""
|
||||||
if (primary_photo_info := result.get('primary_photo')) and (primary_photo_href := primary_photo_info.get("href")):
|
if (primary_photo_info := result.get("primary_photo")) and (
|
||||||
|
primary_photo_href := primary_photo_info.get("href")
|
||||||
|
):
|
||||||
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||||
|
|
||||||
return Description(
|
return Description(
|
||||||
primary_photo=primary_photo,
|
primary_photo=primary_photo,
|
||||||
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
|
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
|
||||||
style=PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None,
|
style=(PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None),
|
||||||
beds=description_data.get("beds"),
|
beds=description_data.get("beds"),
|
||||||
baths_full=description_data.get("baths_full"),
|
baths_full=description_data.get("baths_full"),
|
||||||
baths_half=description_data.get("baths_half"),
|
baths_half=description_data.get("baths_half"),
|
||||||
sqft=description_data.get("sqft"),
|
sqft=description_data.get("sqft"),
|
||||||
lot_sqft=description_data.get("lot_sqft"),
|
lot_sqft=description_data.get("lot_sqft"),
|
||||||
sold_price=(
|
sold_price=(
|
||||||
result.get('last_sold_price') or description_data.get("sold_price")
|
result.get("last_sold_price") or description_data.get("sold_price")
|
||||||
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
|
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
|
||||||
else None
|
else None
|
||||||
), #: has a sold date or list and sold price are different
|
), #: has a sold date or list and sold price are different
|
||||||
|
@ -582,4 +661,8 @@ class RealtorScraper(Scraper):
|
||||||
if not photos_info:
|
if not photos_info:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return [photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75") for photo_info in photos_info if photo_info.get("href")]
|
return [
|
||||||
|
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||||
|
for photo_info in photos_info
|
||||||
|
if photo_info.get("href")
|
||||||
|
]
|
||||||
|
|
|
@ -2,6 +2,7 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
pending_date
|
pending_date
|
||||||
listing_id
|
listing_id
|
||||||
property_id
|
property_id
|
||||||
|
href
|
||||||
list_date
|
list_date
|
||||||
status
|
status
|
||||||
last_sold_price
|
last_sold_price
|
||||||
|
@ -10,6 +11,34 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
list_price_max
|
list_price_max
|
||||||
list_price_min
|
list_price_min
|
||||||
price_per_sqft
|
price_per_sqft
|
||||||
|
tags
|
||||||
|
details {
|
||||||
|
category
|
||||||
|
text
|
||||||
|
parent_category
|
||||||
|
}
|
||||||
|
pet_policy {
|
||||||
|
cats
|
||||||
|
dogs
|
||||||
|
dogs_small
|
||||||
|
dogs_large
|
||||||
|
__typename
|
||||||
|
}
|
||||||
|
units {
|
||||||
|
availability {
|
||||||
|
date
|
||||||
|
__typename
|
||||||
|
}
|
||||||
|
description {
|
||||||
|
baths_consolidated
|
||||||
|
baths
|
||||||
|
beds
|
||||||
|
sqft
|
||||||
|
__typename
|
||||||
|
}
|
||||||
|
list_price
|
||||||
|
__typename
|
||||||
|
}
|
||||||
flags {
|
flags {
|
||||||
is_contingent
|
is_contingent
|
||||||
is_pending
|
is_pending
|
||||||
|
@ -63,11 +92,14 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
tax_record {
|
tax_record {
|
||||||
public_record_id
|
public_record_id
|
||||||
}
|
}
|
||||||
primary_photo {
|
primary_photo(https: true) {
|
||||||
href
|
href
|
||||||
}
|
}
|
||||||
photos {
|
photos(https: true) {
|
||||||
href
|
href
|
||||||
|
tags {
|
||||||
|
label
|
||||||
|
}
|
||||||
}
|
}
|
||||||
advertisers {
|
advertisers {
|
||||||
email
|
email
|
||||||
|
@ -115,15 +147,63 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
}
|
}
|
||||||
rental_management {
|
rental_management {
|
||||||
name
|
name
|
||||||
|
href
|
||||||
fulfillment_id
|
fulfillment_id
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
HOME_FRAGMENT = """
|
||||||
|
fragment HomeData on Home {
|
||||||
|
property_id
|
||||||
|
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||||
|
__typename schools { district { __typename id name } }
|
||||||
|
}
|
||||||
|
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||||
|
monthly_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
one_time_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
parking {
|
||||||
|
unassigned_space_rent
|
||||||
|
assigned_spaces_available
|
||||||
|
description
|
||||||
|
assigned_space_rent
|
||||||
|
}
|
||||||
|
terms {
|
||||||
|
text
|
||||||
|
category
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
HOMES_DATA = """%s
|
HOMES_DATA = """%s
|
||||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||||
__typename schools { district { __typename id name } }
|
__typename schools { district { __typename id name } }
|
||||||
}
|
}
|
||||||
|
monthly_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
one_time_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
parking {
|
||||||
|
unassigned_space_rent
|
||||||
|
assigned_spaces_available
|
||||||
|
description
|
||||||
|
assigned_space_rent
|
||||||
|
}
|
||||||
|
terms {
|
||||||
|
text
|
||||||
|
category
|
||||||
|
}
|
||||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||||
estimates {
|
estimates {
|
||||||
__typename
|
__typename
|
||||||
|
@ -140,7 +220,7 @@ HOMES_DATA = """%s
|
||||||
}""" % _SEARCH_HOMES_DATA_BASE
|
}""" % _SEARCH_HOMES_DATA_BASE
|
||||||
|
|
||||||
SEARCH_HOMES_DATA = """%s
|
SEARCH_HOMES_DATA = """%s
|
||||||
current_estimates {
|
current_estimates {
|
||||||
__typename
|
__typename
|
||||||
source {
|
source {
|
||||||
__typename
|
__typename
|
||||||
|
@ -152,7 +232,7 @@ SEARCH_HOMES_DATA = """%s
|
||||||
estimateLow: estimate_low
|
estimateLow: estimate_low
|
||||||
date
|
date
|
||||||
isBestHomeValue: isbest_homevalue
|
isBestHomeValue: isbest_homevalue
|
||||||
}
|
}
|
||||||
}""" % _SEARCH_HOMES_DATA_BASE
|
}""" % _SEARCH_HOMES_DATA_BASE
|
||||||
|
|
||||||
GENERAL_RESULTS_QUERY = """{
|
GENERAL_RESULTS_QUERY = """{
|
||||||
|
|
|
@ -6,6 +6,8 @@ from .exceptions import InvalidListingType, InvalidDate
|
||||||
|
|
||||||
ordered_properties = [
|
ordered_properties = [
|
||||||
"property_url",
|
"property_url",
|
||||||
|
"property_id",
|
||||||
|
"listing_id",
|
||||||
"mls",
|
"mls",
|
||||||
"mls_id",
|
"mls_id",
|
||||||
"status",
|
"status",
|
||||||
|
@ -31,6 +33,8 @@ ordered_properties = [
|
||||||
"last_sold_date",
|
"last_sold_date",
|
||||||
"assessed_value",
|
"assessed_value",
|
||||||
"estimated_value",
|
"estimated_value",
|
||||||
|
"tax",
|
||||||
|
"tax_history",
|
||||||
"new_construction",
|
"new_construction",
|
||||||
"lot_sqft",
|
"lot_sqft",
|
||||||
"price_per_sqft",
|
"price_per_sqft",
|
||||||
|
@ -53,6 +57,7 @@ ordered_properties = [
|
||||||
"builder_id",
|
"builder_id",
|
||||||
"builder_name",
|
"builder_name",
|
||||||
"office_id",
|
"office_id",
|
||||||
|
"office_mls_set",
|
||||||
"office_name",
|
"office_name",
|
||||||
"office_email",
|
"office_email",
|
||||||
"office_phones",
|
"office_phones",
|
||||||
|
@ -102,6 +107,7 @@ def process_result(result: Property) -> pd.DataFrame:
|
||||||
prop_data["office_name"] = office_data.name
|
prop_data["office_name"] = office_data.name
|
||||||
prop_data["office_email"] = office_data.email
|
prop_data["office_email"] = office_data.email
|
||||||
prop_data["office_phones"] = office_data.phones
|
prop_data["office_phones"] = office_data.phones
|
||||||
|
prop_data["office_mls_set"] = office_data.mls_set
|
||||||
|
|
||||||
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
|
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
|
||||||
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
|
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
|
||||||
|
@ -111,8 +117,11 @@ def process_result(result: Property) -> pd.DataFrame:
|
||||||
if description:
|
if description:
|
||||||
prop_data["primary_photo"] = description.primary_photo
|
prop_data["primary_photo"] = description.primary_photo
|
||||||
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
|
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
|
||||||
prop_data["style"] = description.style if isinstance(description.style,
|
prop_data["style"] = (
|
||||||
str) else description.style.value if description.style else None
|
description.style
|
||||||
|
if isinstance(description.style, str)
|
||||||
|
else description.style.value if description.style else None
|
||||||
|
)
|
||||||
prop_data["beds"] = description.beds
|
prop_data["beds"] = description.beds
|
||||||
prop_data["full_baths"] = description.baths_full
|
prop_data["full_baths"] = description.baths_full
|
||||||
prop_data["half_baths"] = description.baths_half
|
prop_data["half_baths"] = description.baths_half
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "annotated-types"
|
name = "annotated-types"
|
||||||
|
@ -667,6 +667,21 @@ files = [
|
||||||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tenacity"
|
||||||
|
version = "9.0.0"
|
||||||
|
description = "Retry code until it succeeds"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.8"
|
||||||
|
files = [
|
||||||
|
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
|
||||||
|
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
doc = ["reno", "sphinx"]
|
||||||
|
test = ["pytest", "tornado (>=4.5)", "typeguard"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "tomli"
|
name = "tomli"
|
||||||
version = "2.0.1"
|
version = "2.0.1"
|
||||||
|
@ -740,4 +755,4 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
|
||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.0"
|
lock-version = "2.0"
|
||||||
python-versions = ">=3.9,<3.13"
|
python-versions = ">=3.9,<3.13"
|
||||||
content-hash = "21ef9cfb35c446a375a2b74c37691d7031afb1e4f66a8b63cb7c1669470689d2"
|
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "homeharvest"
|
name = "homeharvest"
|
||||||
version = "0.4.1"
|
version = "0.4.7"
|
||||||
description = "Real estate scraping library"
|
description = "Real estate scraping library"
|
||||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||||
|
@ -14,6 +14,7 @@ python = ">=3.9,<3.13"
|
||||||
requests = "^2.31.0"
|
requests = "^2.31.0"
|
||||||
pandas = "^2.1.1"
|
pandas = "^2.1.1"
|
||||||
pydantic = "^2.7.4"
|
pydantic = "^2.7.4"
|
||||||
|
tenacity = "^9.0.0"
|
||||||
|
|
||||||
|
|
||||||
[tool.poetry.group.dev.dependencies]
|
[tool.poetry.group.dev.dependencies]
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from homeharvest import scrape_property
|
from homeharvest import scrape_property, Property
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
def test_realtor_pending_or_contingent():
|
def test_realtor_pending_or_contingent():
|
||||||
|
@ -105,8 +106,12 @@ def test_realtor():
|
||||||
location="2530 Al Lipscomb Way",
|
location="2530 Al Lipscomb Way",
|
||||||
listing_type="for_sale",
|
listing_type="for_sale",
|
||||||
),
|
),
|
||||||
scrape_property(location="Phoenix, AZ", listing_type="for_rent", limit=1000), #: does not support "city, state, USA" format
|
scrape_property(
|
||||||
scrape_property(location="Dallas, TX", listing_type="sold", limit=1000), #: does not support "city, state, USA" format
|
location="Phoenix, AZ", listing_type="for_rent", limit=1000
|
||||||
|
), #: does not support "city, state, USA" format
|
||||||
|
scrape_property(
|
||||||
|
location="Dallas, TX", listing_type="sold", limit=1000
|
||||||
|
), #: does not support "city, state, USA" format
|
||||||
scrape_property(location="85281"),
|
scrape_property(location="85281"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -114,11 +119,13 @@ def test_realtor():
|
||||||
|
|
||||||
|
|
||||||
def test_realtor_city():
|
def test_realtor_city():
|
||||||
results = scrape_property(
|
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
|
||||||
location="Atlanta, GA",
|
|
||||||
listing_type="for_sale",
|
assert results is not None and len(results) > 0
|
||||||
limit=1000
|
|
||||||
)
|
|
||||||
|
def test_realtor_land():
|
||||||
|
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
|
||||||
|
|
||||||
assert results is not None and len(results) > 0
|
assert results is not None and len(results) > 0
|
||||||
|
|
||||||
|
@ -128,6 +135,7 @@ def test_realtor_bad_address():
|
||||||
location="abceefg ju098ot498hh9",
|
location="abceefg ju098ot498hh9",
|
||||||
listing_type="for_sale",
|
listing_type="for_sale",
|
||||||
)
|
)
|
||||||
|
|
||||||
if len(bad_results) == 0:
|
if len(bad_results) == 0:
|
||||||
assert True
|
assert True
|
||||||
|
|
||||||
|
@ -240,9 +248,10 @@ def test_apartment_list_price():
|
||||||
results = results[results["style"] == "APARTMENT"]
|
results = results[results["style"] == "APARTMENT"]
|
||||||
|
|
||||||
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
|
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
|
||||||
assert len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(
|
assert (
|
||||||
results
|
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
|
||||||
) > 0.5
|
> 0.5
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_builder_exists():
|
def test_builder_exists():
|
||||||
|
@ -253,3 +262,41 @@ def test_builder_exists():
|
||||||
|
|
||||||
assert listing is not None
|
assert listing is not None
|
||||||
assert listing["builder_name"].nunique() > 0
|
assert listing["builder_name"].nunique() > 0
|
||||||
|
|
||||||
|
|
||||||
|
def test_phone_number_matching():
|
||||||
|
searches = [
|
||||||
|
scrape_property(
|
||||||
|
location="Phoenix, AZ",
|
||||||
|
listing_type="for_sale",
|
||||||
|
limit=100,
|
||||||
|
),
|
||||||
|
scrape_property(
|
||||||
|
location="Phoenix, AZ",
|
||||||
|
listing_type="for_sale",
|
||||||
|
limit=100,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
assert all([search is not None for search in searches])
|
||||||
|
|
||||||
|
#: random row
|
||||||
|
row = searches[0][searches[0]["agent_phones"].notnull()].sample()
|
||||||
|
|
||||||
|
#: find matching row
|
||||||
|
matching_row = searches[1].loc[searches[1]["property_url"] == row["property_url"].values[0]]
|
||||||
|
|
||||||
|
#: assert phone numbers are the same
|
||||||
|
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
|
||||||
|
|
||||||
|
|
||||||
|
def test_return_type():
|
||||||
|
results = {
|
||||||
|
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
|
||||||
|
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
|
||||||
|
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
|
||||||
|
}
|
||||||
|
|
||||||
|
assert isinstance(results["pandas"], pd.DataFrame)
|
||||||
|
assert isinstance(results["pydantic"][0], Property)
|
||||||
|
assert isinstance(results["raw"][0], dict)
|
||||||
|
|
Loading…
Reference in New Issue