Compare commits
12 Commits
Author | SHA1 | Date |
---|---|---|
|
65f799a27d | |
|
0de916e590 | |
|
6a3f7df087 | |
|
a75bcc2aa0 | |
|
1082b86fa1 | |
|
8e04f6b117 | |
|
1f717bd9e3 | |
|
8cfe056f79 | |
|
1010c743b6 | |
|
32fdc281e3 | |
|
6d14b8df5a | |
|
3f44744d61 |
|
@ -0,0 +1 @@
|
|||
github: Bunsly
|
64
README.md
64
README.md
|
@ -2,10 +2,6 @@
|
|||
|
||||
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
|
||||
|
||||
**Not technical?** Try out the web scraping tool on our site at [tryhomeharvest.com](https://tryhomeharvest.com).
|
||||
|
||||
*Looking to build a data-focused software product?* **[Book a call](https://bunsly.com)** *to work with us.*
|
||||
|
||||
## HomeHarvest Features
|
||||
|
||||
- **Source**: Fetches properties directly from **Realtor.com**.
|
||||
|
@ -40,6 +36,7 @@ properties = scrape_property(
|
|||
listing_type="sold", # or (for_sale, for_rent, pending)
|
||||
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
|
||||
|
||||
# property_type=['single_family','multi_family'],
|
||||
# date_from="2023-05-01", # alternative to past_days
|
||||
# date_to="2023-05-28",
|
||||
# foreclosure=True
|
||||
|
@ -68,13 +65,25 @@ print(properties.head())
|
|||
```
|
||||
Required
|
||||
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
|
||||
└── listing_type (option): Choose the type of listing.
|
||||
├── listing_type (option): Choose the type of listing.
|
||||
- 'for_rent'
|
||||
- 'for_sale'
|
||||
- 'sold'
|
||||
- 'pending'
|
||||
- 'pending' (for pending/contingent sales)
|
||||
|
||||
Optional
|
||||
├── property_type (list): Choose the type of properties.
|
||||
- 'single_family'
|
||||
- 'multi_family'
|
||||
- 'condos'
|
||||
- 'condo_townhome_rowhome_coop'
|
||||
- 'condo_townhome'
|
||||
- 'townhomes'
|
||||
- 'duplex_triplex'
|
||||
- 'farm'
|
||||
- 'land'
|
||||
- 'mobile'
|
||||
|
||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||
│
|
||||
|
@ -92,9 +101,11 @@ Optional
|
|||
│
|
||||
├── proxy (string): In format 'http://user:pass@host:port'
|
||||
│
|
||||
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
|
||||
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
|
||||
│
|
||||
└── exclude_pending (True/False): If set, excludes pending properties from the results unless listing_type is 'pending'
|
||||
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
|
||||
│
|
||||
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
|
||||
```
|
||||
|
||||
### Property Schema
|
||||
|
@ -102,6 +113,8 @@ Optional
|
|||
Property
|
||||
├── Basic Information:
|
||||
│ ├── property_url
|
||||
│ ├── property_id
|
||||
│ ├── listing_id
|
||||
│ ├── mls
|
||||
│ ├── mls_id
|
||||
│ └── status
|
||||
|
@ -121,39 +134,60 @@ Property
|
|||
│ ├── sqft
|
||||
│ ├── year_built
|
||||
│ ├── stories
|
||||
│ ├── garage
|
||||
│ └── lot_sqft
|
||||
|
||||
├── Property Listing Details:
|
||||
│ ├── days_on_mls
|
||||
│ ├── list_price
|
||||
│ ├── list_price_min
|
||||
│ ├── list_price_max
|
||||
│ ├── list_date
|
||||
│ ├── pending_date
|
||||
│ ├── sold_price
|
||||
│ ├── last_sold_date
|
||||
│ ├── price_per_sqft
|
||||
│ ├── parking_garage
|
||||
│ ├── new_construction
|
||||
│ └── hoa_fee
|
||||
|
||||
├── Tax Information:
|
||||
│ ├── year
|
||||
│ ├── tax
|
||||
│ ├── assessment
|
||||
│ │ ├── building
|
||||
│ │ ├── land
|
||||
│ │ └── total
|
||||
|
||||
├── Location Details:
|
||||
│ ├── latitude
|
||||
│ ├── longitude
|
||||
│ ├── nearby_schools
|
||||
|
||||
|
||||
├── Agent Info:
|
||||
│ ├── agent
|
||||
│ ├── agent_id
|
||||
│ ├── agent_name
|
||||
│ ├── agent_email
|
||||
│ └── agent_phone
|
||||
|
||||
├── Broker Info:
|
||||
│ ├── broker
|
||||
│ ├── broker_email
|
||||
│ └── broker_website
|
||||
│ ├── broker_id
|
||||
│ └── broker_name
|
||||
|
||||
├── Builder Info:
|
||||
│ ├── builder_id
|
||||
│ └── builder_name
|
||||
|
||||
├── Office Info:
|
||||
│ ├── office_id
|
||||
│ ├── office_name
|
||||
│ ├── office_phones
|
||||
│ └── office_email
|
||||
|
||||
```
|
||||
|
||||
### Exceptions
|
||||
The following exceptions may be raised when using HomeHarvest:
|
||||
|
||||
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`
|
||||
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`, `pending`.
|
||||
- `InvalidDate` - date_from or date_to is not in the format YYYY-MM-DD.
|
||||
- `AuthenticationError` - Realtor.com token request failed.
|
||||
|
|
|
@ -1,141 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
|
||||
"metadata": {
|
||||
"is_executing": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from homeharvest import scrape_property\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.set_option('display.max_columns', None) # Show all columns\n",
|
||||
"pd.set_option('display.max_rows', None) # Show all rows\n",
|
||||
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
|
||||
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check for sale properties\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aaf86093",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# search a specific address\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"2530 Al Lipscomb Way\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check rentals\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"chicago, illinois\",\n",
|
||||
" listing_type=\"for_rent\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af280cd3",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check sold properties\n",
|
||||
"properties = scrape_property(\n",
|
||||
" location=\"90210\",\n",
|
||||
" listing_type=\"sold\",\n",
|
||||
" past_days=10\n",
|
||||
")\n",
|
||||
"display(properties)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "628c1ce2",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"is_executing": true,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# display clickable URLs\n",
|
||||
"from IPython.display import display, HTML\n",
|
||||
"properties['property_url'] = '<a href=\"' + properties['property_url'] + '\" target=\"_blank\">' + properties['property_url'] + '</a>'\n",
|
||||
"\n",
|
||||
"html = properties.to_html(escape=False)\n",
|
||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
||||
"display(HTML(truncate_width))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
from homeharvest import scrape_property
|
||||
from datetime import datetime
|
||||
|
||||
# Generate filename based on current timestamp
|
||||
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"HomeHarvest_{current_timestamp}.csv"
|
||||
|
||||
properties = scrape_property(
|
||||
location="San Diego, CA",
|
||||
listing_type="sold", # or (for_sale, for_rent)
|
||||
past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
|
||||
# pending_or_contingent=True # use on for_sale listings to find pending / contingent listings
|
||||
# mls_only=True, # only fetch MLS listings
|
||||
# proxy="http://user:pass@host:port" # use a proxy to change your IP address
|
||||
)
|
||||
print(f"Number of properties: {len(properties)}")
|
||||
|
||||
# Export to csv
|
||||
properties.to_csv(filename, index=False)
|
||||
print(properties.head())
|
|
@ -0,0 +1,104 @@
|
|||
"""
|
||||
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
|
||||
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
|
||||
"""
|
||||
|
||||
import os
|
||||
import pandas as pd
|
||||
from homeharvest import scrape_property
|
||||
|
||||
|
||||
def get_property_details(zip: str, listing_type):
|
||||
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
|
||||
if not properties.empty:
|
||||
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
|
||||
|
||||
properties = properties[properties["sqft"].isnull()]
|
||||
properties["ppa"] = properties.apply(
|
||||
lambda row: (
|
||||
int(
|
||||
(
|
||||
row["sold_price"]
|
||||
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
|
||||
else row["list_price"]
|
||||
)
|
||||
/ row["lot_acres"]
|
||||
)
|
||||
if pd.notnull(row["lot_acres"])
|
||||
and row["lot_acres"] > 0
|
||||
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
|
||||
else None
|
||||
),
|
||||
axis=1,
|
||||
)
|
||||
properties["ppa"] = properties["ppa"].astype("Int64")
|
||||
selected_columns = [
|
||||
"property_url",
|
||||
"property_id",
|
||||
"style",
|
||||
"status",
|
||||
"street",
|
||||
"city",
|
||||
"state",
|
||||
"zip_code",
|
||||
"county",
|
||||
"list_date",
|
||||
"last_sold_date",
|
||||
"list_price",
|
||||
"sold_price",
|
||||
"lot_sqft",
|
||||
"lot_acres",
|
||||
"ppa",
|
||||
]
|
||||
properties = properties[selected_columns]
|
||||
return properties
|
||||
|
||||
|
||||
def output_to_excel(zip_code, sold_df, pending_df):
|
||||
root_folder = os.getcwd()
|
||||
zip_folder = os.path.join(root_folder, "zips", zip_code)
|
||||
|
||||
# Create zip code folder if it doesn't exist
|
||||
os.makedirs(zip_folder, exist_ok=True)
|
||||
|
||||
# Define file paths
|
||||
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
|
||||
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
|
||||
|
||||
# Save individual sold and pending files
|
||||
sold_df.to_excel(sold_file, index=False)
|
||||
pending_df.to_excel(pending_file, index=False)
|
||||
|
||||
|
||||
zip_codes = map(
|
||||
str,
|
||||
[
|
||||
22920,
|
||||
77024,
|
||||
78028,
|
||||
24553,
|
||||
22967,
|
||||
22971,
|
||||
22922,
|
||||
22958,
|
||||
22969,
|
||||
22949,
|
||||
22938,
|
||||
24599,
|
||||
24562,
|
||||
22976,
|
||||
24464,
|
||||
22964,
|
||||
24581,
|
||||
],
|
||||
)
|
||||
|
||||
combined_df = pd.DataFrame()
|
||||
for zip in zip_codes:
|
||||
sold_df = get_property_details(zip, "sold")
|
||||
pending_df = get_property_details(zip, "pending")
|
||||
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
|
||||
output_to_excel(zip, sold_df, pending_df)
|
||||
|
||||
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
|
||||
combined_df.to_excel(combined_file, index=False)
|
|
@ -1,14 +1,15 @@
|
|||
import warnings
|
||||
import pandas as pd
|
||||
from .core.scrapers import ScraperInput
|
||||
from .utils import process_result, ordered_properties, validate_input, validate_dates
|
||||
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
||||
from .core.scrapers.realtor import RealtorScraper
|
||||
from .core.scrapers.models import ListingType
|
||||
from .core.scrapers.models import ListingType, SearchPropertyType
|
||||
|
||||
|
||||
def scrape_property(
|
||||
location: str,
|
||||
listing_type: str = "for_sale",
|
||||
property_type: list[str] | None = None,
|
||||
radius: float = None,
|
||||
mls_only: bool = False,
|
||||
past_days: int = None,
|
||||
|
@ -18,11 +19,13 @@ def scrape_property(
|
|||
foreclosure: bool = None,
|
||||
extra_property_data: bool = True,
|
||||
exclude_pending: bool = False,
|
||||
limit: int = 10000,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Scrape properties from Realtor.com based on a given location and listing type.
|
||||
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
||||
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
||||
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||
:param proxy: Proxy to use for scraping
|
||||
|
@ -31,13 +34,16 @@ def scrape_property(
|
|||
:param foreclosure: If set, fetches only foreclosure listings.
|
||||
:param extra_property_data: Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
|
||||
:param exclude_pending: If true, this excludes pending or contingent properties from the results, unless listing type is pending.
|
||||
:param limit: Limit the number of results returned. Maximum is 10,000.
|
||||
"""
|
||||
validate_input(listing_type)
|
||||
validate_dates(date_from, date_to)
|
||||
validate_limit(limit)
|
||||
|
||||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
||||
proxy=proxy,
|
||||
radius=radius,
|
||||
mls_only=mls_only,
|
||||
|
@ -47,6 +53,7 @@ def scrape_property(
|
|||
foreclosure=foreclosure,
|
||||
extra_property_data=extra_property_data,
|
||||
exclude_pending=exclude_pending,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
site = RealtorScraper(scraper_input)
|
||||
|
@ -59,4 +66,6 @@ def scrape_property(
|
|||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", category=FutureWarning)
|
||||
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": pd.NA, None: pd.NA, "": pd.NA})
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
|
||||
{"None": pd.NA, None: pd.NA, "": pd.NA}
|
||||
)
|
||||
|
|
|
@ -5,7 +5,7 @@ from requests.adapters import HTTPAdapter
|
|||
from urllib3.util.retry import Retry
|
||||
import uuid
|
||||
from ...exceptions import AuthenticationError
|
||||
from .models import Property, ListingType, SiteName
|
||||
from .models import Property, ListingType, SiteName, SearchPropertyType
|
||||
import json
|
||||
|
||||
|
||||
|
@ -13,6 +13,7 @@ import json
|
|||
class ScraperInput:
|
||||
location: str
|
||||
listing_type: ListingType
|
||||
property_type: list[SearchPropertyType] | None = None
|
||||
radius: float | None = None
|
||||
mls_only: bool | None = False
|
||||
proxy: str | None = None
|
||||
|
@ -22,6 +23,7 @@ class ScraperInput:
|
|||
foreclosure: bool | None = False
|
||||
extra_property_data: bool | None = True
|
||||
exclude_pending: bool | None = False
|
||||
limit: int = 10000
|
||||
|
||||
|
||||
class Scraper:
|
||||
|
@ -33,11 +35,12 @@ class Scraper:
|
|||
):
|
||||
self.location = scraper_input.location
|
||||
self.listing_type = scraper_input.listing_type
|
||||
self.property_type = scraper_input.property_type
|
||||
|
||||
if not self.session:
|
||||
Scraper.session = requests.Session()
|
||||
retries = Retry(
|
||||
total=3, backoff_factor=3, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
||||
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
|
||||
)
|
||||
|
||||
adapter = HTTPAdapter(max_retries=retries)
|
||||
|
@ -45,8 +48,21 @@ class Scraper:
|
|||
Scraper.session.mount("https://", adapter)
|
||||
Scraper.session.headers.update(
|
||||
{
|
||||
"auth": f"Bearer {self.get_access_token()}",
|
||||
"apollographql-client-name": "com.move.Realtor-apollo-ios",
|
||||
"accept": "application/json, text/javascript",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "no-cache",
|
||||
"content-type": "application/json",
|
||||
"origin": "https://www.realtor.com",
|
||||
"pragma": "no-cache",
|
||||
"priority": "u=1, i",
|
||||
"rdc-ab-tests": "commute_travel_time_variation:v1",
|
||||
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-fetch-dest": "empty",
|
||||
"sec-fetch-mode": "cors",
|
||||
"sec-fetch-site": "same-origin",
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -64,6 +80,7 @@ class Scraper:
|
|||
self.foreclosure = scraper_input.foreclosure
|
||||
self.extra_property_data = scraper_input.extra_property_data
|
||||
self.exclude_pending = scraper_input.exclude_pending
|
||||
self.limit = scraper_input.limit
|
||||
|
||||
def search(self) -> list[Property]: ...
|
||||
|
||||
|
@ -79,27 +96,29 @@ class Scraper:
|
|||
response = requests.post(
|
||||
"https://graph.realtor.com/auth/token",
|
||||
headers={
|
||||
'Host': 'graph.realtor.com',
|
||||
'Accept': '*/*',
|
||||
'Content-Type': 'Application/json',
|
||||
'X-Client-ID': 'rdc_mobile_native,iphone',
|
||||
'X-Visitor-ID': device_id,
|
||||
'X-Client-Version': '24.21.23.679885',
|
||||
'Accept-Language': 'en-US,en;q=0.9',
|
||||
'User-Agent': 'Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0',
|
||||
"Host": "graph.realtor.com",
|
||||
"Accept": "*/*",
|
||||
"Content-Type": "Application/json",
|
||||
"X-Client-ID": "rdc_mobile_native,iphone",
|
||||
"X-Visitor-ID": device_id,
|
||||
"X-Client-Version": "24.21.23.679885",
|
||||
"Accept-Language": "en-US,en;q=0.9",
|
||||
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
|
||||
},
|
||||
data=json.dumps({
|
||||
"grant_type": "device_mobile",
|
||||
"device_id": device_id,
|
||||
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone"
|
||||
}))
|
||||
data=json.dumps(
|
||||
{
|
||||
"grant_type": "device_mobile",
|
||||
"device_id": device_id,
|
||||
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
data = response.json()
|
||||
|
||||
if not (access_token := data.get("access_token")):
|
||||
raise AuthenticationError(
|
||||
"Failed to get access token, use a proxy/vpn or wait a moment and try again.",
|
||||
response=response
|
||||
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
|
||||
)
|
||||
|
||||
return access_token
|
||||
|
|
|
@ -17,6 +17,19 @@ class SiteName(Enum):
|
|||
raise ValueError(f"{value} not found in {cls}")
|
||||
|
||||
|
||||
class SearchPropertyType(Enum):
|
||||
SINGLE_FAMILY = "single_family"
|
||||
CONDOS = "condos"
|
||||
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
|
||||
CONDO_TOWNHOME = "condo_townhome"
|
||||
TOWNHOMES = "townhomes"
|
||||
DUPLEX_TRIPLEX = "duplex_triplex"
|
||||
FARM = "farm"
|
||||
LAND = "land"
|
||||
MULTI_FAMILY = "multi_family"
|
||||
MOBILE = "mobile"
|
||||
|
||||
|
||||
class ListingType(Enum):
|
||||
FOR_SALE = "FOR_SALE"
|
||||
FOR_RENT = "FOR_RENT"
|
||||
|
@ -90,33 +103,67 @@ class AgentPhone: #: For documentation purposes only (at the moment)
|
|||
|
||||
|
||||
@dataclass
|
||||
class Agent:
|
||||
name: str | None = None
|
||||
class Entity:
|
||||
name: str
|
||||
uuid: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Agent(Entity):
|
||||
mls_set: str | None = None
|
||||
nrds_id: str | None = None
|
||||
phones: list[dict] | AgentPhone | None = None
|
||||
email: str | None = None
|
||||
href: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Broker:
|
||||
name: str | None = None
|
||||
phone: str | None = None
|
||||
website: str | None = None
|
||||
class Office(Entity):
|
||||
mls_set: str | None = None
|
||||
email: str | None = None
|
||||
href: str | None = None
|
||||
phones: list[dict] | AgentPhone | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Broker(Entity):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Builder(Entity):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Advertisers:
|
||||
agent: Agent | None = None
|
||||
broker: Broker | None = None
|
||||
builder: Builder | None = None
|
||||
office: Office | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Property:
|
||||
property_url: str
|
||||
|
||||
property_id: str
|
||||
listing_id: str | None = None
|
||||
|
||||
mls: str | None = None
|
||||
mls_id: str | None = None
|
||||
status: str | None = None
|
||||
address: Address | None = None
|
||||
|
||||
list_price: int | None = None
|
||||
list_price_min: int | None = None
|
||||
list_price_max: int | None = None
|
||||
|
||||
list_date: str | None = None
|
||||
pending_date: str | None = None
|
||||
last_sold_date: str | None = None
|
||||
prc_sqft: int | None = None
|
||||
new_construction: bool | None = None
|
||||
hoa_fee: int | None = None
|
||||
days_on_mls: int | None = None
|
||||
description: Description | None = None
|
||||
|
@ -126,8 +173,10 @@ class Property:
|
|||
neighborhoods: Optional[str] = None
|
||||
county: Optional[str] = None
|
||||
fips_code: Optional[str] = None
|
||||
agents: list[Agent] | None = None
|
||||
brokers: list[Broker] | None = None
|
||||
nearby_schools: list[str] = None
|
||||
assessed_value: int | None = None
|
||||
estimated_value: int | None = None
|
||||
tax: int | None = None
|
||||
tax_history: list[dict] | None = None
|
||||
|
||||
advertisers: Advertisers | None = None
|
||||
|
|
|
@ -6,12 +6,34 @@ This module implements the scraper for realtor.com
|
|||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from datetime import datetime
|
||||
from json import JSONDecodeError
|
||||
from typing import Dict, Union, Optional
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
wait_exponential,
|
||||
stop_after_attempt,
|
||||
)
|
||||
|
||||
from .. import Scraper
|
||||
from ..models import Property, Address, ListingType, Description, PropertyType, Agent, Broker
|
||||
from ..models import (
|
||||
Property,
|
||||
Address,
|
||||
ListingType,
|
||||
Description,
|
||||
PropertyType,
|
||||
Agent,
|
||||
Broker,
|
||||
Builder,
|
||||
Advertisers,
|
||||
Office,
|
||||
)
|
||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
|
||||
|
||||
|
||||
class RealtorScraper(Scraper):
|
||||
|
@ -20,6 +42,7 @@ class RealtorScraper(Scraper):
|
|||
PROPERTY_GQL = "https://graph.realtor.com/graphql"
|
||||
ADDRESS_AUTOCOMPLETE_URL = "https://parser-external.geo.moveaws.com/suggest"
|
||||
NUM_PROPERTY_WORKERS = 20
|
||||
DEFAULT_PAGE_SIZE = 200
|
||||
|
||||
def __init__(self, scraper_input):
|
||||
super().__init__(scraper_input)
|
||||
|
@ -45,156 +68,6 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return result[0]
|
||||
|
||||
def handle_listing(self, listing_id: str) -> list[Property]:
|
||||
query = """query Listing($listing_id: ID!) {
|
||||
listing(id: $listing_id) {
|
||||
source {
|
||||
id
|
||||
listing_id
|
||||
}
|
||||
address {
|
||||
line
|
||||
street_direction
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
location {
|
||||
coordinate {
|
||||
lat
|
||||
lon
|
||||
}
|
||||
}
|
||||
}
|
||||
basic {
|
||||
sqft
|
||||
beds
|
||||
baths_full
|
||||
baths_half
|
||||
lot_sqft
|
||||
sold_price
|
||||
sold_price
|
||||
type
|
||||
price
|
||||
status
|
||||
sold_date
|
||||
list_date
|
||||
}
|
||||
details {
|
||||
year_built
|
||||
stories
|
||||
garage
|
||||
permalink
|
||||
}
|
||||
media {
|
||||
photos {
|
||||
href
|
||||
}
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
variables = {"listing_id": listing_id}
|
||||
payload = {
|
||||
"query": query,
|
||||
"variables": variables,
|
||||
}
|
||||
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
|
||||
response_json = response.json()
|
||||
|
||||
property_info = response_json["data"]["listing"]
|
||||
|
||||
mls = (
|
||||
property_info["source"].get("id")
|
||||
if "source" in property_info and isinstance(property_info["source"], dict)
|
||||
else None
|
||||
)
|
||||
|
||||
able_to_get_lat_long = (
|
||||
property_info
|
||||
and property_info.get("address")
|
||||
and property_info["address"].get("location")
|
||||
and property_info["address"]["location"].get("coordinate")
|
||||
)
|
||||
list_date_str = (
|
||||
property_info["basic"]["list_date"].split("T")[0] if property_info["basic"].get("list_date") else None
|
||||
)
|
||||
last_sold_date_str = (
|
||||
property_info["basic"]["sold_date"].split("T")[0] if property_info["basic"].get("sold_date") else None
|
||||
)
|
||||
pending_date_str = property_info["pending_date"].split("T")[0] if property_info.get("pending_date") else None
|
||||
|
||||
list_date = datetime.strptime(list_date_str, "%Y-%m-%d") if list_date_str else None
|
||||
last_sold_date = datetime.strptime(last_sold_date_str, "%Y-%m-%d") if last_sold_date_str else None
|
||||
pending_date = datetime.strptime(pending_date_str, "%Y-%m-%d") if pending_date_str else None
|
||||
today = datetime.now()
|
||||
|
||||
days_on_mls = None
|
||||
status = property_info["basic"]["status"].lower()
|
||||
if list_date:
|
||||
if status == "sold" and last_sold_date:
|
||||
days_on_mls = (last_sold_date - list_date).days
|
||||
elif status in ("for_sale", "for_rent"):
|
||||
days_on_mls = (today - list_date).days
|
||||
if days_on_mls and days_on_mls < 0:
|
||||
days_on_mls = None
|
||||
|
||||
property_id = property_info["details"]["permalink"]
|
||||
prop_details = self.get_prop_details(property_id)
|
||||
style = property_info["basic"].get("type", "").upper()
|
||||
listing = Property(
|
||||
mls=mls,
|
||||
mls_id=(
|
||||
property_info["source"].get("listing_id")
|
||||
if "source" in property_info and isinstance(property_info["source"], dict)
|
||||
else None
|
||||
),
|
||||
property_url=f"{self.PROPERTY_URL}{property_id}",
|
||||
status=property_info["basic"]["status"].upper(),
|
||||
list_price=property_info["basic"]["price"],
|
||||
list_date=list_date,
|
||||
prc_sqft=(
|
||||
property_info["basic"].get("price") / property_info["basic"].get("sqft")
|
||||
if property_info["basic"].get("price") and property_info["basic"].get("sqft")
|
||||
else None
|
||||
),
|
||||
last_sold_date=last_sold_date,
|
||||
pending_date=pending_date,
|
||||
latitude=property_info["address"]["location"]["coordinate"].get("lat") if able_to_get_lat_long else None,
|
||||
longitude=property_info["address"]["location"]["coordinate"].get("lon") if able_to_get_lat_long else None,
|
||||
address=self._parse_address(property_info, search_type="handle_listing"),
|
||||
description=Description(
|
||||
alt_photos=(
|
||||
self.process_alt_photos(property_info["media"].get("photos", []))
|
||||
if property_info.get("media")
|
||||
else None
|
||||
),
|
||||
style=PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None,
|
||||
beds=property_info["basic"].get("beds"),
|
||||
baths_full=property_info["basic"].get("baths_full"),
|
||||
baths_half=property_info["basic"].get("baths_half"),
|
||||
sqft=property_info["basic"].get("sqft"),
|
||||
lot_sqft=property_info["basic"].get("lot_sqft"),
|
||||
sold_price=property_info["basic"].get("sold_price"),
|
||||
year_built=property_info["details"].get("year_built"),
|
||||
garage=property_info["details"].get("garage"),
|
||||
stories=property_info["details"].get("stories"),
|
||||
text=property_info.get("description", {}).get("text"),
|
||||
),
|
||||
days_on_mls=days_on_mls,
|
||||
agents=prop_details.get("agents"),
|
||||
brokers=prop_details.get("brokers"),
|
||||
nearby_schools=prop_details.get("schools"),
|
||||
assessed_value=prop_details.get("assessed_value"),
|
||||
estimated_value=prop_details.get("estimated_value"),
|
||||
)
|
||||
|
||||
return [listing]
|
||||
|
||||
def get_latest_listing_id(self, property_id: str) -> str | None:
|
||||
query = """query Property($property_id: ID!) {
|
||||
property(id: $property_id) {
|
||||
|
@ -228,65 +101,15 @@ class RealtorScraper(Scraper):
|
|||
else:
|
||||
return property_info["listings"][0]["listing_id"]
|
||||
|
||||
def handle_address(self, property_id: str) -> list[Property]:
|
||||
"""
|
||||
Handles a specific address & returns one property
|
||||
"""
|
||||
query = """query Property($property_id: ID!) {
|
||||
property(id: $property_id) {
|
||||
property_id
|
||||
details {
|
||||
date_updated
|
||||
garage
|
||||
permalink
|
||||
year_built
|
||||
stories
|
||||
}
|
||||
address {
|
||||
line
|
||||
street_direction
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
location {
|
||||
coordinate {
|
||||
lat
|
||||
lon
|
||||
}
|
||||
}
|
||||
}
|
||||
basic {
|
||||
baths
|
||||
beds
|
||||
price
|
||||
sqft
|
||||
lot_sqft
|
||||
type
|
||||
sold_price
|
||||
}
|
||||
public_record {
|
||||
lot_size
|
||||
sqft
|
||||
stories
|
||||
units
|
||||
year_built
|
||||
}
|
||||
primary_photo {
|
||||
href
|
||||
}
|
||||
photos {
|
||||
href
|
||||
}
|
||||
}
|
||||
def handle_home(self, property_id: str) -> list[Property]:
|
||||
query = (
|
||||
"""query Home($property_id: ID!) {
|
||||
home(property_id: $property_id) %s
|
||||
}"""
|
||||
% HOMES_DATA
|
||||
)
|
||||
|
||||
variables = {"property_id": property_id}
|
||||
prop_details = self.get_prop_details(property_id)
|
||||
|
||||
payload = {
|
||||
"query": query,
|
||||
"variables": variables,
|
||||
|
@ -295,101 +118,125 @@ class RealtorScraper(Scraper):
|
|||
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
|
||||
response_json = response.json()
|
||||
|
||||
property_info = response_json["data"]["property"]
|
||||
property_info = response_json["data"]["home"]
|
||||
|
||||
return [
|
||||
Property(
|
||||
mls_id=property_id,
|
||||
property_url=f"{self.PROPERTY_URL}{property_info['details']['permalink']}",
|
||||
address=self._parse_address(property_info, search_type="handle_address"),
|
||||
description=self._parse_description(property_info),
|
||||
agents=prop_details.get("agents"),
|
||||
brokers=prop_details.get("brokers"),
|
||||
nearby_schools=prop_details.get("schools"),
|
||||
assessed_value=prop_details.get("assessed_value"),
|
||||
estimated_value=prop_details.get("estimated_value"),
|
||||
)
|
||||
]
|
||||
return [self.process_property(property_info, "home")]
|
||||
|
||||
@staticmethod
|
||||
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
||||
if not advertisers:
|
||||
return None
|
||||
|
||||
def _parse_fulfillment_id(fulfillment_id: str | None) -> str | None:
|
||||
return fulfillment_id if fulfillment_id and fulfillment_id != "0" else None
|
||||
|
||||
processed_advertisers = Advertisers()
|
||||
|
||||
for advertiser in advertisers:
|
||||
advertiser_type = advertiser.get("type")
|
||||
if advertiser_type == "seller": #: agent
|
||||
processed_advertisers.agent = Agent(
|
||||
uuid=_parse_fulfillment_id(advertiser.get("fulfillment_id")),
|
||||
nrds_id=advertiser.get("nrds_id"),
|
||||
mls_set=advertiser.get("mls_set"),
|
||||
name=advertiser.get("name"),
|
||||
email=advertiser.get("email"),
|
||||
phones=advertiser.get("phones"),
|
||||
)
|
||||
|
||||
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
|
||||
processed_advertisers.broker = Broker(
|
||||
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
|
||||
name=advertiser["broker"].get("name"),
|
||||
)
|
||||
|
||||
if advertiser.get("office"): #: has an office
|
||||
processed_advertisers.office = Office(
|
||||
uuid=_parse_fulfillment_id(advertiser["office"].get("fulfillment_id")),
|
||||
mls_set=advertiser["office"].get("mls_set"),
|
||||
name=advertiser["office"].get("name"),
|
||||
email=advertiser["office"].get("email"),
|
||||
phones=advertiser["office"].get("phones"),
|
||||
)
|
||||
|
||||
if advertiser_type == "community": #: could be builder
|
||||
if advertiser.get("builder"):
|
||||
processed_advertisers.builder = Builder(
|
||||
uuid=_parse_fulfillment_id(advertiser["builder"].get("fulfillment_id")),
|
||||
name=advertiser["builder"].get("name"),
|
||||
)
|
||||
|
||||
return processed_advertisers
|
||||
|
||||
def process_property(self, result: dict, query_name: str) -> Property | None:
|
||||
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
||||
|
||||
if not mls and self.mls_only:
|
||||
return
|
||||
|
||||
able_to_get_lat_long = (
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
)
|
||||
|
||||
is_pending = result["flags"].get("is_pending")
|
||||
is_contingent = result["flags"].get("is_contingent")
|
||||
|
||||
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
||||
return
|
||||
|
||||
property_id = result["property_id"]
|
||||
prop_details = self.get_prop_details(property_id) if self.extra_property_data and query_name != "home" else {}
|
||||
if not prop_details:
|
||||
prop_details = self.process_extra_property_details(result)
|
||||
|
||||
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
||||
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
||||
|
||||
advertisers = self.process_advertisers(result.get("advertisers"))
|
||||
|
||||
realty_property = Property(
|
||||
mls=mls,
|
||||
mls_id=(
|
||||
result["source"].get("listing_id")
|
||||
if "source" in result and isinstance(result["source"], dict)
|
||||
else None
|
||||
),
|
||||
property_url=result["href"],
|
||||
property_id=property_id,
|
||||
listing_id=result.get("listing_id"),
|
||||
status=("PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper()),
|
||||
list_price=result["list_price"],
|
||||
list_price_min=result["list_price_min"],
|
||||
list_price_max=result["list_price_max"],
|
||||
list_date=(result["list_date"].split("T")[0] if result.get("list_date") else None),
|
||||
prc_sqft=result.get("price_per_sqft"),
|
||||
last_sold_date=result.get("last_sold_date"),
|
||||
new_construction=result["flags"].get("is_new_construction") is True,
|
||||
hoa_fee=(result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None),
|
||||
latitude=(result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None),
|
||||
longitude=(result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None),
|
||||
address=self._parse_address(result, search_type="general_search"),
|
||||
description=self._parse_description(result),
|
||||
neighborhoods=self._parse_neighborhoods(result),
|
||||
county=(result["location"]["county"].get("name") if result["location"]["county"] else None),
|
||||
fips_code=(result["location"]["county"].get("fips_code") if result["location"]["county"] else None),
|
||||
days_on_mls=self.calculate_days_on_mls(result),
|
||||
nearby_schools=prop_details.get("schools"),
|
||||
assessed_value=prop_details.get("assessed_value"),
|
||||
estimated_value=estimated_value if estimated_value else None,
|
||||
advertisers=advertisers,
|
||||
tax=prop_details.get("tax"),
|
||||
tax_history=prop_details.get("tax_history"),
|
||||
)
|
||||
return realty_property
|
||||
|
||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, list[Property]]]:
|
||||
"""
|
||||
Handles a location area & returns a list of properties
|
||||
"""
|
||||
results_query = """{
|
||||
count
|
||||
total
|
||||
results {
|
||||
pending_date
|
||||
property_id
|
||||
list_date
|
||||
status
|
||||
last_sold_price
|
||||
last_sold_date
|
||||
list_price
|
||||
price_per_sqft
|
||||
flags {
|
||||
is_contingent
|
||||
is_pending
|
||||
}
|
||||
description {
|
||||
type
|
||||
sqft
|
||||
beds
|
||||
baths_full
|
||||
baths_half
|
||||
lot_sqft
|
||||
sold_price
|
||||
year_built
|
||||
garage
|
||||
sold_price
|
||||
type
|
||||
name
|
||||
stories
|
||||
text
|
||||
}
|
||||
source {
|
||||
id
|
||||
listing_id
|
||||
}
|
||||
hoa {
|
||||
fee
|
||||
}
|
||||
location {
|
||||
address {
|
||||
street_direction
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
line
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
coordinate {
|
||||
lon
|
||||
lat
|
||||
}
|
||||
}
|
||||
county {
|
||||
name
|
||||
fips_code
|
||||
}
|
||||
neighborhoods {
|
||||
name
|
||||
}
|
||||
}
|
||||
tax_record {
|
||||
public_record_id
|
||||
}
|
||||
primary_photo {
|
||||
href
|
||||
}
|
||||
photos {
|
||||
href
|
||||
}
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
date_param = ""
|
||||
if self.listing_type == ListingType.SOLD:
|
||||
|
@ -403,6 +250,11 @@ class RealtorScraper(Scraper):
|
|||
elif self.last_x_days:
|
||||
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
|
||||
|
||||
property_type_param = ""
|
||||
if self.property_type:
|
||||
property_types = [pt.value for pt in self.property_type]
|
||||
property_type_param = f"type: {json.dumps(property_types)}"
|
||||
|
||||
sort_param = (
|
||||
"sort: [{ field: sold_date, direction: desc }]"
|
||||
if self.listing_type == ListingType.SOLD
|
||||
|
@ -437,17 +289,20 @@ class RealtorScraper(Scraper):
|
|||
status: %s
|
||||
%s
|
||||
%s
|
||||
%s
|
||||
}
|
||||
%s
|
||||
limit: 200
|
||||
offset: $offset
|
||||
) %s""" % (
|
||||
) %s
|
||||
}""" % (
|
||||
is_foreclosure,
|
||||
listing_type.value.lower(),
|
||||
date_param,
|
||||
property_type_param,
|
||||
pending_or_contingent_param,
|
||||
sort_param,
|
||||
results_query,
|
||||
GENERAL_RESULTS_QUERY,
|
||||
)
|
||||
elif search_type == "area": #: general search, came from a general location
|
||||
query = """query Home_search(
|
||||
|
@ -467,17 +322,20 @@ class RealtorScraper(Scraper):
|
|||
status: %s
|
||||
%s
|
||||
%s
|
||||
%s
|
||||
}
|
||||
%s
|
||||
limit: 200
|
||||
offset: $offset
|
||||
) %s""" % (
|
||||
) %s
|
||||
}""" % (
|
||||
is_foreclosure,
|
||||
listing_type.value.lower(),
|
||||
date_param,
|
||||
property_type_param,
|
||||
pending_or_contingent_param,
|
||||
sort_param,
|
||||
results_query,
|
||||
GENERAL_RESULTS_QUERY,
|
||||
)
|
||||
else: #: general search, came from an address
|
||||
query = (
|
||||
|
@ -485,14 +343,15 @@ class RealtorScraper(Scraper):
|
|||
$property_id: [ID]!
|
||||
$offset: Int!,
|
||||
) {
|
||||
property_search(
|
||||
home_search(
|
||||
query: {
|
||||
property_id: $property_id
|
||||
}
|
||||
limit: 1
|
||||
offset: $offset
|
||||
) %s"""
|
||||
% results_query
|
||||
) %s
|
||||
}"""
|
||||
% GENERAL_RESULTS_QUERY
|
||||
)
|
||||
|
||||
payload = {
|
||||
|
@ -516,65 +375,16 @@ class RealtorScraper(Scraper):
|
|||
):
|
||||
return {"total": 0, "properties": []}
|
||||
|
||||
def process_property(result: dict) -> Property | None:
|
||||
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
||||
properties_list = response_json["data"][search_key]["results"]
|
||||
total_properties = response_json["data"][search_key]["total"]
|
||||
offset = variables.get("offset", 0)
|
||||
|
||||
if not mls and self.mls_only:
|
||||
return
|
||||
|
||||
able_to_get_lat_long = (
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
)
|
||||
|
||||
is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
|
||||
|
||||
if is_pending and (self.exclude_pending and self.listing_type != ListingType.PENDING):
|
||||
return
|
||||
|
||||
property_id = result["property_id"]
|
||||
prop_details = self.get_prop_details(property_id) if self.extra_property_data else {}
|
||||
|
||||
realty_property = Property(
|
||||
mls=mls,
|
||||
mls_id=(
|
||||
result["source"].get("listing_id")
|
||||
if "source" in result and isinstance(result["source"], dict)
|
||||
else None
|
||||
),
|
||||
property_url=(
|
||||
f"{self.PROPERTY_URL}{property_id}"
|
||||
if self.listing_type != ListingType.FOR_RENT
|
||||
else f"{self.PROPERTY_URL}M{property_id}?listing_status=rental"
|
||||
),
|
||||
status="PENDING" if is_pending else result["status"].upper(),
|
||||
list_price=result["list_price"],
|
||||
list_date=result["list_date"].split("T")[0] if result.get("list_date") else None,
|
||||
prc_sqft=result.get("price_per_sqft"),
|
||||
last_sold_date=result.get("last_sold_date"),
|
||||
hoa_fee=result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None,
|
||||
latitude=result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None,
|
||||
longitude=result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None,
|
||||
address=self._parse_address(result, search_type="general_search"),
|
||||
description=self._parse_description(result),
|
||||
neighborhoods=self._parse_neighborhoods(result),
|
||||
county=result["location"]["county"].get("name") if result["location"]["county"] else None,
|
||||
fips_code=result["location"]["county"].get("fips_code") if result["location"]["county"] else None,
|
||||
days_on_mls=self.calculate_days_on_mls(result),
|
||||
agents=prop_details.get("agents"),
|
||||
brokers=prop_details.get("brokers"),
|
||||
nearby_schools=prop_details.get("schools"),
|
||||
assessed_value=prop_details.get("assessed_value"),
|
||||
estimated_value=prop_details.get("estimated_value"),
|
||||
)
|
||||
return realty_property
|
||||
#: limit the number of properties to be processed
|
||||
#: example, if your offset is 200, and your limit is 250, return 50
|
||||
properties_list = properties_list[: self.limit - offset]
|
||||
|
||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||
futures = [
|
||||
executor.submit(process_property, result) for result in response_json["data"][search_key]["results"]
|
||||
]
|
||||
futures = [executor.submit(self.process_property, result, search_key) for result in properties_list]
|
||||
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
|
@ -582,7 +392,7 @@ class RealtorScraper(Scraper):
|
|||
properties.append(result)
|
||||
|
||||
return {
|
||||
"total": response_json["data"][search_key]["total"],
|
||||
"total": total_properties,
|
||||
"properties": properties,
|
||||
}
|
||||
|
||||
|
@ -605,17 +415,7 @@ class RealtorScraper(Scraper):
|
|||
if location_type == "address":
|
||||
if not self.radius: #: single address search, non comps
|
||||
property_id = location_info["mpr_id"]
|
||||
search_variables |= {"property_id": property_id}
|
||||
|
||||
gql_results = self.general_search(search_variables, search_type=search_type)
|
||||
if gql_results["total"] == 0:
|
||||
listing_id = self.get_latest_listing_id(property_id)
|
||||
if listing_id is None:
|
||||
return self.handle_address(property_id)
|
||||
else:
|
||||
return self.handle_listing(listing_id)
|
||||
else:
|
||||
return gql_results["properties"]
|
||||
return self.handle_home(property_id)
|
||||
|
||||
else: #: general search, comps (radius)
|
||||
if not location_info.get("centroid"):
|
||||
|
@ -654,7 +454,11 @@ class RealtorScraper(Scraper):
|
|||
variables=search_variables | {"offset": i},
|
||||
search_type=search_type,
|
||||
)
|
||||
for i in range(200, min(total, 10000), 200)
|
||||
for i in range(
|
||||
self.DEFAULT_PAGE_SIZE,
|
||||
min(total, self.limit),
|
||||
self.DEFAULT_PAGE_SIZE,
|
||||
)
|
||||
]
|
||||
|
||||
for future in as_completed(futures):
|
||||
|
@ -662,87 +466,82 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return homes
|
||||
|
||||
@staticmethod
|
||||
def get_key(data: dict, keys: list):
|
||||
try:
|
||||
value = data
|
||||
for key in keys:
|
||||
value = value[key]
|
||||
|
||||
return value or {}
|
||||
except (KeyError, TypeError, IndexError):
|
||||
return {}
|
||||
|
||||
def process_extra_property_details(self, result: dict) -> dict:
|
||||
schools = self.get_key(result, ["nearbySchools", "schools"])
|
||||
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
|
||||
tax_history = self.get_key(result, ["taxHistory"])
|
||||
|
||||
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
|
||||
|
||||
# Process tax history
|
||||
latest_tax = None
|
||||
processed_tax_history = None
|
||||
if tax_history and isinstance(tax_history, list):
|
||||
tax_history = sorted(tax_history, key=lambda x: x.get("year", 0), reverse=True)
|
||||
|
||||
if tax_history and "tax" in tax_history[0]:
|
||||
latest_tax = tax_history[0]["tax"]
|
||||
|
||||
processed_tax_history = []
|
||||
for entry in tax_history:
|
||||
if "year" in entry and "tax" in entry:
|
||||
processed_entry = {
|
||||
"year": entry["year"],
|
||||
"tax": entry["tax"],
|
||||
}
|
||||
if "assessment" in entry and isinstance(entry["assessment"], dict):
|
||||
processed_entry["assessment"] = {
|
||||
"building": entry["assessment"].get("building"),
|
||||
"land": entry["assessment"].get("land"),
|
||||
"total": entry["assessment"].get("total"),
|
||||
}
|
||||
processed_tax_history.append(processed_entry)
|
||||
|
||||
return {
|
||||
"schools": schools if schools else None,
|
||||
"assessed_value": assessed_value if assessed_value else None,
|
||||
"tax": latest_tax,
|
||||
"tax_history": processed_tax_history,
|
||||
}
|
||||
|
||||
@retry(
|
||||
retry=retry_if_exception_type(JSONDecodeError),
|
||||
wait=wait_exponential(min=4, max=10),
|
||||
stop=stop_after_attempt(3),
|
||||
)
|
||||
def get_prop_details(self, property_id: str) -> dict:
|
||||
if not self.extra_property_data:
|
||||
return {}
|
||||
|
||||
#: TODO: migrate "advertisers" and "estimates" to general query
|
||||
|
||||
query = """query GetHome($property_id: ID!) {
|
||||
home(property_id: $property_id) {
|
||||
__typename
|
||||
|
||||
advertisers {
|
||||
__typename
|
||||
type
|
||||
name
|
||||
email
|
||||
phones { number type ext primary }
|
||||
}
|
||||
|
||||
consumer_advertisers {
|
||||
name
|
||||
phone
|
||||
href
|
||||
type
|
||||
}
|
||||
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
estimates {
|
||||
__typename
|
||||
currentValues: current_values {
|
||||
__typename
|
||||
source { __typename type name }
|
||||
estimate
|
||||
estimateHigh: estimate_high
|
||||
estimateLow: estimate_low
|
||||
date
|
||||
isBestHomeValue: isbest_homevalue
|
||||
}
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
variables = {"property_id": property_id}
|
||||
response = self.session.post(self.PROPERTY_GQL, json={"query": query, "variables": variables})
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query, "variables": variables})
|
||||
|
||||
data = response.json()
|
||||
property_details = data["data"]["home"]
|
||||
|
||||
def get_key(keys: list):
|
||||
try:
|
||||
value = data
|
||||
for key in keys:
|
||||
value = value[key]
|
||||
|
||||
return value or {}
|
||||
except (KeyError, TypeError, IndexError):
|
||||
return {}
|
||||
|
||||
agents = get_key(["data", "home", "advertisers"])
|
||||
advertisers = get_key(["data", "home", "consumer_advertisers"])
|
||||
|
||||
schools = get_key(["data", "home", "nearbySchools", "schools"])
|
||||
assessed_value = get_key(["data", "home", "taxHistory", 0, "assessment", "total"])
|
||||
estimated_value = get_key(["data", "home", "estimates", "currentValues", 0, "estimate"])
|
||||
|
||||
agents = [Agent(name=ad["name"], email=ad["email"], phones=ad["phones"]) for ad in agents]
|
||||
|
||||
brokers = [
|
||||
Broker(name=ad["name"], phone=ad["phone"], website=ad["href"])
|
||||
for ad in advertisers
|
||||
if ad.get("type") != "Agent"
|
||||
]
|
||||
|
||||
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
|
||||
return {
|
||||
"agents": agents if agents else None,
|
||||
"brokers": brokers if brokers else None,
|
||||
"schools": schools if schools else None,
|
||||
"assessed_value": assessed_value if assessed_value else None,
|
||||
"estimated_value": estimated_value if estimated_value else None,
|
||||
}
|
||||
return self.process_extra_property_details(property_details)
|
||||
|
||||
@staticmethod
|
||||
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
||||
|
@ -790,7 +589,10 @@ class RealtorScraper(Scraper):
|
|||
)
|
||||
|
||||
@staticmethod
|
||||
def _parse_description(result: dict) -> Description:
|
||||
def _parse_description(result: dict) -> Description | None:
|
||||
if not result:
|
||||
return None
|
||||
|
||||
description_data = result.get("description", {})
|
||||
|
||||
if description_data is None or not isinstance(description_data, dict):
|
||||
|
@ -801,23 +603,22 @@ class RealtorScraper(Scraper):
|
|||
style = style.upper()
|
||||
|
||||
primary_photo = ""
|
||||
if result and "primary_photo" in result:
|
||||
primary_photo_info = result["primary_photo"]
|
||||
if primary_photo_info and "href" in primary_photo_info:
|
||||
primary_photo_href = primary_photo_info["href"]
|
||||
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
if (primary_photo_info := result.get("primary_photo")) and (
|
||||
primary_photo_href := primary_photo_info.get("href")
|
||||
):
|
||||
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
|
||||
return Description(
|
||||
primary_photo=primary_photo,
|
||||
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
|
||||
style=PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None,
|
||||
style=(PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None),
|
||||
beds=description_data.get("beds"),
|
||||
baths_full=description_data.get("baths_full"),
|
||||
baths_half=description_data.get("baths_half"),
|
||||
sqft=description_data.get("sqft"),
|
||||
lot_sqft=description_data.get("lot_sqft"),
|
||||
sold_price=(
|
||||
description_data.get("sold_price")
|
||||
result.get("last_sold_price") or description_data.get("sold_price")
|
||||
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
|
||||
else None
|
||||
), #: has a sold date or list and sold price are different
|
||||
|
@ -847,14 +648,12 @@ class RealtorScraper(Scraper):
|
|||
return days
|
||||
|
||||
@staticmethod
|
||||
def process_alt_photos(photos_info):
|
||||
try:
|
||||
alt_photos = []
|
||||
if photos_info:
|
||||
for photo_info in photos_info:
|
||||
href = photo_info.get("href", "")
|
||||
alt_photo_href = href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
alt_photos.append(alt_photo_href)
|
||||
return alt_photos
|
||||
except Exception:
|
||||
pass
|
||||
def process_alt_photos(photos_info: list[dict]) -> list[str] | None:
|
||||
if not photos_info:
|
||||
return None
|
||||
|
||||
return [
|
||||
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
|
||||
for photo_info in photos_info
|
||||
if photo_info.get("href")
|
||||
]
|
||||
|
|
|
@ -0,0 +1,163 @@
|
|||
_SEARCH_HOMES_DATA_BASE = """{
|
||||
pending_date
|
||||
listing_id
|
||||
property_id
|
||||
href
|
||||
list_date
|
||||
status
|
||||
last_sold_price
|
||||
last_sold_date
|
||||
list_price
|
||||
list_price_max
|
||||
list_price_min
|
||||
price_per_sqft
|
||||
flags {
|
||||
is_contingent
|
||||
is_pending
|
||||
is_new_construction
|
||||
}
|
||||
description {
|
||||
type
|
||||
sqft
|
||||
beds
|
||||
baths_full
|
||||
baths_half
|
||||
lot_sqft
|
||||
year_built
|
||||
garage
|
||||
type
|
||||
name
|
||||
stories
|
||||
text
|
||||
}
|
||||
source {
|
||||
id
|
||||
listing_id
|
||||
}
|
||||
hoa {
|
||||
fee
|
||||
}
|
||||
location {
|
||||
address {
|
||||
street_direction
|
||||
street_number
|
||||
street_name
|
||||
street_suffix
|
||||
line
|
||||
unit
|
||||
city
|
||||
state_code
|
||||
postal_code
|
||||
coordinate {
|
||||
lon
|
||||
lat
|
||||
}
|
||||
}
|
||||
county {
|
||||
name
|
||||
fips_code
|
||||
}
|
||||
neighborhoods {
|
||||
name
|
||||
}
|
||||
}
|
||||
tax_record {
|
||||
public_record_id
|
||||
}
|
||||
primary_photo {
|
||||
href
|
||||
}
|
||||
photos {
|
||||
href
|
||||
}
|
||||
advertisers {
|
||||
email
|
||||
broker {
|
||||
name
|
||||
fulfillment_id
|
||||
}
|
||||
type
|
||||
name
|
||||
fulfillment_id
|
||||
builder {
|
||||
name
|
||||
fulfillment_id
|
||||
}
|
||||
phones {
|
||||
ext
|
||||
primary
|
||||
type
|
||||
number
|
||||
}
|
||||
office {
|
||||
name
|
||||
email
|
||||
fulfillment_id
|
||||
href
|
||||
phones {
|
||||
number
|
||||
type
|
||||
primary
|
||||
ext
|
||||
}
|
||||
mls_set
|
||||
}
|
||||
corporation {
|
||||
specialties
|
||||
name
|
||||
bio
|
||||
href
|
||||
fulfillment_id
|
||||
}
|
||||
mls_set
|
||||
nrds_id
|
||||
rental_corporation {
|
||||
fulfillment_id
|
||||
}
|
||||
rental_management {
|
||||
name
|
||||
fulfillment_id
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
HOMES_DATA = """%s
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
estimates {
|
||||
__typename
|
||||
currentValues: current_values {
|
||||
__typename
|
||||
source { __typename type name }
|
||||
estimate
|
||||
estimateHigh: estimate_high
|
||||
estimateLow: estimate_low
|
||||
date
|
||||
isBestHomeValue: isbest_homevalue
|
||||
}
|
||||
}
|
||||
}""" % _SEARCH_HOMES_DATA_BASE
|
||||
|
||||
SEARCH_HOMES_DATA = """%s
|
||||
current_estimates {
|
||||
__typename
|
||||
source {
|
||||
__typename
|
||||
type
|
||||
name
|
||||
}
|
||||
estimate
|
||||
estimateHigh: estimate_high
|
||||
estimateLow: estimate_low
|
||||
date
|
||||
isBestHomeValue: isbest_homevalue
|
||||
}
|
||||
}""" % _SEARCH_HOMES_DATA_BASE
|
||||
|
||||
GENERAL_RESULTS_QUERY = """{
|
||||
count
|
||||
total
|
||||
results %s
|
||||
}""" % SEARCH_HOMES_DATA
|
|
@ -1,11 +1,13 @@
|
|||
from __future__ import annotations
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from .core.scrapers.models import Property, ListingType, Agent
|
||||
from .core.scrapers.models import Property, ListingType, Advertisers
|
||||
from .exceptions import InvalidListingType, InvalidDate
|
||||
|
||||
ordered_properties = [
|
||||
"property_url",
|
||||
"property_id",
|
||||
"listing_id",
|
||||
"mls",
|
||||
"mls_id",
|
||||
"status",
|
||||
|
@ -24,11 +26,16 @@ ordered_properties = [
|
|||
"year_built",
|
||||
"days_on_mls",
|
||||
"list_price",
|
||||
"list_price_min",
|
||||
"list_price_max",
|
||||
"list_date",
|
||||
"sold_price",
|
||||
"last_sold_date",
|
||||
"assessed_value",
|
||||
"estimated_value",
|
||||
"tax",
|
||||
"tax_history",
|
||||
"new_construction",
|
||||
"lot_sqft",
|
||||
"price_per_sqft",
|
||||
"latitude",
|
||||
|
@ -39,12 +46,21 @@ ordered_properties = [
|
|||
"stories",
|
||||
"hoa_fee",
|
||||
"parking_garage",
|
||||
"agent",
|
||||
"agent_id",
|
||||
"agent_name",
|
||||
"agent_email",
|
||||
"agent_phones",
|
||||
"broker",
|
||||
"broker_phone",
|
||||
"broker_website",
|
||||
"agent_mls_set",
|
||||
"agent_nrds_id",
|
||||
"broker_id",
|
||||
"broker_name",
|
||||
"builder_id",
|
||||
"builder_name",
|
||||
"office_id",
|
||||
"office_mls_set",
|
||||
"office_name",
|
||||
"office_email",
|
||||
"office_phones",
|
||||
"nearby_schools",
|
||||
"primary_photo",
|
||||
"alt_photos",
|
||||
|
@ -64,19 +80,34 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
prop_data["state"] = address_data.state
|
||||
prop_data["zip_code"] = address_data.zip
|
||||
|
||||
if "agents" in prop_data:
|
||||
agents: list[Agent] | None = prop_data["agents"]
|
||||
if agents:
|
||||
prop_data["agent"] = agents[0].name
|
||||
prop_data["agent_email"] = agents[0].email
|
||||
prop_data["agent_phones"] = agents[0].phones
|
||||
if "advertisers" in prop_data and prop_data.get("advertisers"):
|
||||
advertiser_data: Advertisers | None = prop_data["advertisers"]
|
||||
if advertiser_data.agent:
|
||||
agent_data = advertiser_data.agent
|
||||
prop_data["agent_id"] = agent_data.uuid
|
||||
prop_data["agent_name"] = agent_data.name
|
||||
prop_data["agent_email"] = agent_data.email
|
||||
prop_data["agent_phones"] = agent_data.phones
|
||||
prop_data["agent_mls_set"] = agent_data.mls_set
|
||||
prop_data["agent_nrds_id"] = agent_data.nrds_id
|
||||
|
||||
if "brokers" in prop_data:
|
||||
brokers = prop_data["brokers"]
|
||||
if brokers:
|
||||
prop_data["broker"] = brokers[0].name
|
||||
prop_data["broker_phone"] = brokers[0].phone
|
||||
prop_data["broker_website"] = brokers[0].website
|
||||
if advertiser_data.broker:
|
||||
broker_data = advertiser_data.broker
|
||||
prop_data["broker_id"] = broker_data.uuid
|
||||
prop_data["broker_name"] = broker_data.name
|
||||
|
||||
if advertiser_data.builder:
|
||||
builder_data = advertiser_data.builder
|
||||
prop_data["builder_id"] = builder_data.uuid
|
||||
prop_data["builder_name"] = builder_data.name
|
||||
|
||||
if advertiser_data.office:
|
||||
office_data = advertiser_data.office
|
||||
prop_data["office_id"] = office_data.uuid
|
||||
prop_data["office_name"] = office_data.name
|
||||
prop_data["office_email"] = office_data.email
|
||||
prop_data["office_phones"] = office_data.phones
|
||||
prop_data["office_mls_set"] = office_data.mls_set
|
||||
|
||||
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
|
||||
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
|
||||
|
@ -86,7 +117,11 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
if description:
|
||||
prop_data["primary_photo"] = description.primary_photo
|
||||
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
|
||||
prop_data["style"] = description.style if isinstance(description.style, str) else description.style.value if description.style else None
|
||||
prop_data["style"] = (
|
||||
description.style
|
||||
if isinstance(description.style, str)
|
||||
else description.style.value if description.style else None
|
||||
)
|
||||
prop_data["beds"] = description.beds
|
||||
prop_data["full_baths"] = description.baths_full
|
||||
prop_data["half_baths"] = description.baths_half
|
||||
|
@ -110,7 +145,7 @@ def validate_input(listing_type: str) -> None:
|
|||
|
||||
|
||||
def validate_dates(date_from: str | None, date_to: str | None) -> None:
|
||||
if (date_from is not None and date_to is None) or (date_from is None and date_to is not None):
|
||||
if isinstance(date_from, str) != isinstance(date_to, str):
|
||||
raise InvalidDate("Both date_from and date_to must be provided.")
|
||||
|
||||
if date_from and date_to:
|
||||
|
@ -122,3 +157,10 @@ def validate_dates(date_from: str | None, date_to: str | None) -> None:
|
|||
raise InvalidDate("date_to must be after date_from.")
|
||||
except ValueError:
|
||||
raise InvalidDate(f"Invalid date format or range")
|
||||
|
||||
|
||||
def validate_limit(limit: int) -> None:
|
||||
#: 1 -> 10000 limit
|
||||
|
||||
if limit is not None and (limit < 1 or limit > 10000):
|
||||
raise ValueError("Property limit must be between 1 and 10,000.")
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
|
@ -667,6 +667,21 @@ files = [
|
|||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tenacity"
|
||||
version = "9.0.0"
|
||||
description = "Retry code until it succeeds"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
|
||||
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
doc = ["reno", "sphinx"]
|
||||
test = ["pytest", "tornado (>=4.5)", "typeguard"]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.0.1"
|
||||
|
@ -740,4 +755,4 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.9,<3.13"
|
||||
content-hash = "21ef9cfb35c446a375a2b74c37691d7031afb1e4f66a8b63cb7c1669470689d2"
|
||||
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "homeharvest"
|
||||
version = "0.3.32"
|
||||
version = "0.4.5"
|
||||
description = "Real estate scraping library"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||
|
@ -14,6 +14,7 @@ python = ">=3.9,<3.13"
|
|||
requests = "^2.31.0"
|
||||
pandas = "^2.1.1"
|
||||
pydantic = "^2.7.4"
|
||||
tenacity = "^9.0.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
|
|
|
@ -105,8 +105,12 @@ def test_realtor():
|
|||
location="2530 Al Lipscomb Way",
|
||||
listing_type="for_sale",
|
||||
),
|
||||
scrape_property(location="Phoenix, AZ", listing_type="for_rent"), #: does not support "city, state, USA" format
|
||||
scrape_property(location="Dallas, TX", listing_type="sold"), #: does not support "city, state, USA" format
|
||||
scrape_property(
|
||||
location="Phoenix, AZ", listing_type="for_rent", limit=1000
|
||||
), #: does not support "city, state, USA" format
|
||||
scrape_property(
|
||||
location="Dallas, TX", listing_type="sold", limit=1000
|
||||
), #: does not support "city, state, USA" format
|
||||
scrape_property(location="85281"),
|
||||
]
|
||||
|
||||
|
@ -114,10 +118,13 @@ def test_realtor():
|
|||
|
||||
|
||||
def test_realtor_city():
|
||||
results = scrape_property(
|
||||
location="Atlanta, GA",
|
||||
listing_type="for_sale",
|
||||
)
|
||||
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_realtor_land():
|
||||
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
@ -127,6 +134,7 @@ def test_realtor_bad_address():
|
|||
location="abceefg ju098ot498hh9",
|
||||
listing_type="for_sale",
|
||||
)
|
||||
|
||||
if len(bad_results) == 0:
|
||||
assert True
|
||||
|
||||
|
@ -140,18 +148,23 @@ def test_realtor_foreclosed():
|
|||
|
||||
|
||||
def test_realtor_agent():
|
||||
scraped = scrape_property(location="Detroit, MI", listing_type="for_sale")
|
||||
assert scraped["agent"].nunique() > 1
|
||||
scraped = scrape_property(location="Detroit, MI", listing_type="for_sale", limit=1000, extra_property_data=False)
|
||||
assert scraped["agent_name"].nunique() > 1
|
||||
|
||||
|
||||
def test_realtor_without_extra_details():
|
||||
results = [
|
||||
scrape_property(
|
||||
location="15509 N 172nd Dr, Surprise, AZ 85388",
|
||||
location="00741",
|
||||
listing_type="sold",
|
||||
limit=10,
|
||||
extra_property_data=False,
|
||||
),
|
||||
scrape_property(
|
||||
location="15509 N 172nd Dr, Surprise, AZ 85388",
|
||||
location="00741",
|
||||
listing_type="sold",
|
||||
limit=10,
|
||||
extra_property_data=True,
|
||||
),
|
||||
]
|
||||
|
||||
|
@ -182,6 +195,95 @@ def test_style_value_error():
|
|||
location="Alaska, AK",
|
||||
listing_type="sold",
|
||||
extra_property_data=False,
|
||||
limit=1000,
|
||||
)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_primary_image_error():
|
||||
results = scrape_property(
|
||||
location="Spokane, PA",
|
||||
listing_type="for_rent", # or (for_sale, for_rent, pending)
|
||||
past_days=360,
|
||||
radius=3,
|
||||
extra_property_data=False,
|
||||
)
|
||||
|
||||
assert results is not None and len(results) > 0
|
||||
|
||||
|
||||
def test_limit():
|
||||
over_limit = 876
|
||||
extra_params = {"limit": over_limit}
|
||||
|
||||
over_results = scrape_property(
|
||||
location="Waddell, AZ",
|
||||
listing_type="for_sale",
|
||||
**extra_params,
|
||||
)
|
||||
|
||||
assert over_results is not None and len(over_results) <= over_limit
|
||||
|
||||
under_limit = 1
|
||||
under_results = scrape_property(
|
||||
location="Waddell, AZ",
|
||||
listing_type="for_sale",
|
||||
limit=under_limit,
|
||||
)
|
||||
|
||||
assert under_results is not None and len(under_results) == under_limit
|
||||
|
||||
|
||||
def test_apartment_list_price():
|
||||
results = scrape_property(
|
||||
location="Spokane, WA",
|
||||
listing_type="for_rent", # or (for_sale, for_rent, pending)
|
||||
extra_property_data=False,
|
||||
)
|
||||
|
||||
assert results is not None
|
||||
|
||||
results = results[results["style"] == "APARTMENT"]
|
||||
|
||||
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
|
||||
assert (
|
||||
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
|
||||
> 0.5
|
||||
)
|
||||
|
||||
|
||||
def test_builder_exists():
|
||||
listing = scrape_property(
|
||||
location="18149 W Poston Dr, Surprise, AZ 85387",
|
||||
extra_property_data=False,
|
||||
)
|
||||
|
||||
assert listing is not None
|
||||
assert listing["builder_name"].nunique() > 0
|
||||
|
||||
|
||||
def test_phone_number_matching():
|
||||
searches = [
|
||||
scrape_property(
|
||||
location="Phoenix, AZ",
|
||||
listing_type="for_sale",
|
||||
limit=100,
|
||||
),
|
||||
scrape_property(
|
||||
location="Phoenix, AZ",
|
||||
listing_type="for_sale",
|
||||
limit=100,
|
||||
),
|
||||
]
|
||||
|
||||
assert all([search is not None for search in searches])
|
||||
|
||||
#: random row
|
||||
row = searches[0][searches[0]["agent_phones"].notnull()].sample()
|
||||
|
||||
#: find matching row
|
||||
matching_row = searches[1].loc[searches[1]["property_url"] == row["property_url"].values[0]]
|
||||
|
||||
#: assert phone numbers are the same
|
||||
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
|
||||
|
|
Loading…
Reference in New Issue