Compare commits
63 Commits
Author | SHA1 | Date |
---|---|---|
|
e378feeefe | |
|
8a5683fe79 | |
|
65f799a27d | |
|
0de916e590 | |
|
6a3f7df087 | |
|
a75bcc2aa0 | |
|
1082b86fa1 | |
|
8e04f6b117 | |
|
1f717bd9e3 | |
|
8cfe056f79 | |
|
1010c743b6 | |
|
32fdc281e3 | |
|
6d14b8df5a | |
|
3f44744d61 | |
|
ac0cad62a7 | |
|
beb885cc8d | |
|
011680f7d8 | |
|
93e6778a48 | |
|
ec036bb989 | |
|
aacd168545 | |
|
0d70007000 | |
|
018d3fbac4 | |
|
803fd618e9 | |
|
b23b55ca80 | |
|
3458a08383 | |
|
c3e24a4ce0 | |
|
46985dcee4 | |
|
04ae968716 | |
|
c5b15e9be5 | |
|
7a525caeb8 | |
|
7246703999 | |
|
6076b0f961 | |
|
cdc6f2a2a8 | |
|
0bdf56568e | |
|
1f47fc3b7e | |
|
5c2498c62b | |
|
d775540afd | |
|
5ea9a6f6b6 | |
|
ab6a0e3b6e | |
|
03198428de | |
|
70fa071318 | |
|
f7e74cf535 | |
|
e17b976923 | |
|
ad13b55ea6 | |
|
19f23c95c4 | |
|
4676ec9839 | |
|
6dd0b058d3 | |
|
a74c1a9950 | |
|
fa507dbc72 | |
|
5b6a9943cc | |
|
9816defaf3 | |
|
f692b438b2 | |
|
30f48f54c8 | |
|
7f86f69610 | |
|
cc64dacdb0 | |
|
d3268d8e5a | |
|
4edad901c5 | |
|
c597a78191 | |
|
11a7d854f0 | |
|
f726548cc6 | |
|
fad7d670eb | |
|
89a6f93c9f | |
|
e1090b06e4 |
|
@ -0,0 +1 @@
|
|||
github: Bunsly
|
|
@ -30,4 +30,4 @@ jobs:
|
|||
if: startsWith(github.ref, 'refs/tags')
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
|
|
|
@ -4,4 +4,4 @@
|
|||
**/.pytest_cache/
|
||||
*.pyc
|
||||
/.ipynb_checkpoints/
|
||||
*.csv
|
||||
*.csv
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
---
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.2.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-added-large-files
|
||||
- id: check-yaml
|
||||
- repo: https://github.com/adrienverge/yamllint
|
||||
rev: v1.29.0
|
||||
hooks:
|
||||
- id: yamllint
|
||||
verbose: true # create awareness of linter findings
|
||||
args: ["-d", "{extends: relaxed, rules: {line-length: {max: 120}}}"]
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 24.2.0
|
||||
hooks:
|
||||
- id: black
|
||||
language_version: python
|
||||
args: [--line-length=120, --quiet]
|
154
README.md
154
README.md
|
@ -1,24 +1,12 @@
|
|||
<img src="https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/d1a2bf8b-09f5-4c57-b33a-0ada8a34f12d" width="400">
|
||||
|
||||
**HomeHarvest** is a simple, yet comprehensive, real estate scraping library that extracts and formats data in the style of MLS listings.
|
||||
|
||||
[](https://replit.com/@ZacharyHampton/HomeHarvestDemo)
|
||||
|
||||
**Not technical?** Try out the web scraping tool on our site at [tryhomeharvest.com](https://tryhomeharvest.com).
|
||||
|
||||
*Looking to build a data-focused software product?* **[Book a call](https://calendly.com/zachary-products/15min)** *to work with us.*
|
||||
|
||||
Check out another project we wrote: ***[JobSpy](https://github.com/cullenwatson/JobSpy)** – a Python package for job scraping*
|
||||
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
|
||||
|
||||
## HomeHarvest Features
|
||||
|
||||
- **Source**: Fetches properties directly from **Realtor.com**.
|
||||
- **Data Format**: Structures data to resemble MLS listings.
|
||||
- **Export Flexibility**: Options to save as either CSV or Excel.
|
||||
- **Usage Modes**:
|
||||
- **Python**: For those who'd like to integrate scraping into their Python scripts.
|
||||
- **CLI**: For users who prefer command-line operations.
|
||||
|
||||
|
||||
[Video Guide for HomeHarvest](https://youtu.be/J1qgNPgmSLI) - _updated for release v0.3.4_
|
||||
|
||||
|
@ -27,9 +15,9 @@ Check out another project we wrote: ***[JobSpy](https://github.com/cullenwatson/
|
|||
## Installation
|
||||
|
||||
```bash
|
||||
pip install homeharvest
|
||||
pip install -U homeharvest
|
||||
```
|
||||
_Python version >= [3.10](https://www.python.org/downloads/release/python-3100/) required_
|
||||
_Python version >= [3.9](https://www.python.org/downloads/release/python-3100/) required_
|
||||
|
||||
## Usage
|
||||
|
||||
|
@ -46,9 +34,13 @@ filename = f"HomeHarvest_{current_timestamp}.csv"
|
|||
properties = scrape_property(
|
||||
location="San Diego, CA",
|
||||
listing_type="sold", # or (for_sale, for_rent, pending)
|
||||
past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
|
||||
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
|
||||
|
||||
# property_type=['single_family','multi_family'],
|
||||
# date_from="2023-05-01", # alternative to past_days
|
||||
# date_to="2023-05-28",
|
||||
# foreclosure=True
|
||||
# mls_only=True, # only fetch MLS listings
|
||||
# proxy="http://user:pass@host:port" # use a proxy to change your IP address
|
||||
)
|
||||
print(f"Number of properties: {len(properties)}")
|
||||
|
||||
|
@ -57,35 +49,6 @@ properties.to_csv(filename, index=False)
|
|||
print(properties.head())
|
||||
```
|
||||
|
||||
### CLI
|
||||
|
||||
```
|
||||
usage: homeharvest [-l {for_sale,for_rent,sold}] [-o {excel,csv}] [-f FILENAME] [-p PROXY] [-d DAYS] [-r RADIUS] [-m] [-c] location
|
||||
|
||||
Home Harvest Property Scraper
|
||||
|
||||
positional arguments:
|
||||
location Location to scrape (e.g., San Francisco, CA)
|
||||
|
||||
options:
|
||||
-l {for_sale,for_rent,sold,pending}, --listing_type {for_sale,for_rent,sold,pending}
|
||||
Listing type to scrape
|
||||
-o {excel,csv}, --output {excel,csv}
|
||||
Output format
|
||||
-f FILENAME, --filename FILENAME
|
||||
Name of the output file (without extension)
|
||||
-p PROXY, --proxy PROXY
|
||||
Proxy to use for scraping
|
||||
-d DAYS, --days DAYS Sold/listed in last _ days filter.
|
||||
-r RADIUS, --radius RADIUS
|
||||
Get comparable properties within _ (e.g., 0.0) miles. Only applicable for individual addresses.
|
||||
-m, --mls_only If set, fetches only MLS listings.
|
||||
```
|
||||
```bash
|
||||
homeharvest "San Francisco, CA" -l for_rent -o excel -f HomeHarvest
|
||||
```
|
||||
|
||||
|
||||
## Output
|
||||
```plaintext
|
||||
>>> properties.head()
|
||||
|
@ -102,29 +65,61 @@ homeharvest "San Francisco, CA" -l for_rent -o excel -f HomeHarvest
|
|||
```
|
||||
Required
|
||||
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
|
||||
└── listing_type (option): Choose the type of listing.
|
||||
├── listing_type (option): Choose the type of listing.
|
||||
- 'for_rent'
|
||||
- 'for_sale'
|
||||
- 'sold'
|
||||
- 'pending'
|
||||
- 'pending' (for pending/contingent sales)
|
||||
|
||||
Optional
|
||||
├── property_type (list): Choose the type of properties.
|
||||
- 'single_family'
|
||||
- 'multi_family'
|
||||
- 'condos'
|
||||
- 'condo_townhome_rowhome_coop'
|
||||
- 'condo_townhome'
|
||||
- 'townhomes'
|
||||
- 'duplex_triplex'
|
||||
- 'farm'
|
||||
- 'land'
|
||||
- 'mobile'
|
||||
│
|
||||
├── return_type (option): Choose the return type.
|
||||
│ - 'pandas' (default)
|
||||
│ - 'pydantic'
|
||||
│ - 'raw' (json)
|
||||
│
|
||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||
│
|
||||
├── past_days (integer): Number of past days to filter properties. Utilizes 'last_sold_date' for 'sold' listing types, and 'list_date' for others (for_rent, for_sale).
|
||||
│ Example: 30 (fetches properties listed/sold in the last 30 days)
|
||||
│
|
||||
├── date_from, date_to (string): Start and end dates to filter properties listed or sold, both dates are required.
|
||||
| (use this to get properties in chunks as there's a 10k result limit)
|
||||
│ Format for both must be "YYYY-MM-DD".
|
||||
│ Example: "2023-05-01", "2023-05-15" (fetches properties listed/sold between these dates)
|
||||
│
|
||||
├── mls_only (True/False): If set, fetches only MLS listings (mainly applicable to 'sold' listings)
|
||||
│
|
||||
└── proxy (string): In format 'http://user:pass@host:port'
|
||||
|
||||
├── foreclosure (True/False): If set, fetches only foreclosures
|
||||
│
|
||||
├── proxy (string): In format 'http://user:pass@host:port'
|
||||
│
|
||||
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
|
||||
│
|
||||
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
|
||||
│
|
||||
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
|
||||
```
|
||||
|
||||
### Property Schema
|
||||
```plaintext
|
||||
Property
|
||||
├── Basic Information:
|
||||
│ ├── property_url
|
||||
│ ├── property_id
|
||||
│ ├── listing_id
|
||||
│ ├── mls
|
||||
│ ├── mls_id
|
||||
│ └── status
|
||||
|
@ -144,45 +139,60 @@ Property
|
|||
│ ├── sqft
|
||||
│ ├── year_built
|
||||
│ ├── stories
|
||||
│ ├── garage
|
||||
│ └── lot_sqft
|
||||
|
||||
├── Property Listing Details:
|
||||
│ ├── days_on_mls
|
||||
│ ├── list_price
|
||||
│ ├── list_price_min
|
||||
│ ├── list_price_max
|
||||
│ ├── list_date
|
||||
│ ├── pending_date
|
||||
│ ├── sold_price
|
||||
│ ├── last_sold_date
|
||||
│ ├── price_per_sqft
|
||||
│ ├── new_construction
|
||||
│ └── hoa_fee
|
||||
|
||||
├── Tax Information:
|
||||
│ ├── year
|
||||
│ ├── tax
|
||||
│ ├── assessment
|
||||
│ │ ├── building
|
||||
│ │ ├── land
|
||||
│ │ └── total
|
||||
|
||||
├── Location Details:
|
||||
│ ├── latitude
|
||||
│ ├── longitude
|
||||
│ ├── nearby_schools
|
||||
|
||||
├── Agent Info:
|
||||
│ ├── agent_id
|
||||
│ ├── agent_name
|
||||
│ ├── agent_email
|
||||
│ └── agent_phone
|
||||
|
||||
├── Broker Info:
|
||||
│ ├── broker_id
|
||||
│ └── broker_name
|
||||
|
||||
├── Builder Info:
|
||||
│ ├── builder_id
|
||||
│ └── builder_name
|
||||
|
||||
├── Office Info:
|
||||
│ ├── office_id
|
||||
│ ├── office_name
|
||||
│ ├── office_phones
|
||||
│ └── office_email
|
||||
|
||||
└── Parking Details:
|
||||
└── parking_garage
|
||||
```
|
||||
|
||||
### Exceptions
|
||||
The following exceptions may be raised when using HomeHarvest:
|
||||
|
||||
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`
|
||||
- `NoResultsFound` - no properties found from your search
|
||||
|
||||
|
||||
## Frequently Asked Questions
|
||||
---
|
||||
|
||||
**Q: Encountering issues with your searches?**
|
||||
**A:** Try to broaden the parameters you're using. If problems persist, [submit an issue](https://github.com/ZacharyHampton/HomeHarvest/issues).
|
||||
|
||||
---
|
||||
|
||||
**Q: Received a Forbidden 403 response code?**
|
||||
**A:** This indicates that you have been blocked by Realtor.com for sending too many requests. We recommend:
|
||||
|
||||
- Waiting a few seconds between requests.
|
||||
- Trying a VPN or useing a proxy as a parameter to scrape_property() to change your IP address.
|
||||
|
||||
---
|
||||
|
||||
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`, `pending`.
|
||||
- `InvalidDate` - date_from or date_to is not in the format YYYY-MM-DD.
|
||||
- `AuthenticationError` - Realtor.com token request failed.
|
||||
|
|
|
@ -1,141 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
|
||||
"metadata": {
|
||||
"is_executing": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from homeharvest import scrape_property\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.set_option('display.max_columns', None) # Show all columns\n",
|
||||
"pd.set_option('display.max_rows', None) # Show all rows\n",
|
||||
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
|
||||
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check for sale properties\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aaf86093",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# search a specific address\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"2530 Al Lipscomb Way\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check rentals\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"chicago, illinois\",\n",
|
||||
" listing_type=\"for_rent\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af280cd3",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check sold properties\n",
|
||||
"properties = scrape_property(\n",
|
||||
" location=\"90210\",\n",
|
||||
" listing_type=\"sold\",\n",
|
||||
" past_days=10\n",
|
||||
")\n",
|
||||
"display(properties)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "628c1ce2",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"is_executing": true,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# display clickable URLs\n",
|
||||
"from IPython.display import display, HTML\n",
|
||||
"properties['property_url'] = '<a href=\"' + properties['property_url'] + '\" target=\"_blank\">' + properties['property_url'] + '</a>'\n",
|
||||
"\n",
|
||||
"html = properties.to_html(escape=False)\n",
|
||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
||||
"display(HTML(truncate_width))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
from homeharvest import scrape_property
|
||||
from datetime import datetime
|
||||
|
||||
# Generate filename based on current timestamp
|
||||
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"HomeHarvest_{current_timestamp}.csv"
|
||||
|
||||
properties = scrape_property(
|
||||
location="San Diego, CA",
|
||||
listing_type="sold", # or (for_sale, for_rent)
|
||||
past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
|
||||
# pending_or_contingent=True # use on for_sale listings to find pending / contingent listings
|
||||
# mls_only=True, # only fetch MLS listings
|
||||
# proxy="http://user:pass@host:port" # use a proxy to change your IP address
|
||||
)
|
||||
print(f"Number of properties: {len(properties)}")
|
||||
|
||||
# Export to csv
|
||||
properties.to_csv(filename, index=False)
|
||||
print(properties.head())
|
|
@ -0,0 +1,104 @@
|
|||
"""
|
||||
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
|
||||
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
|
||||
"""
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
from homeharvest import scrape_property
|
||||
|
||||
|
||||
def get_property_details(zip: str, listing_type):
|
||||
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
|
||||
if not properties.empty:
|
||||
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
|
||||
|
||||
properties = properties[properties["sqft"].isnull()]
|
||||
properties["ppa"] = properties.apply(
|
||||
lambda row: (
|
||||
int(
|
||||
(
|
||||
row["sold_price"]
|
||||
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
|
||||
else row["list_price"]
|
||||
)
|
||||
/ row["lot_acres"]
|
||||
)
|
||||
if pd.notnull(row["lot_acres"])
|
||||
and row["lot_acres"] > 0
|
||||
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
|
||||
else None
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
properties["ppa"] = properties["ppa"].astype("Int64")
|
||||
selected_columns = [
|
||||
"property_url",
|
||||
"property_id",
|
||||
"style",
|
||||
"status",
|
||||
"street",
|
||||
"city",
|
||||
"state",
|
||||
"zip_code",
|
||||
"county",
|
||||
"list_date",
|
||||
"last_sold_date",
|
||||
"list_price",
|
||||
"sold_price",
|
||||
"lot_sqft",
|
||||
"lot_acres",
|
||||
"ppa",
|
||||
]
|
||||
properties = properties[selected_columns]
|
||||
return properties
|
||||
|
||||
|
||||
def output_to_excel(zip_code, sold_df, pending_df):
|
||||
root_folder = os.getcwd()
|
||||
zip_folder = os.path.join(root_folder, "zips", zip_code)
|
||||
|
||||
# Create zip code folder if it doesn't exist
|
||||
os.makedirs(zip_folder, exist_ok=True)
|
||||
|
||||
# Define file paths
|
||||
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
|
||||
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
|
||||
|
||||
# Save individual sold and pending files
|
||||
sold_df.to_excel(sold_file, index=False)
|
||||
pending_df.to_excel(pending_file, index=False)
|
||||
|
||||
|
||||
zip_codes = map(
|
||||
str,
|
||||
[
|
||||
22920,
|
||||
77024,
|
||||
78028,
|
||||
24553,
|
||||
22967,
|
||||
22971,
|
||||
22922,
|
||||
22958,
|
||||
22969,
|
||||
22949,
|
||||
22938,
|
||||
24599,
|
||||
24562,
|
||||
22976,
|
||||
24464,
|
||||
22964,
|
||||
24581,
|
||||
],
|
||||
)
|
||||
|
||||
combined_df = pd.DataFrame()
|
||||
for zip in zip_codes:
|
||||
sold_df = get_property_details(zip, "sold")
|
||||
pending_df = get_property_details(zip, "pending")
|
||||
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
|
||||
output_to_excel(zip, sold_df, pending_df)
|
||||
|
||||
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
|
||||
combined_df.to_excel(combined_file, index=False)
|
|
@ -1,47 +1,77 @@
|
|||
import warnings
|
||||
import pandas as pd
|
||||
from .core.scrapers import ScraperInput
|
||||
from .utils import process_result, ordered_properties, validate_input
|
||||
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
||||
from .core.scrapers.realtor import RealtorScraper
|
||||
from .core.scrapers.models import ListingType
|
||||
from .exceptions import InvalidListingType, NoResultsFound
|
||||
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property
|
||||
|
||||
|
||||
def scrape_property(
|
||||
location: str,
|
||||
listing_type: str = "for_sale",
|
||||
return_type: str = "pandas",
|
||||
property_type: list[str] | None = None,
|
||||
radius: float = None,
|
||||
mls_only: bool = False,
|
||||
past_days: int = None,
|
||||
proxy: str = None,
|
||||
) -> pd.DataFrame:
|
||||
date_from: str = None, #: TODO: Switch to one parameter, Date, with date_from and date_to, pydantic validation
|
||||
date_to: str = None,
|
||||
foreclosure: bool = None,
|
||||
extra_property_data: bool = True,
|
||||
exclude_pending: bool = False,
|
||||
limit: int = 10000
|
||||
) -> pd.DataFrame | list[dict] | list[Property]:
|
||||
"""
|
||||
Scrape properties from Realtor.com based on a given location and listing type.
|
||||
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
||||
:param listing_type: Listing Type (for_sale, for_rent, sold)
|
||||
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
||||
:param return_type: Return type (pandas, pydantic, raw)
|
||||
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||
:param past_days: Get properties sold or listed (dependent on your listing_type) in the last _ days.
|
||||
:param proxy: Proxy to use for scraping
|
||||
:param past_days: Get properties sold or listed (dependent on your listing_type) in the last _ days.
|
||||
:param date_from, date_to: Get properties sold or listed (dependent on your listing_type) between these dates. format: 2021-01-28
|
||||
:param foreclosure: If set, fetches only foreclosure listings.
|
||||
:param extra_property_data: Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
|
||||
:param exclude_pending: If true, this excludes pending or contingent properties from the results, unless listing type is pending.
|
||||
:param limit: Limit the number of results returned. Maximum is 10,000.
|
||||
"""
|
||||
validate_input(listing_type)
|
||||
validate_dates(date_from, date_to)
|
||||
validate_limit(limit)
|
||||
|
||||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
listing_type=ListingType(listing_type.upper()),
|
||||
return_type=ReturnType(return_type.lower()),
|
||||
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
||||
proxy=proxy,
|
||||
radius=radius,
|
||||
mls_only=mls_only,
|
||||
last_x_days=past_days,
|
||||
date_from=date_from,
|
||||
date_to=date_to,
|
||||
foreclosure=foreclosure,
|
||||
extra_property_data=extra_property_data,
|
||||
exclude_pending=exclude_pending,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
site = RealtorScraper(scraper_input)
|
||||
results = site.search()
|
||||
|
||||
properties_dfs = [process_result(result) for result in results]
|
||||
if scraper_input.return_type != ReturnType.pandas:
|
||||
return results
|
||||
|
||||
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
|
||||
if not properties_dfs:
|
||||
raise NoResultsFound("no results found for the query")
|
||||
return pd.DataFrame()
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", category=FutureWarning)
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties]
|
||||
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
|
||||
{"None": pd.NA, None: pd.NA, "": pd.NA}
|
||||
)
|
||||
|
|
|
@ -5,9 +5,7 @@ from homeharvest import scrape_property
|
|||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Home Harvest Property Scraper")
|
||||
parser.add_argument(
|
||||
"location", type=str, help="Location to scrape (e.g., San Francisco, CA)"
|
||||
)
|
||||
parser.add_argument("location", type=str, help="Location to scrape (e.g., San Francisco, CA)")
|
||||
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
|
@ -35,9 +33,7 @@ def main():
|
|||
help="Name of the output file (without extension)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-p", "--proxy", type=str, default=None, help="Proxy to use for scraping"
|
||||
)
|
||||
parser.add_argument("-p", "--proxy", type=str, default=None, help="Proxy to use for scraping")
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--days",
|
||||
|
|
|
@ -1,31 +1,73 @@
|
|||
from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
from typing import Union
|
||||
|
||||
import requests
|
||||
from .models import Property, ListingType, SiteName
|
||||
from requests.adapters import HTTPAdapter
|
||||
from urllib3.util.retry import Retry
|
||||
import uuid
|
||||
from ...exceptions import AuthenticationError
|
||||
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
|
||||
import json
|
||||
|
||||
|
||||
@dataclass
|
||||
class ScraperInput:
|
||||
location: str
|
||||
listing_type: ListingType
|
||||
property_type: list[SearchPropertyType] | None = None
|
||||
radius: float | None = None
|
||||
mls_only: bool | None = None
|
||||
mls_only: bool | None = False
|
||||
proxy: str | None = None
|
||||
last_x_days: int | None = None
|
||||
date_from: str | None = None
|
||||
date_to: str | None = None
|
||||
foreclosure: bool | None = False
|
||||
extra_property_data: bool | None = True
|
||||
exclude_pending: bool | None = False
|
||||
limit: int = 10000
|
||||
return_type: ReturnType = ReturnType.pandas
|
||||
|
||||
|
||||
class Scraper:
|
||||
session = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scraper_input: ScraperInput,
|
||||
session: requests.Session = None,
|
||||
):
|
||||
self.location = scraper_input.location
|
||||
self.listing_type = scraper_input.listing_type
|
||||
self.property_type = scraper_input.property_type
|
||||
|
||||
if not session:
|
||||
self.session = requests.Session()
|
||||
else:
|
||||
self.session = session
|
||||
if not self.session:
|
||||
Scraper.session = requests.Session()
|
||||
retries = Retry(
|
||||
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
||||
)
|
||||
|
||||
adapter = HTTPAdapter(max_retries=retries)
|
||||
Scraper.session.mount("http://", adapter)
|
||||
Scraper.session.mount("https://", adapter)
|
||||
Scraper.session.headers.update(
|
||||
{
|
||||
"accept": "application/json, text/javascript",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "no-cache",
|
||||
"content-type": "application/json",
|
||||
"origin": "https://www.realtor.com",
|
||||
"pragma": "no-cache",
|
||||
"priority": "u=1, i",
|
||||
"rdc-ab-tests": "commute_travel_time_variation:v1",
|
||||
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-fetch-dest": "empty",
|
||||
"sec-fetch-mode": "cors",
|
||||
"sec-fetch-site": "same-origin",
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
|
||||
}
|
||||
)
|
||||
|
||||
if scraper_input.proxy:
|
||||
proxy_url = scraper_input.proxy
|
||||
|
@ -36,13 +78,51 @@ class Scraper:
|
|||
self.radius = scraper_input.radius
|
||||
self.last_x_days = scraper_input.last_x_days
|
||||
self.mls_only = scraper_input.mls_only
|
||||
self.date_from = scraper_input.date_from
|
||||
self.date_to = scraper_input.date_to
|
||||
self.foreclosure = scraper_input.foreclosure
|
||||
self.extra_property_data = scraper_input.extra_property_data
|
||||
self.exclude_pending = scraper_input.exclude_pending
|
||||
self.limit = scraper_input.limit
|
||||
self.return_type = scraper_input.return_type
|
||||
|
||||
def search(self) -> list[Property]:
|
||||
...
|
||||
def search(self) -> list[Union[Property | dict]]: ...
|
||||
|
||||
@staticmethod
|
||||
def _parse_home(home) -> Property:
|
||||
...
|
||||
def _parse_home(home) -> Property: ...
|
||||
|
||||
def handle_location(self):
|
||||
...
|
||||
def handle_location(self): ...
|
||||
|
||||
@staticmethod
|
||||
def get_access_token():
|
||||
device_id = str(uuid.uuid4()).upper()
|
||||
|
||||
response = requests.post(
|
||||
"https://graph.realtor.com/auth/token",
|
||||
headers={
|
||||
"Host": "graph.realtor.com",
|
||||
"Accept": "*/*",
|
||||
"Content-Type": "Application/json",
|
||||
"X-Client-ID": "rdc_mobile_native,iphone",
|
||||
"X-Visitor-ID": device_id,
|
||||
"X-Client-Version": "24.21.23.679885",
|
||||
"Accept-Language": "en-US,en;q=0.9",
|
||||
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
|
||||
},
|
||||
data=json.dumps(
|
||||
{
|
||||
"grant_type": "device_mobile",
|
||||
"device_id": device_id,
|
||||
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
data = response.json()
|
||||
|
||||
if not (access_token := data.get("access_token")):
|
||||
raise AuthenticationError(
|
||||
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
|
||||
)
|
||||
|
||||
return access_token
|
||||
|
|
|
@ -1,8 +1,15 @@
|
|||
from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class ReturnType(Enum):
|
||||
pydantic = "pydantic"
|
||||
pandas = "pandas"
|
||||
raw = "raw"
|
||||
|
||||
|
||||
class SiteName(Enum):
|
||||
ZILLOW = "zillow"
|
||||
REDFIN = "redfin"
|
||||
|
@ -16,6 +23,20 @@ class SiteName(Enum):
|
|||
raise ValueError(f"{value} not found in {cls}")
|
||||
|
||||
|
||||
class SearchPropertyType(Enum):
|
||||
SINGLE_FAMILY = "single_family"
|
||||
APARTMENT = "apartment"
|
||||
CONDOS = "condos"
|
||||
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
|
||||
CONDO_TOWNHOME = "condo_townhome"
|
||||
TOWNHOMES = "townhomes"
|
||||
DUPLEX_TRIPLEX = "duplex_triplex"
|
||||
FARM = "farm"
|
||||
LAND = "land"
|
||||
MULTI_FAMILY = "multi_family"
|
||||
MOBILE = "mobile"
|
||||
|
||||
|
||||
class ListingType(Enum):
|
||||
FOR_SALE = "FOR_SALE"
|
||||
FOR_RENT = "FOR_RENT"
|
||||
|
@ -23,8 +44,39 @@ class ListingType(Enum):
|
|||
SOLD = "SOLD"
|
||||
|
||||
|
||||
@dataclass
|
||||
class Agent:
|
||||
name: str | None = None
|
||||
phone: str | None = None
|
||||
|
||||
|
||||
class PropertyType(Enum):
|
||||
APARTMENT = "APARTMENT"
|
||||
BUILDING = "BUILDING"
|
||||
COMMERCIAL = "COMMERCIAL"
|
||||
GOVERNMENT = "GOVERNMENT"
|
||||
INDUSTRIAL = "INDUSTRIAL"
|
||||
CONDO_TOWNHOME = "CONDO_TOWNHOME"
|
||||
CONDO_TOWNHOME_ROWHOME_COOP = "CONDO_TOWNHOME_ROWHOME_COOP"
|
||||
CONDO = "CONDO"
|
||||
CONDOP = "CONDOP"
|
||||
CONDOS = "CONDOS"
|
||||
COOP = "COOP"
|
||||
DUPLEX_TRIPLEX = "DUPLEX_TRIPLEX"
|
||||
FARM = "FARM"
|
||||
INVESTMENT = "INVESTMENT"
|
||||
LAND = "LAND"
|
||||
MOBILE = "MOBILE"
|
||||
MULTI_FAMILY = "MULTI_FAMILY"
|
||||
RENTAL = "RENTAL"
|
||||
SINGLE_FAMILY = "SINGLE_FAMILY"
|
||||
TOWNHOMES = "TOWNHOMES"
|
||||
OTHER = "OTHER"
|
||||
|
||||
|
||||
@dataclass
|
||||
class Address:
|
||||
full_line: str | None = None
|
||||
street: str | None = None
|
||||
unit: str | None = None
|
||||
city: str | None = None
|
||||
|
@ -34,7 +86,9 @@ class Address:
|
|||
|
||||
@dataclass
|
||||
class Description:
|
||||
style: str | None = None
|
||||
primary_photo: str | None = None
|
||||
alt_photos: list[str] | None = None
|
||||
style: PropertyType | None = None
|
||||
beds: int | None = None
|
||||
baths_full: int | None = None
|
||||
baths_half: int | None = None
|
||||
|
@ -44,24 +98,97 @@ class Description:
|
|||
year_built: int | None = None
|
||||
garage: float | None = None
|
||||
stories: int | None = None
|
||||
text: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class AgentPhone: #: For documentation purposes only (at the moment)
|
||||
number: str | None = None
|
||||
type: str | None = None
|
||||
primary: bool | None = None
|
||||
ext: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Entity:
|
||||
name: str
|
||||
uuid: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Agent(Entity):
|
||||
mls_set: str | None = None
|
||||
nrds_id: str | None = None
|
||||
phones: list[dict] | AgentPhone | None = None
|
||||
email: str | None = None
|
||||
href: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Office(Entity):
|
||||
mls_set: str | None = None
|
||||
email: str | None = None
|
||||
href: str | None = None
|
||||
phones: list[dict] | AgentPhone | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Broker(Entity):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Builder(Entity):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Advertisers:
|
||||
agent: Agent | None = None
|
||||
broker: Broker | None = None
|
||||
builder: Builder | None = None
|
||||
office: Office | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Property:
|
||||
property_url: str
|
||||
|
||||
property_id: str
|
||||
#: allows_cats: bool
|
||||
#: allows_dogs: bool
|
||||
|
||||
listing_id: str | None = None
|
||||
|
||||
mls: str | None = None
|
||||
mls_id: str | None = None
|
||||
status: str | None = None
|
||||
address: Address | None = None
|
||||
|
||||
list_price: int | None = None
|
||||
list_price_min: int | None = None
|
||||
list_price_max: int | None = None
|
||||
|
||||
list_date: str | None = None
|
||||
pending_date: str | None = None
|
||||
last_sold_date: str | None = None
|
||||
prc_sqft: int | None = None
|
||||
new_construction: bool | None = None
|
||||
hoa_fee: int | None = None
|
||||
days_on_mls: int | None = None
|
||||
description: Description | None = None
|
||||
tags: list[str] | None = None
|
||||
details: list[dict] | None = None
|
||||
|
||||
latitude: float | None = None
|
||||
longitude: float | None = None
|
||||
neighborhoods: Optional[str] = None
|
||||
county: Optional[str] = None
|
||||
fips_code: Optional[str] = None
|
||||
nearby_schools: list[str] = None
|
||||
assessed_value: int | None = None
|
||||
estimated_value: int | None = None
|
||||
tax: int | None = None
|
||||
tax_history: list[dict] | None = None
|
||||
|
||||
advertisers: Advertisers | None = None
|
||||
|
|
|
@ -4,19 +4,46 @@ homeharvest.realtor.__init__
|
|||
|
||||
This module implements the scraper for realtor.com
|
||||
"""
|
||||
from datetime import datetime
|
||||
from typing import Dict, Union, Optional
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from datetime import datetime
|
||||
from json import JSONDecodeError
|
||||
from typing import Dict, Union, Optional
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
wait_exponential,
|
||||
stop_after_attempt,
|
||||
)
|
||||
|
||||
from .. import Scraper
|
||||
from ....exceptions import NoResultsFound
|
||||
from ..models import Property, Address, ListingType, Description
|
||||
from ..models import (
|
||||
Property,
|
||||
Address,
|
||||
ListingType,
|
||||
Description,
|
||||
PropertyType,
|
||||
Agent,
|
||||
Broker,
|
||||
Builder,
|
||||
Advertisers,
|
||||
Office,
|
||||
ReturnType
|
||||
)
|
||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
|
||||
|
||||
|
||||
class RealtorScraper(Scraper):
|
||||
SEARCH_GQL_URL = "https://www.realtor.com/api/v1/rdc_search_srp?client_id=rdc-search-new-communities&schema=vesta"
|
||||
PROPERTY_URL = "https://www.realtor.com/realestateandhomes-detail/"
|
||||
PROPERTY_GQL = "https://graph.realtor.com/graphql"
|
||||
ADDRESS_AUTOCOMPLETE_URL = "https://parser-external.geo.moveaws.com/suggest"
|
||||
NUM_PROPERTY_WORKERS = 20
|
||||
DEFAULT_PAGE_SIZE = 200
|
||||
|
||||
def __init__(self, scraper_input):
|
||||
super().__init__(scraper_input)
|
||||
|
@ -38,136 +65,10 @@ class RealtorScraper(Scraper):
|
|||
result = response_json["autocomplete"]
|
||||
|
||||
if not result:
|
||||
raise NoResultsFound("No results found for location: " + self.location)
|
||||
return None
|
||||
|
||||
return result[0]
|
||||
|
||||
def handle_listing(self, listing_id: str) -> list[Property]:
|
||||
query = """query Listing($listing_id: ID!) {
|
||||
listing(id: $listing_id) {
|
||||
source {
|
||||
id
|
||||
listing_id
|
||||
}
|
||||
address {
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
location {
|
||||
coordinate {
|
||||
lat
|
||||
lon
|
||||
}
|
||||
}
|
||||
}
|
||||
basic {
|
||||
sqft
|
||||
beds
|
||||
baths_full
|
||||
baths_half
|
||||
lot_sqft
|
||||
sold_price
|
||||
sold_price
|
||||
type
|
||||
price
|
||||
status
|
||||
sold_date
|
||||
list_date
|
||||
}
|
||||
details {
|
||||
year_built
|
||||
stories
|
||||
garage
|
||||
permalink
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
variables = {"listing_id": listing_id}
|
||||
payload = {
|
||||
"query": query,
|
||||
"variables": variables,
|
||||
}
|
||||
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
|
||||
response_json = response.json()
|
||||
|
||||
property_info = response_json["data"]["listing"]
|
||||
|
||||
mls = (
|
||||
property_info["source"].get("id")
|
||||
if "source" in property_info and isinstance(property_info["source"], dict)
|
||||
else None
|
||||
)
|
||||
|
||||
able_to_get_lat_long = (
|
||||
property_info
|
||||
and property_info.get("address")
|
||||
and property_info["address"].get("location")
|
||||
and property_info["address"]["location"].get("coordinate")
|
||||
)
|
||||
list_date_str = property_info["basic"]["list_date"].split("T")[0] if property_info["basic"].get(
|
||||
"list_date") else None
|
||||
last_sold_date_str = property_info["basic"]["sold_date"].split("T")[0] if property_info["basic"].get(
|
||||
"sold_date") else None
|
||||
|
||||
list_date = datetime.strptime(list_date_str, "%Y-%m-%d") if list_date_str else None
|
||||
last_sold_date = datetime.strptime(last_sold_date_str, "%Y-%m-%d") if last_sold_date_str else None
|
||||
today = datetime.now()
|
||||
|
||||
days_on_mls = None
|
||||
status = property_info["basic"]["status"].lower()
|
||||
if list_date:
|
||||
if status == "sold" and last_sold_date:
|
||||
days_on_mls = (last_sold_date - list_date).days
|
||||
elif status in ('for_sale', 'for_rent'):
|
||||
days_on_mls = (today - list_date).days
|
||||
if days_on_mls and days_on_mls < 0:
|
||||
days_on_mls = None
|
||||
|
||||
listing = Property(
|
||||
mls=mls,
|
||||
mls_id=property_info["source"].get("listing_id")
|
||||
if "source" in property_info and isinstance(property_info["source"], dict)
|
||||
else None,
|
||||
property_url=f"{self.PROPERTY_URL}{property_info['details']['permalink']}",
|
||||
status=property_info["basic"]["status"].upper(),
|
||||
list_price=property_info["basic"]["price"],
|
||||
list_date=list_date,
|
||||
prc_sqft=property_info["basic"].get("price")
|
||||
/ property_info["basic"].get("sqft")
|
||||
if property_info["basic"].get("price")
|
||||
and property_info["basic"].get("sqft")
|
||||
else None,
|
||||
last_sold_date=last_sold_date,
|
||||
latitude=property_info["address"]["location"]["coordinate"].get("lat")
|
||||
if able_to_get_lat_long
|
||||
else None,
|
||||
longitude=property_info["address"]["location"]["coordinate"].get("lon")
|
||||
if able_to_get_lat_long
|
||||
else None,
|
||||
address=self._parse_address(property_info, search_type="handle_listing"),
|
||||
description=Description(
|
||||
style=property_info["basic"].get("type", "").upper(),
|
||||
beds=property_info["basic"].get("beds"),
|
||||
baths_full=property_info["basic"].get("baths_full"),
|
||||
baths_half=property_info["basic"].get("baths_half"),
|
||||
sqft=property_info["basic"].get("sqft"),
|
||||
lot_sqft=property_info["basic"].get("lot_sqft"),
|
||||
sold_price=property_info["basic"].get("sold_price"),
|
||||
year_built=property_info["details"].get("year_built"),
|
||||
garage=property_info["details"].get("garage"),
|
||||
stories=property_info["details"].get("stories"),
|
||||
),
|
||||
days_on_mls=days_on_mls
|
||||
)
|
||||
|
||||
return [listing]
|
||||
|
||||
def get_latest_listing_id(self, property_id: str) -> str | None:
|
||||
query = """query Property($property_id: ID!) {
|
||||
property(id: $property_id) {
|
||||
|
@ -201,56 +102,15 @@ class RealtorScraper(Scraper):
|
|||
else:
|
||||
return property_info["listings"][0]["listing_id"]
|
||||
|
||||
def handle_address(self, property_id: str) -> list[Property]:
|
||||
"""
|
||||
Handles a specific address & returns one property
|
||||
"""
|
||||
query = """query Property($property_id: ID!) {
|
||||
property(id: $property_id) {
|
||||
property_id
|
||||
details {
|
||||
date_updated
|
||||
garage
|
||||
permalink
|
||||
year_built
|
||||
stories
|
||||
}
|
||||
address {
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
location {
|
||||
coordinate {
|
||||
lat
|
||||
lon
|
||||
}
|
||||
}
|
||||
}
|
||||
basic {
|
||||
baths
|
||||
beds
|
||||
price
|
||||
sqft
|
||||
lot_sqft
|
||||
type
|
||||
sold_price
|
||||
}
|
||||
public_record {
|
||||
lot_size
|
||||
sqft
|
||||
stories
|
||||
units
|
||||
year_built
|
||||
}
|
||||
}
|
||||
def handle_home(self, property_id: str) -> list[Property]:
|
||||
query = (
|
||||
"""query Home($property_id: ID!) {
|
||||
home(property_id: $property_id) %s
|
||||
}"""
|
||||
% HOMES_DATA
|
||||
)
|
||||
|
||||
variables = {"property_id": property_id}
|
||||
|
||||
payload = {
|
||||
"query": query,
|
||||
"variables": variables,
|
||||
|
@ -259,106 +119,158 @@ class RealtorScraper(Scraper):
|
|||
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
|
||||
response_json = response.json()
|
||||
|
||||
property_info = response_json["data"]["property"]
|
||||
property_info = response_json["data"]["home"]
|
||||
|
||||
return [
|
||||
Property(
|
||||
mls_id=property_id,
|
||||
property_url=f"{self.PROPERTY_URL}{property_info['details']['permalink']}",
|
||||
address=self._parse_address(
|
||||
property_info, search_type="handle_address"
|
||||
),
|
||||
description=self._parse_description(property_info),
|
||||
)
|
||||
]
|
||||
return [self.process_property(property_info)]
|
||||
|
||||
def general_search(
|
||||
self, variables: dict, search_type: str
|
||||
) -> Dict[str, Union[int, list[Property]]]:
|
||||
@staticmethod
|
||||
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
||||
if not advertisers:
|
||||
return None
|
||||
|
||||
def _parse_fulfillment_id(fulfillment_id: str | None) -> str | None:
|
||||
return fulfillment_id if fulfillment_id and fulfillment_id != "0" else None
|
||||
|
||||
processed_advertisers = Advertisers()
|
||||
|
||||
for advertiser in advertisers:
|
||||
advertiser_type = advertiser.get("type")
|
||||
if advertiser_type == "seller": #: agent
|
||||
processed_advertisers.agent = Agent(
|
||||
uuid=_parse_fulfillment_id(advertiser.get("fulfillment_id")),
|
||||
nrds_id=advertiser.get("nrds_id"),
|
||||
mls_set=advertiser.get("mls_set"),
|
||||
name=advertiser.get("name"),
|
||||
email=advertiser.get("email"),
|
||||
phones=advertiser.get("phones"),
|
||||
)
|
||||
|
||||
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
|
||||
processed_advertisers.broker = Broker(
|
||||
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
|
||||
name=advertiser["broker"].get("name"),
|
||||
)
|
||||
|
||||
if advertiser.get("office"): #: has an office
|
||||
processed_advertisers.office = Office(
|
||||
uuid=_parse_fulfillment_id(advertiser["office"].get("fulfillment_id")),
|
||||
mls_set=advertiser["office"].get("mls_set"),
|
||||
name=advertiser["office"].get("name"),
|
||||
email=advertiser["office"].get("email"),
|
||||
phones=advertiser["office"].get("phones"),
|
||||
)
|
||||
|
||||
if advertiser_type == "community": #: could be builder
|
||||
if advertiser.get("builder"):
|
||||
processed_advertisers.builder = Builder(
|
||||
uuid=_parse_fulfillment_id(advertiser["builder"].get("fulfillment_id")),
|
||||
name=advertiser["builder"].get("name"),
|
||||
)
|
||||
|
||||
return processed_advertisers
|
||||
|
||||
def process_property(self, result: dict) -> Property | None:
|
||||
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
||||
|
||||
if not mls and self.mls_only:
|
||||
return
|
||||
|
||||
able_to_get_lat_long = (
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
)
|
||||
|
||||
is_pending = result["flags"].get("is_pending")
|
||||
is_contingent = result["flags"].get("is_contingent")
|
||||
|
||||
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
||||
return
|
||||
|
||||
property_id = result["property_id"]
|
||||
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
|
||||
|
||||
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
||||
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
||||
|
||||
advertisers = self.process_advertisers(result.get("advertisers"))
|
||||
|
||||
realty_property = Property(
|
||||
mls=mls,
|
||||
mls_id=(
|
||||
result["source"].get("listing_id")
|
||||
if "source" in result and isinstance(result["source"], dict)
|
||||
else None
|
||||
),
|
||||
property_url=result["href"],
|
||||
property_id=property_id,
|
||||
listing_id=result.get("listing_id"),
|
||||
status=("PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper()),
|
||||
list_price=result["list_price"],
|
||||
list_price_min=result["list_price_min"],
|
||||
list_price_max=result["list_price_max"],
|
||||
list_date=(result["list_date"].split("T")[0] if result.get("list_date") else None),
|
||||
prc_sqft=result.get("price_per_sqft"),
|
||||
last_sold_date=result.get("last_sold_date"),
|
||||
new_construction=result["flags"].get("is_new_construction") is True,
|
||||
hoa_fee=(result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None),
|
||||
latitude=(result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None),
|
||||
longitude=(result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None),
|
||||
address=self._parse_address(result, search_type="general_search"),
|
||||
description=self._parse_description(result),
|
||||
neighborhoods=self._parse_neighborhoods(result),
|
||||
county=(result["location"]["county"].get("name") if result["location"]["county"] else None),
|
||||
fips_code=(result["location"]["county"].get("fips_code") if result["location"]["county"] else None),
|
||||
days_on_mls=self.calculate_days_on_mls(result),
|
||||
nearby_schools=prop_details.get("schools"),
|
||||
assessed_value=prop_details.get("assessed_value"),
|
||||
estimated_value=estimated_value if estimated_value else None,
|
||||
advertisers=advertisers,
|
||||
tax=prop_details.get("tax"),
|
||||
tax_history=prop_details.get("tax_history"),
|
||||
)
|
||||
return realty_property
|
||||
|
||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]:
|
||||
"""
|
||||
Handles a location area & returns a list of properties
|
||||
"""
|
||||
results_query = """{
|
||||
count
|
||||
total
|
||||
results {
|
||||
property_id
|
||||
list_date
|
||||
status
|
||||
last_sold_price
|
||||
last_sold_date
|
||||
list_price
|
||||
price_per_sqft
|
||||
flags {
|
||||
is_contingent
|
||||
is_pending
|
||||
}
|
||||
description {
|
||||
sqft
|
||||
beds
|
||||
baths_full
|
||||
baths_half
|
||||
lot_sqft
|
||||
sold_price
|
||||
year_built
|
||||
garage
|
||||
sold_price
|
||||
type
|
||||
name
|
||||
stories
|
||||
}
|
||||
source {
|
||||
id
|
||||
listing_id
|
||||
}
|
||||
hoa {
|
||||
fee
|
||||
}
|
||||
location {
|
||||
address {
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
coordinate {
|
||||
lon
|
||||
lat
|
||||
}
|
||||
}
|
||||
neighborhoods {
|
||||
name
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
date_param = (
|
||||
'sold_date: { min: "$today-%sD" }' % self.last_x_days
|
||||
if self.listing_type == ListingType.SOLD and self.last_x_days
|
||||
else (
|
||||
'list_date: { min: "$today-%sD" }' % self.last_x_days
|
||||
if self.last_x_days
|
||||
else ""
|
||||
)
|
||||
)
|
||||
date_param = ""
|
||||
if self.listing_type == ListingType.SOLD:
|
||||
if self.date_from and self.date_to:
|
||||
date_param = f'sold_date: {{ min: "{self.date_from}", max: "{self.date_to}" }}'
|
||||
elif self.last_x_days:
|
||||
date_param = f'sold_date: {{ min: "$today-{self.last_x_days}D" }}'
|
||||
else:
|
||||
if self.date_from and self.date_to:
|
||||
date_param = f'list_date: {{ min: "{self.date_from}", max: "{self.date_to}" }}'
|
||||
elif self.last_x_days:
|
||||
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
|
||||
|
||||
property_type_param = ""
|
||||
if self.property_type:
|
||||
property_types = [pt.value for pt in self.property_type]
|
||||
property_type_param = f"type: {json.dumps(property_types)}"
|
||||
|
||||
sort_param = (
|
||||
"sort: [{ field: sold_date, direction: desc }]"
|
||||
if self.listing_type == ListingType.SOLD
|
||||
else "sort: [{ field: list_date, direction: desc }]"
|
||||
else "" #: "sort: [{ field: list_date, direction: desc }]" #: prioritize normal fractal sort from realtor
|
||||
)
|
||||
|
||||
pending_or_contingent_param = (
|
||||
"or_filters: { contingent: true, pending: true }"
|
||||
if self.listing_type == ListingType.PENDING
|
||||
else ""
|
||||
"or_filters: { contingent: true, pending: true }" if self.listing_type == ListingType.PENDING else ""
|
||||
)
|
||||
|
||||
listing_type = ListingType.FOR_SALE if self.listing_type == ListingType.PENDING else self.listing_type
|
||||
is_foreclosure = ""
|
||||
|
||||
if variables.get("foreclosure") is True:
|
||||
is_foreclosure = "foreclosure: true"
|
||||
elif variables.get("foreclosure") is False:
|
||||
is_foreclosure = "foreclosure: false"
|
||||
|
||||
if search_type == "comps": #: comps search, came from an address
|
||||
query = """query Property_search(
|
||||
|
@ -367,52 +279,58 @@ class RealtorScraper(Scraper):
|
|||
$offset: Int!,
|
||||
) {
|
||||
home_search(
|
||||
query: {
|
||||
query: {
|
||||
%s
|
||||
nearby: {
|
||||
coordinates: $coordinates
|
||||
radius: $radius
|
||||
radius: $radius
|
||||
}
|
||||
status: %s
|
||||
%s
|
||||
%s
|
||||
%s
|
||||
}
|
||||
%s
|
||||
limit: 200
|
||||
offset: $offset
|
||||
) %s""" % (
|
||||
) %s
|
||||
}""" % (
|
||||
is_foreclosure,
|
||||
listing_type.value.lower(),
|
||||
date_param,
|
||||
property_type_param,
|
||||
pending_or_contingent_param,
|
||||
sort_param,
|
||||
results_query,
|
||||
GENERAL_RESULTS_QUERY,
|
||||
)
|
||||
elif search_type == "area": #: general search, came from a general location
|
||||
query = """query Home_search(
|
||||
$city: String,
|
||||
$county: [String],
|
||||
$state_code: String,
|
||||
$postal_code: String
|
||||
$location: String!,
|
||||
$offset: Int,
|
||||
) {
|
||||
home_search(
|
||||
query: {
|
||||
city: $city
|
||||
county: $county
|
||||
postal_code: $postal_code
|
||||
state_code: $state_code
|
||||
%s
|
||||
search_location: {location: $location}
|
||||
status: %s
|
||||
unique: true
|
||||
%s
|
||||
%s
|
||||
%s
|
||||
}
|
||||
bucket: { sort: "fractal_v1.1.3_fr" }
|
||||
%s
|
||||
limit: 200
|
||||
offset: $offset
|
||||
) %s""" % (
|
||||
) %s
|
||||
}""" % (
|
||||
is_foreclosure,
|
||||
listing_type.value.lower(),
|
||||
date_param,
|
||||
property_type_param,
|
||||
pending_or_contingent_param,
|
||||
sort_param,
|
||||
results_query,
|
||||
GENERAL_RESULTS_QUERY,
|
||||
)
|
||||
else: #: general search, came from an address
|
||||
query = (
|
||||
|
@ -420,14 +338,15 @@ class RealtorScraper(Scraper):
|
|||
$property_id: [ID]!
|
||||
$offset: Int!,
|
||||
) {
|
||||
property_search(
|
||||
home_search(
|
||||
query: {
|
||||
property_id: $property_id
|
||||
}
|
||||
limit: 1
|
||||
offset: $offset
|
||||
) %s"""
|
||||
% results_query
|
||||
) %s
|
||||
}"""
|
||||
% GENERAL_RESULTS_QUERY
|
||||
)
|
||||
|
||||
payload = {
|
||||
|
@ -436,11 +355,10 @@ class RealtorScraper(Scraper):
|
|||
}
|
||||
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
|
||||
response.raise_for_status()
|
||||
response_json = response.json()
|
||||
search_key = "home_search" if "home_search" in query else "property_search"
|
||||
|
||||
properties: list[Property] = []
|
||||
properties: list[Union[Property, dict]] = []
|
||||
|
||||
if (
|
||||
response_json is None
|
||||
|
@ -452,60 +370,42 @@ class RealtorScraper(Scraper):
|
|||
):
|
||||
return {"total": 0, "properties": []}
|
||||
|
||||
for result in response_json["data"][search_key]["results"]:
|
||||
mls = (
|
||||
result["source"].get("id")
|
||||
if "source" in result and isinstance(result["source"], dict)
|
||||
else None
|
||||
)
|
||||
properties_list = response_json["data"][search_key]["results"]
|
||||
total_properties = response_json["data"][search_key]["total"]
|
||||
offset = variables.get("offset", 0)
|
||||
|
||||
if not mls and self.mls_only:
|
||||
continue
|
||||
#: limit the number of properties to be processed
|
||||
#: example, if your offset is 200, and your limit is 250, return 50
|
||||
properties_list: list[dict] = properties_list[: self.limit - offset]
|
||||
|
||||
able_to_get_lat_long = (
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
)
|
||||
if self.extra_property_data:
|
||||
property_ids = [data["property_id"] for data in properties_list]
|
||||
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
|
||||
|
||||
is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
|
||||
for result in properties_list:
|
||||
result.update(extra_property_details.get(result["property_id"], {}))
|
||||
|
||||
realty_property = Property(
|
||||
mls=mls,
|
||||
mls_id=result["source"].get("listing_id")
|
||||
if "source" in result and isinstance(result["source"], dict)
|
||||
else None,
|
||||
property_url=f"{self.PROPERTY_URL}{result['property_id']}",
|
||||
status="PENDING" if is_pending else result["status"].upper(),
|
||||
list_price=result["list_price"],
|
||||
list_date=result["list_date"].split("T")[0]
|
||||
if result.get("list_date")
|
||||
else None,
|
||||
prc_sqft=result.get("price_per_sqft"),
|
||||
last_sold_date=result.get("last_sold_date"),
|
||||
hoa_fee=result["hoa"]["fee"]
|
||||
if result.get("hoa") and isinstance(result["hoa"], dict)
|
||||
else None,
|
||||
latitude=result["location"]["address"]["coordinate"].get("lat")
|
||||
if able_to_get_lat_long
|
||||
else None,
|
||||
longitude=result["location"]["address"]["coordinate"].get("lon")
|
||||
if able_to_get_lat_long
|
||||
else None,
|
||||
address=self._parse_address(result, search_type="general_search"),
|
||||
description=self._parse_description(result),
|
||||
days_on_mls=self.calculate_days_on_mls(result)
|
||||
)
|
||||
properties.append(realty_property)
|
||||
if self.return_type != ReturnType.raw:
|
||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||
futures = [executor.submit(self.process_property, result) for result in properties_list]
|
||||
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
if result:
|
||||
properties.append(result)
|
||||
else:
|
||||
properties = properties_list
|
||||
|
||||
return {
|
||||
"total": response_json["data"][search_key]["total"],
|
||||
"total": total_properties,
|
||||
"properties": properties,
|
||||
}
|
||||
|
||||
def search(self):
|
||||
location_info = self.handle_location()
|
||||
if not location_info:
|
||||
return []
|
||||
|
||||
location_type = location_info["area_type"]
|
||||
|
||||
search_variables = {
|
||||
|
@ -515,54 +415,52 @@ class RealtorScraper(Scraper):
|
|||
search_type = (
|
||||
"comps"
|
||||
if self.radius and location_type == "address"
|
||||
else "address"
|
||||
if location_type == "address" and not self.radius
|
||||
else "area"
|
||||
else "address" if location_type == "address" and not self.radius else "area"
|
||||
)
|
||||
if location_type == "address":
|
||||
if not self.radius: #: single address search, non comps
|
||||
property_id = location_info["mpr_id"]
|
||||
search_variables |= {"property_id": property_id}
|
||||
|
||||
gql_results = self.general_search(
|
||||
search_variables, search_type=search_type
|
||||
)
|
||||
if gql_results["total"] == 0:
|
||||
listing_id = self.get_latest_listing_id(property_id)
|
||||
if listing_id is None:
|
||||
return self.handle_address(property_id)
|
||||
else:
|
||||
return self.handle_listing(listing_id)
|
||||
else:
|
||||
return gql_results["properties"]
|
||||
return self.handle_home(property_id)
|
||||
|
||||
else: #: general search, comps (radius)
|
||||
if not location_info.get("centroid"):
|
||||
return []
|
||||
|
||||
coordinates = list(location_info["centroid"].values())
|
||||
search_variables |= {
|
||||
"coordinates": coordinates,
|
||||
"radius": "{}mi".format(self.radius),
|
||||
}
|
||||
|
||||
else: #: general search, location
|
||||
elif location_type == "postal_code":
|
||||
search_variables |= {
|
||||
"city": location_info.get("city"),
|
||||
"county": location_info.get("county"),
|
||||
"state_code": location_info.get("state_code"),
|
||||
"postal_code": location_info.get("postal_code"),
|
||||
}
|
||||
|
||||
else: #: general search, location
|
||||
search_variables |= {
|
||||
"location": self.location,
|
||||
}
|
||||
|
||||
if self.foreclosure:
|
||||
search_variables["foreclosure"] = self.foreclosure
|
||||
|
||||
result = self.general_search(search_variables, search_type=search_type)
|
||||
total = result["total"]
|
||||
homes = result["properties"]
|
||||
|
||||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = [
|
||||
executor.submit(
|
||||
self.general_search,
|
||||
variables=search_variables | {"offset": i},
|
||||
search_type=search_type,
|
||||
)
|
||||
for i in range(200, min(total, 10000), 200)
|
||||
for i in range(
|
||||
self.DEFAULT_PAGE_SIZE,
|
||||
min(total, self.limit),
|
||||
self.DEFAULT_PAGE_SIZE,
|
||||
)
|
||||
]
|
||||
|
||||
for future in as_completed(futures):
|
||||
|
@ -570,6 +468,90 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return homes
|
||||
|
||||
@staticmethod
|
||||
def get_key(data: dict, keys: list):
|
||||
try:
|
||||
value = data
|
||||
for key in keys:
|
||||
value = value[key]
|
||||
|
||||
return value or {}
|
||||
except (KeyError, TypeError, IndexError):
|
||||
return {}
|
||||
|
||||
def process_extra_property_details(self, result: dict) -> dict:
|
||||
schools = self.get_key(result, ["nearbySchools", "schools"])
|
||||
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
|
||||
tax_history = self.get_key(result, ["taxHistory"])
|
||||
|
||||
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
|
||||
|
||||
# Process tax history
|
||||
latest_tax = None
|
||||
processed_tax_history = None
|
||||
if tax_history and isinstance(tax_history, list):
|
||||
tax_history = sorted(tax_history, key=lambda x: x.get("year", 0), reverse=True)
|
||||
|
||||
if tax_history and "tax" in tax_history[0]:
|
||||
latest_tax = tax_history[0]["tax"]
|
||||
|
||||
processed_tax_history = []
|
||||
for entry in tax_history:
|
||||
if "year" in entry and "tax" in entry:
|
||||
processed_entry = {
|
||||
"year": entry["year"],
|
||||
"tax": entry["tax"],
|
||||
}
|
||||
if "assessment" in entry and isinstance(entry["assessment"], dict):
|
||||
processed_entry["assessment"] = {
|
||||
"building": entry["assessment"].get("building"),
|
||||
"land": entry["assessment"].get("land"),
|
||||
"total": entry["assessment"].get("total"),
|
||||
}
|
||||
processed_tax_history.append(processed_entry)
|
||||
|
||||
return {
|
||||
"schools": schools if schools else None,
|
||||
"assessed_value": assessed_value if assessed_value else None,
|
||||
"tax": latest_tax,
|
||||
"tax_history": processed_tax_history,
|
||||
}
|
||||
|
||||
@retry(
|
||||
retry=retry_if_exception_type(JSONDecodeError),
|
||||
wait=wait_exponential(min=4, max=10),
|
||||
stop=stop_after_attempt(3),
|
||||
)
|
||||
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
|
||||
"""
|
||||
Fetch extra property details for multiple properties in a single GraphQL query.
|
||||
Returns a map of property_id to its details.
|
||||
"""
|
||||
if not self.extra_property_data or not property_ids:
|
||||
return {}
|
||||
|
||||
property_ids = list(set(property_ids))
|
||||
|
||||
# Construct the bulk query
|
||||
fragments = "\n".join(
|
||||
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
|
||||
for property_id in property_ids
|
||||
)
|
||||
query = f"""{HOME_FRAGMENT}
|
||||
|
||||
query GetHomes {{
|
||||
{fragments}
|
||||
}}"""
|
||||
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
|
||||
data = response.json()
|
||||
|
||||
if "data" not in data:
|
||||
return {}
|
||||
|
||||
properties = data["data"]
|
||||
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
|
||||
|
||||
@staticmethod
|
||||
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
||||
neighborhoods_list = []
|
||||
|
@ -583,26 +565,43 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return ", ".join(neighborhoods_list) if neighborhoods_list else None
|
||||
|
||||
@staticmethod
|
||||
def handle_none_safely(address_part):
|
||||
if address_part is None:
|
||||
return ""
|
||||
|
||||
return address_part
|
||||
|
||||
@staticmethod
|
||||
def _parse_address(result: dict, search_type):
|
||||
if search_type == "general_search":
|
||||
return Address(
|
||||
street=f"{result['location']['address']['street_number']} {result['location']['address']['street_name']} {result['location']['address']['street_suffix']}",
|
||||
unit=result["location"]["address"]["unit"],
|
||||
city=result["location"]["address"]["city"],
|
||||
state=result["location"]["address"]["state_code"],
|
||||
zip=result["location"]["address"]["postal_code"],
|
||||
)
|
||||
address = result["location"]["address"]
|
||||
else:
|
||||
address = result["address"]
|
||||
|
||||
return Address(
|
||||
street=f"{result['address']['street_number']} {result['address']['street_name']} {result['address']['street_suffix']}",
|
||||
unit=result["address"]["unit"],
|
||||
city=result["address"]["city"],
|
||||
state=result["address"]["state_code"],
|
||||
zip=result["address"]["postal_code"],
|
||||
full_line=address.get("line"),
|
||||
street=" ".join(
|
||||
part
|
||||
for part in [
|
||||
address.get("street_number"),
|
||||
address.get("street_direction"),
|
||||
address.get("street_name"),
|
||||
address.get("street_suffix"),
|
||||
]
|
||||
if part is not None
|
||||
).strip(),
|
||||
unit=address["unit"],
|
||||
city=address["city"],
|
||||
state=address["state_code"],
|
||||
zip=address["postal_code"],
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _parse_description(result: dict) -> Description:
|
||||
def _parse_description(result: dict) -> Description | None:
|
||||
if not result:
|
||||
return None
|
||||
|
||||
description_data = result.get("description", {})
|
||||
|
||||
if description_data is None or not isinstance(description_data, dict):
|
||||
|
@ -612,17 +611,30 @@ class RealtorScraper(Scraper):
|
|||
if style is not None:
|
||||
style = style.upper()
|
||||
|
||||
primary_photo = ""
|
||||
if (primary_photo_info := result.get("primary_photo")) and (
|
||||
primary_photo_href := primary_photo_info.get("href")
|
||||
):
|
||||
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
|
||||
return Description(
|
||||
style=style,
|
||||
primary_photo=primary_photo,
|
||||
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
|
||||
style=(PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None),
|
||||
beds=description_data.get("beds"),
|
||||
baths_full=description_data.get("baths_full"),
|
||||
baths_half=description_data.get("baths_half"),
|
||||
sqft=description_data.get("sqft"),
|
||||
lot_sqft=description_data.get("lot_sqft"),
|
||||
sold_price=description_data.get("sold_price"),
|
||||
sold_price=(
|
||||
result.get("last_sold_price") or description_data.get("sold_price")
|
||||
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
|
||||
else None
|
||||
), #: has a sold date or list and sold price are different
|
||||
year_built=description_data.get("year_built"),
|
||||
garage=description_data.get("garage"),
|
||||
stories=description_data.get("stories"),
|
||||
text=description_data.get("text"),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
@ -634,12 +646,23 @@ class RealtorScraper(Scraper):
|
|||
today = datetime.now()
|
||||
|
||||
if list_date:
|
||||
if result["status"] == 'sold':
|
||||
if result["status"] == "sold":
|
||||
if last_sold_date:
|
||||
days = (last_sold_date - list_date).days
|
||||
if days >= 0:
|
||||
return days
|
||||
elif result["status"] in ('for_sale', 'for_rent'):
|
||||
elif result["status"] in ("for_sale", "for_rent"):
|
||||
days = (today - list_date).days
|
||||
if days >= 0:
|
||||
return days
|
||||
|
||||
@staticmethod
|
||||
def process_alt_photos(photos_info: list[dict]) -> list[str] | None:
|
||||
if not photos_info:
|
||||
return None
|
||||
|
||||
return [
|
||||
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
for photo_info in photos_info
|
||||
if photo_info.get("href")
|
||||
]
|
||||
|
|
|
@ -0,0 +1,242 @@
|
|||
_SEARCH_HOMES_DATA_BASE = """{
|
||||
pending_date
|
||||
listing_id
|
||||
property_id
|
||||
href
|
||||
list_date
|
||||
status
|
||||
last_sold_price
|
||||
last_sold_date
|
||||
list_price
|
||||
list_price_max
|
||||
list_price_min
|
||||
price_per_sqft
|
||||
tags
|
||||
details {
|
||||
category
|
||||
text
|
||||
parent_category
|
||||
}
|
||||
pet_policy {
|
||||
cats
|
||||
dogs
|
||||
dogs_small
|
||||
dogs_large
|
||||
__typename
|
||||
}
|
||||
units {
|
||||
availability {
|
||||
date
|
||||
__typename
|
||||
}
|
||||
description {
|
||||
baths_consolidated
|
||||
baths
|
||||
beds
|
||||
sqft
|
||||
__typename
|
||||
}
|
||||
list_price
|
||||
__typename
|
||||
}
|
||||
flags {
|
||||
is_contingent
|
||||
is_pending
|
||||
is_new_construction
|
||||
}
|
||||
description {
|
||||
type
|
||||
sqft
|
||||
beds
|
||||
baths_full
|
||||
baths_half
|
||||
lot_sqft
|
||||
year_built
|
||||
garage
|
||||
type
|
||||
name
|
||||
stories
|
||||
text
|
||||
}
|
||||
source {
|
||||
id
|
||||
listing_id
|
||||
}
|
||||
hoa {
|
||||
fee
|
||||
}
|
||||
location {
|
||||
address {
|
||||
street_direction
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
line
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
coordinate {
|
||||
lon
|
||||
lat
|
||||
}
|
||||
}
|
||||
county {
|
||||
name
|
||||
fips_code
|
||||
}
|
||||
neighborhoods {
|
||||
name
|
||||
}
|
||||
}
|
||||
tax_record {
|
||||
public_record_id
|
||||
}
|
||||
primary_photo(https: true) {
|
||||
href
|
||||
}
|
||||
photos(https: true) {
|
||||
href
|
||||
tags {
|
||||
label
|
||||
}
|
||||
}
|
||||
advertisers {
|
||||
email
|
||||
broker {
|
||||
name
|
||||
fulfillment_id
|
||||
}
|
||||
type
|
||||
name
|
||||
fulfillment_id
|
||||
builder {
|
||||
name
|
||||
fulfillment_id
|
||||
}
|
||||
phones {
|
||||
ext
|
||||
primary
|
||||
type
|
||||
number
|
||||
}
|
||||
office {
|
||||
name
|
||||
email
|
||||
fulfillment_id
|
||||
href
|
||||
phones {
|
||||
number
|
||||
type
|
||||
primary
|
||||
ext
|
||||
}
|
||||
mls_set
|
||||
}
|
||||
corporation {
|
||||
specialties
|
||||
name
|
||||
bio
|
||||
href
|
||||
fulfillment_id
|
||||
}
|
||||
mls_set
|
||||
nrds_id
|
||||
rental_corporation {
|
||||
fulfillment_id
|
||||
}
|
||||
rental_management {
|
||||
name
|
||||
href
|
||||
fulfillment_id
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
HOME_FRAGMENT = """
|
||||
fragment HomeData on Home {
|
||||
property_id
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
monthly_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
one_time_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
parking {
|
||||
unassigned_space_rent
|
||||
assigned_spaces_available
|
||||
description
|
||||
assigned_space_rent
|
||||
}
|
||||
terms {
|
||||
text
|
||||
category
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
HOMES_DATA = """%s
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
monthly_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
one_time_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
parking {
|
||||
unassigned_space_rent
|
||||
assigned_spaces_available
|
||||
description
|
||||
assigned_space_rent
|
||||
}
|
||||
terms {
|
||||
text
|
||||
category
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
estimates {
|
||||
__typename
|
||||
currentValues: current_values {
|
||||
__typename
|
||||
source { __typename type name }
|
||||
estimate
|
||||
estimateHigh: estimate_high
|
||||
estimateLow: estimate_low
|
||||
date
|
||||
isBestHomeValue: isbest_homevalue
|
||||
}
|
||||
}
|
||||
}""" % _SEARCH_HOMES_DATA_BASE
|
||||
|
||||
SEARCH_HOMES_DATA = """%s
|
||||
current_estimates {
|
||||
__typename
|
||||
source {
|
||||
__typename
|
||||
type
|
||||
name
|
||||
}
|
||||
estimate
|
||||
estimateHigh: estimate_high
|
||||
estimateLow: estimate_low
|
||||
date
|
||||
isBestHomeValue: isbest_homevalue
|
||||
}
|
||||
}""" % _SEARCH_HOMES_DATA_BASE
|
||||
|
||||
GENERAL_RESULTS_QUERY = """{
|
||||
count
|
||||
total
|
||||
results %s
|
||||
}""" % SEARCH_HOMES_DATA
|
|
@ -2,5 +2,13 @@ class InvalidListingType(Exception):
|
|||
"""Raised when a provided listing type is does not exist."""
|
||||
|
||||
|
||||
class NoResultsFound(Exception):
|
||||
"""Raised when no results are found for the given location"""
|
||||
class InvalidDate(Exception):
|
||||
"""Raised when only one of date_from or date_to is provided or not in the correct format. ex: 2023-10-23"""
|
||||
|
||||
|
||||
class AuthenticationError(Exception):
|
||||
"""Raised when there is an issue with the authentication process."""
|
||||
def __init__(self, *args, response):
|
||||
super().__init__(*args)
|
||||
|
||||
self.response = response
|
||||
|
|
|
@ -1,13 +1,19 @@
|
|||
from .core.scrapers.models import Property, ListingType
|
||||
from __future__ import annotations
|
||||
import pandas as pd
|
||||
from .exceptions import InvalidListingType
|
||||
from datetime import datetime
|
||||
from .core.scrapers.models import Property, ListingType, Advertisers
|
||||
from .exceptions import InvalidListingType, InvalidDate
|
||||
|
||||
ordered_properties = [
|
||||
"property_url",
|
||||
"property_id",
|
||||
"listing_id",
|
||||
"mls",
|
||||
"mls_id",
|
||||
"status",
|
||||
"text",
|
||||
"style",
|
||||
"full_street_line",
|
||||
"street",
|
||||
"unit",
|
||||
"city",
|
||||
|
@ -20,16 +26,44 @@ ordered_properties = [
|
|||
"year_built",
|
||||
"days_on_mls",
|
||||
"list_price",
|
||||
"list_price_min",
|
||||
"list_price_max",
|
||||
"list_date",
|
||||
"sold_price",
|
||||
"last_sold_date",
|
||||
"assessed_value",
|
||||
"estimated_value",
|
||||
"tax",
|
||||
"tax_history",
|
||||
"new_construction",
|
||||
"lot_sqft",
|
||||
"price_per_sqft",
|
||||
"latitude",
|
||||
"longitude",
|
||||
"neighborhoods",
|
||||
"county",
|
||||
"fips_code",
|
||||
"stories",
|
||||
"hoa_fee",
|
||||
"parking_garage",
|
||||
"agent_id",
|
||||
"agent_name",
|
||||
"agent_email",
|
||||
"agent_phones",
|
||||
"agent_mls_set",
|
||||
"agent_nrds_id",
|
||||
"broker_id",
|
||||
"broker_name",
|
||||
"builder_id",
|
||||
"builder_name",
|
||||
"office_id",
|
||||
"office_mls_set",
|
||||
"office_name",
|
||||
"office_email",
|
||||
"office_phones",
|
||||
"nearby_schools",
|
||||
"primary_photo",
|
||||
"alt_photos",
|
||||
]
|
||||
|
||||
|
||||
|
@ -39,25 +73,65 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
|
||||
if "address" in prop_data:
|
||||
address_data = prop_data["address"]
|
||||
prop_data["full_street_line"] = address_data.full_line
|
||||
prop_data["street"] = address_data.street
|
||||
prop_data["unit"] = address_data.unit
|
||||
prop_data["city"] = address_data.city
|
||||
prop_data["state"] = address_data.state
|
||||
prop_data["zip_code"] = address_data.zip
|
||||
|
||||
if "advertisers" in prop_data and prop_data.get("advertisers"):
|
||||
advertiser_data: Advertisers | None = prop_data["advertisers"]
|
||||
if advertiser_data.agent:
|
||||
agent_data = advertiser_data.agent
|
||||
prop_data["agent_id"] = agent_data.uuid
|
||||
prop_data["agent_name"] = agent_data.name
|
||||
prop_data["agent_email"] = agent_data.email
|
||||
prop_data["agent_phones"] = agent_data.phones
|
||||
prop_data["agent_mls_set"] = agent_data.mls_set
|
||||
prop_data["agent_nrds_id"] = agent_data.nrds_id
|
||||
|
||||
if advertiser_data.broker:
|
||||
broker_data = advertiser_data.broker
|
||||
prop_data["broker_id"] = broker_data.uuid
|
||||
prop_data["broker_name"] = broker_data.name
|
||||
|
||||
if advertiser_data.builder:
|
||||
builder_data = advertiser_data.builder
|
||||
prop_data["builder_id"] = builder_data.uuid
|
||||
prop_data["builder_name"] = builder_data.name
|
||||
|
||||
if advertiser_data.office:
|
||||
office_data = advertiser_data.office
|
||||
prop_data["office_id"] = office_data.uuid
|
||||
prop_data["office_name"] = office_data.name
|
||||
prop_data["office_email"] = office_data.email
|
||||
prop_data["office_phones"] = office_data.phones
|
||||
prop_data["office_mls_set"] = office_data.mls_set
|
||||
|
||||
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
|
||||
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
|
||||
prop_data["nearby_schools"] = ", ".join(set(prop_data["nearby_schools"])) if prop_data["nearby_schools"] else None
|
||||
|
||||
description = result.description
|
||||
prop_data["style"] = description.style
|
||||
prop_data["beds"] = description.beds
|
||||
prop_data["full_baths"] = description.baths_full
|
||||
prop_data["half_baths"] = description.baths_half
|
||||
prop_data["sqft"] = description.sqft
|
||||
prop_data["lot_sqft"] = description.lot_sqft
|
||||
prop_data["sold_price"] = description.sold_price
|
||||
prop_data["year_built"] = description.year_built
|
||||
prop_data["parking_garage"] = description.garage
|
||||
prop_data["stories"] = description.stories
|
||||
if description:
|
||||
prop_data["primary_photo"] = description.primary_photo
|
||||
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
|
||||
prop_data["style"] = (
|
||||
description.style
|
||||
if isinstance(description.style, str)
|
||||
else description.style.value if description.style else None
|
||||
)
|
||||
prop_data["beds"] = description.beds
|
||||
prop_data["full_baths"] = description.baths_full
|
||||
prop_data["half_baths"] = description.baths_half
|
||||
prop_data["sqft"] = description.sqft
|
||||
prop_data["lot_sqft"] = description.lot_sqft
|
||||
prop_data["sold_price"] = description.sold_price
|
||||
prop_data["year_built"] = description.year_built
|
||||
prop_data["parking_garage"] = description.garage
|
||||
prop_data["stories"] = description.stories
|
||||
prop_data["text"] = description.text
|
||||
|
||||
properties_df = pd.DataFrame([prop_data])
|
||||
properties_df = properties_df.reindex(columns=ordered_properties)
|
||||
|
@ -67,6 +141,26 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
|
||||
def validate_input(listing_type: str) -> None:
|
||||
if listing_type.upper() not in ListingType.__members__:
|
||||
raise InvalidListingType(
|
||||
f"Provided listing type, '{listing_type}', does not exist."
|
||||
)
|
||||
raise InvalidListingType(f"Provided listing type, '{listing_type}', does not exist.")
|
||||
|
||||
|
||||
def validate_dates(date_from: str | None, date_to: str | None) -> None:
|
||||
if isinstance(date_from, str) != isinstance(date_to, str):
|
||||
raise InvalidDate("Both date_from and date_to must be provided.")
|
||||
|
||||
if date_from and date_to:
|
||||
try:
|
||||
date_from_obj = datetime.strptime(date_from, "%Y-%m-%d")
|
||||
date_to_obj = datetime.strptime(date_to, "%Y-%m-%d")
|
||||
|
||||
if date_to_obj < date_from_obj:
|
||||
raise InvalidDate("date_to must be after date_from.")
|
||||
except ValueError:
|
||||
raise InvalidDate(f"Invalid date format or range")
|
||||
|
||||
|
||||
def validate_limit(limit: int) -> None:
|
||||
#: 1 -> 10000 limit
|
||||
|
||||
if limit is not None and (limit < 1 or limit > 10000):
|
||||
raise ValueError("Property limit must be between 1 and 10,000.")
|
||||
|
|
|
@ -1,4 +1,15 @@
|
|||
# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
version = "0.7.0"
|
||||
description = "Reusable constraint types to use with typing.Annotated"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"},
|
||||
{file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "certifi"
|
||||
|
@ -11,6 +22,17 @@ files = [
|
|||
{file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "cfgv"
|
||||
version = "3.4.0"
|
||||
description = "Validate configuration and produce human readable error messages."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "cfgv-3.4.0-py2.py3-none-any.whl", hash = "sha256:b7265b1f29fd3316bfcd2b330d63d024f2bfd8bcb8b0272f8e19a504856c48f9"},
|
||||
{file = "cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "charset-normalizer"
|
||||
version = "3.3.0"
|
||||
|
@ -122,14 +144,14 @@ files = [
|
|||
]
|
||||
|
||||
[[package]]
|
||||
name = "et-xmlfile"
|
||||
version = "1.1.0"
|
||||
description = "An implementation of lxml.xmlfile for the standard library"
|
||||
name = "distlib"
|
||||
version = "0.3.8"
|
||||
description = "Distribution utilities"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"},
|
||||
{file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"},
|
||||
{file = "distlib-0.3.8-py2.py3-none-any.whl", hash = "sha256:034db59a0b96f8ca18035f36290806a9a6e6bd9d1ff91e45a7f172eb17e51784"},
|
||||
{file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -146,6 +168,36 @@ files = [
|
|||
[package.extras]
|
||||
test = ["pytest (>=6)"]
|
||||
|
||||
[[package]]
|
||||
name = "filelock"
|
||||
version = "3.13.4"
|
||||
description = "A platform independent file lock."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"},
|
||||
{file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
|
||||
testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"]
|
||||
typing = ["typing-extensions (>=4.8)"]
|
||||
|
||||
[[package]]
|
||||
name = "identify"
|
||||
version = "2.5.35"
|
||||
description = "File identification library for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "identify-2.5.35-py2.py3-none-any.whl", hash = "sha256:c4de0081837b211594f8e877a6b4fad7ca32bbfc1a9307fdd61c28bfe923f13e"},
|
||||
{file = "identify-2.5.35.tar.gz", hash = "sha256:10a7ca245cfcd756a554a7288159f72ff105ad233c7c4b9c6f0f4d108f5f6791"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
license = ["ukkonen"]
|
||||
|
||||
[[package]]
|
||||
name = "idna"
|
||||
version = "3.4"
|
||||
|
@ -168,6 +220,20 @@ files = [
|
|||
{file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "nodeenv"
|
||||
version = "1.8.0"
|
||||
description = "Node.js virtual environment builder"
|
||||
optional = false
|
||||
python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*"
|
||||
files = [
|
||||
{file = "nodeenv-1.8.0-py2.py3-none-any.whl", hash = "sha256:df865724bb3c3adc86b3876fa209771517b0cfe596beff01a92700e0e8be4cec"},
|
||||
{file = "nodeenv-1.8.0.tar.gz", hash = "sha256:d51e0c37e64fbf47d017feac3145cdbb58836d7eee8c6f6d3b6880c5456227d2"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
setuptools = "*"
|
||||
|
||||
[[package]]
|
||||
name = "numpy"
|
||||
version = "1.26.0"
|
||||
|
@ -209,20 +275,6 @@ files = [
|
|||
{file = "numpy-1.26.0.tar.gz", hash = "sha256:f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "openpyxl"
|
||||
version = "3.1.2"
|
||||
description = "A Python library to read/write Excel 2010 xlsx/xlsm files"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "openpyxl-3.1.2-py2.py3-none-any.whl", hash = "sha256:f91456ead12ab3c6c2e9491cf33ba6d08357d802192379bb482f1033ade496f5"},
|
||||
{file = "openpyxl-3.1.2.tar.gz", hash = "sha256:a6f5977418eff3b2d5500d54d9db50c8277a368436f4e4f8ddb1be3422870184"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
et-xmlfile = "*"
|
||||
|
||||
[[package]]
|
||||
name = "packaging"
|
||||
version = "23.2"
|
||||
|
@ -302,6 +354,21 @@ sql-other = ["SQLAlchemy (>=1.4.36)"]
|
|||
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"]
|
||||
xml = ["lxml (>=4.8.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "platformdirs"
|
||||
version = "4.2.0"
|
||||
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"},
|
||||
{file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
|
||||
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"]
|
||||
|
||||
[[package]]
|
||||
name = "pluggy"
|
||||
version = "1.3.0"
|
||||
|
@ -317,6 +384,134 @@ files = [
|
|||
dev = ["pre-commit", "tox"]
|
||||
testing = ["pytest", "pytest-benchmark"]
|
||||
|
||||
[[package]]
|
||||
name = "pre-commit"
|
||||
version = "3.7.0"
|
||||
description = "A framework for managing and maintaining multi-language pre-commit hooks."
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "pre_commit-3.7.0-py2.py3-none-any.whl", hash = "sha256:5eae9e10c2b5ac51577c3452ec0a490455c45a0533f7960f993a0d01e59decab"},
|
||||
{file = "pre_commit-3.7.0.tar.gz", hash = "sha256:e209d61b8acdcf742404408531f0c37d49d2c734fd7cff2d6076083d191cb060"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
cfgv = ">=2.0.0"
|
||||
identify = ">=1.0.0"
|
||||
nodeenv = ">=0.11.1"
|
||||
pyyaml = ">=5.1"
|
||||
virtualenv = ">=20.10.0"
|
||||
|
||||
[[package]]
|
||||
name = "pydantic"
|
||||
version = "2.7.4"
|
||||
description = "Data validation using Python type hints"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"},
|
||||
{file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
annotated-types = ">=0.4.0"
|
||||
pydantic-core = "2.18.4"
|
||||
typing-extensions = ">=4.6.1"
|
||||
|
||||
[package.extras]
|
||||
email = ["email-validator (>=2.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic-core"
|
||||
version = "2.18.4"
|
||||
description = "Core functionality for Pydantic validation and serialization"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"},
|
||||
{file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"},
|
||||
{file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"},
|
||||
{file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"},
|
||||
{file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"},
|
||||
{file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"},
|
||||
{file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"},
|
||||
{file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"},
|
||||
{file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"},
|
||||
{file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"},
|
||||
{file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"},
|
||||
{file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"},
|
||||
{file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"},
|
||||
{file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
|
||||
|
||||
[[package]]
|
||||
name = "pytest"
|
||||
version = "7.4.2"
|
||||
|
@ -364,6 +559,66 @@ files = [
|
|||
{file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pyyaml"
|
||||
version = "6.0.1"
|
||||
description = "YAML parser and emitter for Python"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"},
|
||||
{file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"},
|
||||
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"},
|
||||
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"},
|
||||
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"},
|
||||
{file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"},
|
||||
{file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
|
||||
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "requests"
|
||||
version = "2.31.0"
|
||||
|
@ -385,6 +640,22 @@ urllib3 = ">=1.21.1,<3"
|
|||
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
|
||||
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
||||
|
||||
[[package]]
|
||||
name = "setuptools"
|
||||
version = "69.5.1"
|
||||
description = "Easily download, build, install, upgrade, and uninstall Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"},
|
||||
{file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
|
||||
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
|
||||
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
|
||||
|
||||
[[package]]
|
||||
name = "six"
|
||||
version = "1.16.0"
|
||||
|
@ -396,6 +667,21 @@ files = [
|
|||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tenacity"
|
||||
version = "9.0.0"
|
||||
description = "Retry code until it succeeds"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
|
||||
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
doc = ["reno", "sphinx"]
|
||||
test = ["pytest", "tornado (>=4.5)", "typeguard"]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.0.1"
|
||||
|
@ -407,6 +693,17 @@ files = [
|
|||
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "typing-extensions"
|
||||
version = "4.12.2"
|
||||
description = "Backported and Experimental Type Hints for Python 3.8+"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
|
||||
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tzdata"
|
||||
version = "2023.3"
|
||||
|
@ -435,7 +732,27 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
|
|||
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
|
||||
zstd = ["zstandard (>=0.18.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "virtualenv"
|
||||
version = "20.25.1"
|
||||
description = "Virtual Python Environment builder"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "virtualenv-20.25.1-py3-none-any.whl", hash = "sha256:961c026ac520bac5f69acb8ea063e8a4f071bcc9457b9c1f28f6b085c511583a"},
|
||||
{file = "virtualenv-20.25.1.tar.gz", hash = "sha256:e08e13ecdca7a0bd53798f356d5831434afa5b07b93f0abdf0797b7a06ffe197"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
distlib = ">=0.3.7,<1"
|
||||
filelock = ">=3.12.2,<4"
|
||||
platformdirs = ">=3.9.1,<5"
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"]
|
||||
test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<3.13"
|
||||
content-hash = "09ad811d74a42363ff4c3ccd012d8f73c89d7d978e5a6445b0f3d2e231922f1b"
|
||||
python-versions = ">=3.9,<3.13"
|
||||
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"
|
||||
|
|
|
@ -1,23 +1,25 @@
|
|||
[tool.poetry]
|
||||
name = "homeharvest"
|
||||
version = "0.3.5"
|
||||
description = "Real estate scraping library supporting Zillow, Realtor.com & Redfin."
|
||||
authors = ["Zachary Hampton <zachary@zacharysproducts.com>", "Cullen Watson <cullen@cullen.ai>"]
|
||||
homepage = "https://github.com/ZacharyHampton/HomeHarvest"
|
||||
version = "0.4.7"
|
||||
description = "Real estate scraping library"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
homeharvest = "homeharvest.cli:main"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<3.13"
|
||||
python = ">=3.9,<3.13"
|
||||
requests = "^2.31.0"
|
||||
pandas = "^2.1.1"
|
||||
openpyxl = "^3.1.2"
|
||||
pydantic = "^2.7.4"
|
||||
tenacity = "^9.0.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pytest = "^7.4.2"
|
||||
pre-commit = "^3.7.0"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
|
|
|
@ -1,23 +1,13 @@
|
|||
from homeharvest import scrape_property
|
||||
from homeharvest.exceptions import (
|
||||
InvalidListingType,
|
||||
NoResultsFound,
|
||||
)
|
||||
from homeharvest import scrape_property, Property
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_realtor_pending_or_contingent():
|
||||
pending_or_contingent_result = scrape_property(
|
||||
location="Surprise, AZ", listing_type="pending"
|
||||
)
|
||||
pending_or_contingent_result = scrape_property(location="Surprise, AZ", listing_type="pending")
|
||||
|
||||
regular_result = scrape_property(location="Surprise, AZ", listing_type="for_sale")
|
||||
regular_result = scrape_property(location="Surprise, AZ", listing_type="for_sale", exclude_pending=True)
|
||||
|
||||
assert all(
|
||||
[
|
||||
result is not None
|
||||
for result in [pending_or_contingent_result, regular_result]
|
||||
]
|
||||
)
|
||||
assert all([result is not None for result in [pending_or_contingent_result, regular_result]])
|
||||
assert len(pending_or_contingent_result) != len(regular_result)
|
||||
|
||||
|
||||
|
@ -50,6 +40,16 @@ def test_realtor_pending_comps():
|
|||
assert len(set([len(result) for result in results])) == len(results)
|
||||
|
||||
|
||||
def test_realtor_sold_past():
|
||||
result = scrape_property(
|
||||
location="San Diego, CA",
|
||||
past_days=30,
|
||||
listing_type="sold",
|
||||
)
|
||||
|
||||
assert result is not None and len(result) > 0
|
||||
|
||||
|
||||
def test_realtor_comps():
|
||||
result = scrape_property(
|
||||
location="2530 Al Lipscomb Way",
|
||||
|
@ -62,17 +62,27 @@ def test_realtor_comps():
|
|||
|
||||
|
||||
def test_realtor_last_x_days_sold():
|
||||
days_result_30 = scrape_property(location="Dallas, TX", listing_type="sold", past_days=30)
|
||||
|
||||
days_result_10 = scrape_property(location="Dallas, TX", listing_type="sold", past_days=10)
|
||||
|
||||
assert all([result is not None for result in [days_result_30, days_result_10]]) and len(days_result_30) != len(
|
||||
days_result_10
|
||||
)
|
||||
|
||||
|
||||
def test_realtor_date_range_sold():
|
||||
days_result_30 = scrape_property(
|
||||
location="Dallas, TX", listing_type="sold", past_days=30
|
||||
location="Dallas, TX", listing_type="sold", date_from="2023-05-01", date_to="2023-05-28"
|
||||
)
|
||||
|
||||
days_result_10 = scrape_property(
|
||||
location="Dallas, TX", listing_type="sold", past_days=10
|
||||
days_result_60 = scrape_property(
|
||||
location="Dallas, TX", listing_type="sold", date_from="2023-04-01", date_to="2023-06-10"
|
||||
)
|
||||
|
||||
assert all(
|
||||
[result is not None for result in [days_result_30, days_result_10]]
|
||||
) and len(days_result_30) != len(days_result_10)
|
||||
assert all([result is not None for result in [days_result_30, days_result_60]]) and len(days_result_30) < len(
|
||||
days_result_60
|
||||
)
|
||||
|
||||
|
||||
def test_realtor_single_property():
|
||||
|
@ -97,25 +107,196 @@ def test_realtor():
|
|||
listing_type="for_sale",
|
||||
),
|
||||
scrape_property(
|
||||
location="Phoenix, AZ", listing_type="for_rent"
|
||||
location="Phoenix, AZ", listing_type="for_rent", limit=1000
|
||||
), #: does not support "city, state, USA" format
|
||||
scrape_property(
|
||||
location="Dallas, TX", listing_type="sold"
|
||||
location="Dallas, TX", listing_type="sold", limit=1000
|
||||
), #: does not support "city, state, USA" format
|
||||
scrape_property(location="85281"),
|
||||
]
|
||||
|
||||
assert all([result is not None for result in results])
|
||||
|
||||
bad_results = []
|
||||
try:
|
||||
bad_results += [
|
||||
scrape_property(
|
||||
location="abceefg ju098ot498hh9",
|
||||
listing_type="for_sale",
|
||||
)
|
||||
]
|
||||
except (InvalidListingType, NoResultsFound):
|
||||
|
||||
def test_realtor_city():
|
||||
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_realtor_land():
|
||||
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_realtor_bad_address():
|
||||
bad_results = scrape_property(
|
||||
location="abceefg ju098ot498hh9",
|
||||
listing_type="for_sale",
|
||||
)
|
||||
|
||||
if len(bad_results) == 0:
|
||||
assert True
|
||||
|
||||
assert all([result is None for result in bad_results])
|
||||
|
||||
def test_realtor_foreclosed():
|
||||
foreclosed = scrape_property(location="Dallas, TX", listing_type="for_sale", past_days=100, foreclosure=True)
|
||||
|
||||
not_foreclosed = scrape_property(location="Dallas, TX", listing_type="for_sale", past_days=100, foreclosure=False)
|
||||
|
||||
assert len(foreclosed) != len(not_foreclosed)
|
||||
|
||||
|
||||
def test_realtor_agent():
|
||||
scraped = scrape_property(location="Detroit, MI", listing_type="for_sale", limit=1000, extra_property_data=False)
|
||||
assert scraped["agent_name"].nunique() > 1
|
||||
|
||||
|
||||
def test_realtor_without_extra_details():
|
||||
results = [
|
||||
scrape_property(
|
||||
location="00741",
|
||||
listing_type="sold",
|
||||
limit=10,
|
||||
extra_property_data=False,
|
||||
),
|
||||
scrape_property(
|
||||
location="00741",
|
||||
listing_type="sold",
|
||||
limit=10,
|
||||
extra_property_data=True,
|
||||
),
|
||||
]
|
||||
|
||||
assert not results[0].equals(results[1])
|
||||
|
||||
|
||||
def test_pr_zip_code():
|
||||
results = scrape_property(
|
||||
location="00741",
|
||||
listing_type="for_sale",
|
||||
)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_exclude_pending():
|
||||
results = scrape_property(
|
||||
location="33567",
|
||||
listing_type="pending",
|
||||
exclude_pending=True,
|
||||
)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_style_value_error():
|
||||
results = scrape_property(
|
||||
location="Alaska, AK",
|
||||
listing_type="sold",
|
||||
extra_property_data=False,
|
||||
limit=1000,
|
||||
)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_primary_image_error():
|
||||
results = scrape_property(
|
||||
location="Spokane, PA",
|
||||
listing_type="for_rent", # or (for_sale, for_rent, pending)
|
||||
past_days=360,
|
||||
radius=3,
|
||||
extra_property_data=False,
|
||||
)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_limit():
|
||||
over_limit = 876
|
||||
extra_params = {"limit": over_limit}
|
||||
|
||||
over_results = scrape_property(
|
||||
location="Waddell, AZ",
|
||||
listing_type="for_sale",
|
||||
**extra_params,
|
||||
)
|
||||
|
||||
assert over_results is not None and len(over_results) <= over_limit
|
||||
|
||||
under_limit = 1
|
||||
under_results = scrape_property(
|
||||
location="Waddell, AZ",
|
||||
listing_type="for_sale",
|
||||
limit=under_limit,
|
||||
)
|
||||
|
||||
assert under_results is not None and len(under_results) == under_limit
|
||||
|
||||
|
||||
def test_apartment_list_price():
|
||||
results = scrape_property(
|
||||
location="Spokane, WA",
|
||||
listing_type="for_rent", # or (for_sale, for_rent, pending)
|
||||
extra_property_data=False,
|
||||
)
|
||||
|
||||
assert results is not None
|
||||
|
||||
results = results[results["style"] == "APARTMENT"]
|
||||
|
||||
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
|
||||
assert (
|
||||
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
|
||||
> 0.5
|
||||
)
|
||||
|
||||
|
||||
def test_builder_exists():
|
||||
listing = scrape_property(
|
||||
location="18149 W Poston Dr, Surprise, AZ 85387",
|
||||
extra_property_data=False,
|
||||
)
|
||||
|
||||
assert listing is not None
|
||||
assert listing["builder_name"].nunique() > 0
|
||||
|
||||
|
||||
def test_phone_number_matching():
|
||||
searches = [
|
||||
scrape_property(
|
||||
location="Phoenix, AZ",
|
||||
listing_type="for_sale",
|
||||
limit=100,
|
||||
),
|
||||
scrape_property(
|
||||
location="Phoenix, AZ",
|
||||
listing_type="for_sale",
|
||||
limit=100,
|
||||
),
|
||||
]
|
||||
|
||||
assert all([search is not None for search in searches])
|
||||
|
||||
#: random row
|
||||
row = searches[0][searches[0]["agent_phones"].notnull()].sample()
|
||||
|
||||
#: find matching row
|
||||
matching_row = searches[1].loc[searches[1]["property_url"] == row["property_url"].values[0]]
|
||||
|
||||
#: assert phone numbers are the same
|
||||
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
|
||||
|
||||
|
||||
def test_return_type():
|
||||
results = {
|
||||
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
|
||||
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
|
||||
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
|
||||
}
|
||||
|
||||
assert isinstance(results["pandas"], pd.DataFrame)
|
||||
assert isinstance(results["pydantic"][0], Property)
|
||||
assert isinstance(results["raw"][0], dict)
|
||||
|
|
Loading…
Reference in New Issue