Compare commits

...

161 Commits

Author SHA1 Message Date
zachary e378feeefe - bug fixes 2025-04-12 18:34:35 -07:00
zachary 8a5683fe79 - return type parameter
- optimized get extra fields with query clustering
2025-04-12 17:55:52 -07:00
Zachary Hampton 65f799a27d
Update README.md 2025-02-21 13:33:32 -07:00
Cullen Watson 0de916e590 enh:tax history 2025-01-06 05:28:36 -06:00
Cullen Watson 6a3f7df087 chore:yml 2024-11-05 23:55:59 -06:00
Cullen Watson a75bcc2aa0
docs:readme 2024-11-04 10:22:32 -06:00
Cullen Watson 1082b86fa1
docs:readme 2024-11-03 17:23:58 -06:00
Cullen Watson 8e04f6b117
enh: property type (#102) 2024-11-03 17:23:07 -06:00
Zachary Hampton 1f717bd9e3 - switch eps
- new hrefs
- property_id, listing_id data points
2024-09-06 15:49:07 -07:00
Zachary Hampton 8cfe056f79 - office mls set 2024-08-23 10:54:43 -07:00
Zachary Hampton 1010c743b6 - agent mls set and nrds id 2024-08-23 10:47:45 -07:00
Zachary Hampton 32fdc281e3 - rewrote & optimized flow
- new_construction data point
- renamed "agent" & "broker" to "agent_name" & "broker_name"
- added builder & office data
- added entity uuids
2024-08-20 05:19:15 -07:00
Zachary Hampton 6d14b8df5a - fix limit parameter
- fix specific for_rent apartment listing prices
2024-08-13 10:44:11 -07:00
Zachary Hampton 3f44744d61 - primary photo bug fix
- limit parameter
2024-07-15 07:19:57 -07:00
Zachary Hampton ac0cad62a7 - optimizations 2024-06-14 21:50:23 -07:00
Cullen Watson beb885cc8d
fix: govt type (#82) 2024-06-12 17:34:34 -05:00
Zachary Hampton 011680f7d8 - style error bug fix 2024-06-06 15:24:12 -07:00
Zachary Hampton 93e6778a48 - exclude_pending parameter 2024-05-31 22:17:29 -07:00
Zachary Hampton ec036bb989 - optimizations & updated realtor headers 2024-05-20 12:13:30 -07:00
Zachary Hampton aacd168545 - alt photos bug fix 2024-05-18 17:47:55 -07:00
Zachary Hampton 0d70007000 - alt photos bug fix 2024-05-16 23:04:07 -07:00
Zachary Hampton 018d3fbac4 - Python 3.9 support (tested) (could potentially work for lower versions, but I have not validated such) 2024-05-14 19:13:04 -07:00
Zachary Hampton 803fd618e9 - data cleaning & CONDOP bug fixes 2024-05-12 21:12:12 -07:00
Zachary Hampton b23b55ca80 - full street line (data quality improvement) 2024-05-12 18:49:44 -07:00
Zachary Hampton 3458a08383 - broker data 2024-05-11 21:35:29 -07:00
Zachary Hampton c3e24a4ce0 - extra_property_details parameter
- updated docs
- classified exception
2024-05-02 09:04:49 -07:00
Zachary Hampton 46985dcee4 - various data quality fixes (including #70) 2024-05-02 08:48:53 -07:00
Cullen Watson 04ae968716
enh: assessed/estimated value (#77) 2024-04-30 15:29:54 -05:00
Cullen c5b15e9be5 chore: version 2024-04-20 17:45:29 -05:00
joecryptotoo 7a525caeb8
added county, fips, and text desciption fields (#72) 2024-04-20 17:44:28 -05:00
Cullen Watson 7246703999
Schools (#69) 2024-04-16 20:01:20 -05:00
Cullen Watson 6076b0f961
enh: add agent (#68) 2024-04-16 15:09:32 -05:00
Cullen Watson cdc6f2a2a8
docs: readme 2024-04-16 14:59:50 -05:00
Cullen Watson 0bdf56568e
enh: add agent name/phone (#66) 2024-04-16 14:55:44 -05:00
Cullen Watson 1f47fc3b7e
fix: use enum value (#65) 2024-04-12 01:41:15 -05:00
Zachary Hampton 5c2498c62b - pending date, property type fields (#45)
- alt photos bug fix (#57)
2024-03-13 19:17:17 -07:00
Zachary Hampton d775540afd - location bug fix 2024-03-06 16:31:06 -07:00
Cullen Watson 5ea9a6f6b6
docs: readme 2024-03-03 11:49:27 -06:00
robertomr100 ab6a0e3b6e
Add foreclosure parameter (#55) 2024-03-03 11:45:28 -06:00
Zachary Hampton 03198428de
Merge pull request #48 from Bunsly/for_rent_url
fix: rent url
2024-01-09 13:12:30 -07:00
Cullen Watson 70fa071318 fix: rent url 2024-01-08 12:46:31 -06:00
Cullen Watson f7e74cf535
Merge pull request #44 from Bunsly/fix_postal_search
fix postal search to search just by zip
2023-12-02 00:40:13 -06:00
Cullen Watson e17b976923 fix postal search to search just by zip 2023-12-02 00:39:28 -06:00
Zachary Hampton ad13b55ea6
Update README.md 2023-11-30 11:48:48 -07:00
Cullen Watson 19f23c95c4
Merge pull request #43 from Bunsly/add_photos
Add photos
2023-11-24 21:40:34 -06:00
Cullen 4676ec9839 chore: remove test file 2023-11-24 13:42:52 -06:00
Cullen 6dd0b058d3 chore: version 2023-11-24 13:41:46 -06:00
Cullen a74c1a9950 enh: add photos 2023-11-24 13:40:57 -06:00
Cullen Watson fa507dbc72
docs: typo 2023-11-20 01:05:10 -06:00
Cullen Watson 5b6a9943cc
Merge pull request #42 from Bunsly/street_dirction
fix: add street direction
2023-11-08 16:53:29 -06:00
Cullen Watson 9816defaf3 chore: version 2023-11-08 16:53:05 -06:00
Cullen Watson f692b438b2 fix: add street direction 2023-11-08 16:52:06 -06:00
Zachary Hampton 30f48f54c8
Update README.md 2023-11-06 22:13:01 -07:00
Cullen Watson 7f86f69610 docs: readme 2023-11-03 18:53:46 -05:00
Cullen Watson cc64dacdb0 docs: readme - date_from, date_to 2023-11-03 18:52:22 -05:00
Cullen Watson d3268d8e5a
Merge pull request #40 from Bunsly/date_range
Add date_to and date_from params
2023-11-03 18:42:13 -05:00
Cullen Watson 4edad901c5 [enh] date_to and date_from 2023-11-03 18:40:34 -05:00
Zachary Hampton c597a78191 - None address bug fix 2023-10-18 16:32:43 -07:00
Zachary Hampton 11a7d854f0 - remove pending listings from for_sale 2023-10-18 14:41:41 -07:00
Zachary Hampton f726548cc6
Update pyproject.toml 2023-10-18 09:35:48 -07:00
Zachary Hampton fad7d670eb
Update README.md 2023-10-18 08:37:42 -07:00
Zachary Hampton 89a6f93c9f
Update pyproject.toml 2023-10-18 08:37:26 -07:00
Zachary Hampton e1090b06e4
Update README.md 2023-10-17 20:22:25 -07:00
Cullen Watson 5036e74b60 Merge branch 'master' of https://github.com/ZacharyHampton/HomeHarvest 2023-10-09 11:30:17 -05:00
Cullen Watson 2cb544bc8d [chore] display clickable URLs in jupyter 2023-10-09 11:28:56 -05:00
Zachary Hampton 68cb365e03
Merge pull request #34 from ZacharyHampton/days_on_mls
[enh] days_on_mls attr
2023-10-09 09:04:59 -07:00
Cullen Watson 23876d5725 [chore] function types 2023-10-09 11:02:51 -05:00
Cullen Watson b59d55f6b5 [enh] days_on_mls attr 2023-10-09 11:00:36 -05:00
Cullen Watson 3c3adb5f29
[docs] update video 2023-10-05 20:24:23 -05:00
Zachary Hampton 6ede8622cc - pending listing support
- removal of pending_or_contingent param
2023-10-05 11:43:00 -07:00
Cullen Watson 9f50d33bdb [chore] remove unused dependency 2023-10-05 10:11:45 -05:00
Cullen Watson 735ec021f7 [docs] README 2023-10-05 10:03:21 -05:00
Zachary Hampton 00537329cf - version bump 2023-10-04 21:35:21 -07:00
Zachary Hampton a9225b532f - rename days variable 2023-10-04 21:35:14 -07:00
Zachary Hampton ba7ad069c9
Merge pull request #32 from ZacharyHampton/key_error
[fix] keyerror on style
2023-10-04 20:35:05 -07:00
Cullen Watson 22bda972b0 [chore] version number 2023-10-04 22:34:52 -05:00
Cullen Watson 6f5bbf79a4 [fix] keyerror on style 2023-10-04 22:33:21 -05:00
Cullen Watson 608cceba34
[docs] reorder 2023-10-04 22:12:16 -05:00
Cullen Watson 3609586995
[docs]: add contingent to example 2023-10-04 22:11:38 -05:00
Cullen Watson 68c7e411e4
[docs] pending / contingent searches 2023-10-04 22:07:51 -05:00
Cullen Watson 5e825601a7
[docs] update example 2023-10-04 21:50:54 -05:00
Cullen Watson ce3f94d0af
[docs] update example 2023-10-04 21:50:16 -05:00
Zachary Hampton 4a1116440d
Merge pull request #31 from ZacharyHampton/v0.3
v0.3
2023-10-04 19:26:44 -07:00
Cullen Watson 2d092c595f
[docs]: Update README.md 2023-10-04 21:24:24 -05:00
Cullen Watson 4dbb064fe9
[docs]: Update README.md 2023-10-04 21:21:45 -05:00
Cullen Watson 4e78248032
Update README.md 2023-10-04 21:17:49 -05:00
Zachary Hampton 37e20f4469 - remove neighborhoods
- rename data
2023-10-04 18:44:47 -07:00
Zachary Hampton 8a5f0dc2c9 - pending or contingent support 2023-10-04 18:25:01 -07:00
Zachary Hampton de692faae2 - rename last_x_days
- docstrings for scrape_property
2023-10-04 18:06:06 -07:00
Zachary Hampton 6bb68766fc - realtor tests 2023-10-04 12:04:05 -07:00
Zachary Hampton 446d5488b8 - single address support again 2023-10-04 10:07:32 -07:00
Cullen Watson 68e15ce696
[docs] clarify example 2023-10-04 10:14:11 -05:00
Cullen Watson c4870677c2 [enh]: make last_x_days generic
add mls_only
make radius generic
2023-10-04 10:11:53 -05:00
Cullen Watson 51bde20c3c [chore]: clean up 2023-10-04 08:58:55 -05:00
Zachary Hampton f8c0dd766d - realtor support 2023-10-03 23:33:53 -07:00
Zachary Hampton f06a01678c - cli readme update 2023-10-03 22:31:23 -07:00
Zachary Hampton d2879734e6 - cli update 2023-10-03 22:25:29 -07:00
Zachary Hampton bf81ef413f - version bump 2023-10-03 22:22:09 -07:00
Zachary Hampton 29664e4eee - cullen merge 2023-10-03 22:21:16 -07:00
Zachary Hampton 088088ae51 - last x days param 2023-10-03 15:05:17 -07:00
Zachary Hampton 40bbf76db1 - realtor radius 2023-10-02 13:58:47 -07:00
Zachary Hampton 1f1ca8068f - realtor.com default 2023-10-02 10:28:13 -07:00
Zachary Hampton 8388d47f73 - version bump 2023-10-01 09:13:37 -07:00
Zachary Hampton ba503b0ca3
Merge pull request #27 from ddxv/zillow-ua-header
Zillow Request Header: Match observed behaivor in FireFox of not sending sec-ch-ua headers
2023-10-01 09:12:58 -07:00
james 8962d619e1 Match observed behaivor in FireFox of not sending ua-ch headers in request to prevent recent 403 2023-10-01 11:31:51 +08:00
Zachary Hampton 3b7c17b7b5 - zillow proxy support 2023-09-28 18:40:16 -07:00
Zachary Hampton 59317fd6fc
Merge pull request #25 from ZacharyHampton/fix/recent-issues
Fix/recent issues
2023-09-28 18:27:04 -07:00
Zachary Hampton 928b431d1f - bump version 2023-09-28 18:25:53 -07:00
Zachary Hampton 896f862137 - zillow flow update 2023-09-28 18:25:47 -07:00
Zachary Hampton 3174f5076c
Merge pull request #23 from ZacharyHampton/fix/recent-issues
Fixes & Changes for recent issues
2023-09-28 18:07:55 -07:00
Zachary Hampton 2abbb913a8 - convert posted_time to datetime
- zillow location bug fix
2023-09-28 18:07:42 -07:00
Cullen Watson 73b6d5b33f [fix] zilow tls client 2023-09-28 19:34:01 -05:00
Zachary Hampton da39c989d9 - version bump 2023-09-28 15:27:36 -07:00
Zachary Hampton 01c53f9399 - redfin bug fix
- add recent features for issues
2023-09-28 15:19:43 -07:00
Zachary Hampton 9200c17df2 - version bump 2023-09-23 10:55:50 -07:00
Zachary Hampton 9e262bf214 Merge remote-tracking branch 'origin/master' 2023-09-23 10:55:29 -07:00
Zachary Hampton 82f78fb578 - zillow bug fix 2023-09-23 10:55:14 -07:00
Cullen Watson b0e40df00a
Update pyproject.toml 2023-09-22 09:51:24 -05:00
Cullen Watson 2fc40e0dad fix: cookie 2023-09-22 09:47:37 -05:00
Zachary Hampton 254f3a68a1 - redfin bug fix 2023-09-21 18:54:03 -07:00
Zachary Hampton 05713c76b0 - redfin bug fix
- .get
2023-09-21 11:27:12 -07:00
Cullen Watson 9120cc9bfe fix: remove line 2023-09-21 13:10:14 -05:00
Cullen Watson eee4b19515 Merge branch 'master' of https://github.com/ZacharyHampton/HomeHarvest 2023-09-21 13:06:15 -05:00
Cullen Watson c25961eded fix: KeyEror : [minBaths] 2023-09-21 13:06:06 -05:00
Zachary Hampton 0884c3d163
Update README.md 2023-09-21 09:55:29 -07:00
Cullen Watson 8f37bfdeb8 chore: version number 2023-09-21 11:19:23 -05:00
Cullen Watson 48c2338276 fix: keyerror 2023-09-21 11:18:37 -05:00
Cullen Watson f58a1f4a74 docs: tryhomeharvest.com 2023-09-21 10:57:11 -05:00
Zachary Hampton 4cef926d7d
Merge pull request #14 from ZacharyHampton/keep_duplicates_flag
Keep duplicates flag
2023-09-20 20:27:08 -07:00
Cullen Watson e82eeaa59f docs: add keep duplicates flag 2023-09-20 20:25:50 -05:00
Cullen Watson 644f16b25b feat: keep duplicates flag 2023-09-20 20:24:18 -05:00
Cullen Watson e9ddc6df92
docs: update tutorial vid for release v0.2.7 2023-09-19 22:18:49 -05:00
Cullen Watson 50fb1c391d
docs: update property schema 2023-09-19 21:35:37 -05:00
Cullen Watson 4f91f9dadb
chore: version number 2023-09-19 21:17:12 -05:00
Zachary Hampton 66e55173b1
Merge pull request #13 from ZacharyHampton/simplify_fields
fix: simplify fields
2023-09-19 19:16:18 -07:00
Cullen Watson f6054e8746 fix: simplify fields 2023-09-19 21:13:20 -05:00
Cullen Watson e8d9235ee6
chore: update version number 2023-09-19 16:43:59 -05:00
Cullen Watson 043f091158 fix: keyerror on address 2023-09-19 16:43:17 -05:00
Cullen Watson eae8108978
docs: change cmd 2023-09-19 16:18:01 -05:00
Zachary Hampton 0a39357a07
Merge pull request #12 from ZacharyHampton/proxy_bug
fix: proxy add to session correctly
2023-09-19 14:07:25 -07:00
Cullen Watson 8f06d46ddb chore: version number 2023-09-19 16:07:06 -05:00
Cullen Watson 0dae14ccfc fix: proxy add to session correctly 2023-09-19 16:05:14 -05:00
Zachary Hampton 9aaabdd5d8
Merge pull request #11 from ZacharyHampton/proxy_support
Proxy support
2023-09-19 13:50:14 -07:00
Cullen Watson cdf41fe9f2 fix: remove self.proxy 2023-09-19 15:49:50 -05:00
Cullen Watson 1f0feb836d refactor: move proxy to session 2023-09-19 15:48:46 -05:00
Cullen Watson 5f31beda46 chore: version number 2023-09-19 15:44:41 -05:00
Cullen Watson fd9cdea499 feat: proxy support 2023-09-19 15:43:24 -05:00
Zachary Hampton 93a1cbe17f
Merge pull request #10 from ZacharyHampton/cli_homeharvest
add cli
2023-09-19 13:07:27 -07:00
Cullen Watson 49d27943c4 add cli 2023-09-19 15:01:39 -05:00
Zachary Hampton 05fca9b7e6
Update README.md 2023-09-19 11:08:08 -07:00
Zachary Hampton 20ce44fb3a - redfin limiting bug fix 2023-09-19 10:37:10 -07:00
Zachary Hampton 52017c1bb5
Merge pull request #9 from ZacharyHampton/redfin_rental_support
feat(redfin): rental support
2023-09-19 10:28:02 -07:00
Cullen Watson dba1c03081 feat(redfin): add sold listing_type 2023-09-19 12:27:13 -05:00
Cullen Watson 1fc2d8c549 feat(redfin): rental support 2023-09-19 11:58:20 -05:00
Zachary Hampton 02d112eea0
Merge pull request #8 from ZacharyHampton/fix/zillow-location-validation
- zillow location validation
2023-09-19 09:33:33 -07:00
Zachary Hampton 30e510882b - version bump and excel support 2023-09-19 09:26:52 -07:00
Zachary Hampton 78b56c2cac - zillow location validation 2023-09-19 09:25:08 -07:00
Cullen Watson 087854a688 Merge branch 'master' of https://github.com/ZacharyHampton/HomeHarvest 2023-09-19 00:04:03 -05:00
Cullen Watson 80586467a8 docs:add guide 2023-09-18 23:53:10 -05:00
Cullen Watson 3494b152b8
docs: change install cmd 2023-09-18 23:32:51 -05:00
Cullen Watson 6c6fef80ed chore: change version number 2023-09-18 23:16:54 -05:00
22 changed files with 2448 additions and 1497 deletions

1
.github/FUNDING.yml vendored Normal file
View File

@ -0,0 +1 @@
github: Bunsly

View File

@ -30,4 +30,4 @@ jobs:
if: startsWith(github.ref, 'refs/tags')
uses: pypa/gh-action-pypi-publish@release/v1
with:
password: ${{ secrets.PYPI_API_TOKEN }}
password: ${{ secrets.PYPI_API_TOKEN }}

3
.gitignore vendored
View File

@ -3,4 +3,5 @@
**/__pycache__/
**/.pytest_cache/
*.pyc
/.ipynb_checkpoints/
/.ipynb_checkpoints/
*.csv

21
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,21 @@
---
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.2.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-added-large-files
- id: check-yaml
- repo: https://github.com/adrienverge/yamllint
rev: v1.29.0
hooks:
- id: yamllint
verbose: true # create awareness of linter findings
args: ["-d", "{extends: relaxed, rules: {line-length: {max: 120}}}"]
- repo: https://github.com/psf/black
rev: 24.2.0
hooks:
- id: black
language_version: python
args: [--line-length=120, --quiet]

View File

@ -1,118 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
"metadata": {},
"outputs": [],
"source": [
"from homeharvest import scrape_property\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
"metadata": {},
"outputs": [],
"source": [
"pd.set_option('display.max_columns', None) # Show all columns\n",
"pd.set_option('display.max_rows', None) # Show all rows\n",
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
"metadata": {},
"outputs": [],
"source": [
"# scrapes all 3 sites by default\n",
"scrape_property(\n",
" location=\"dallas\",\n",
" listing_type=\"for_sale\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaf86093",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# search a specific address\n",
"scrape_property(\n",
" location=\"2530 Al Lipscomb Way\",\n",
" site_name=\"zillow\",\n",
" listing_type=\"for_sale\"\n",
"),"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
"metadata": {},
"outputs": [],
"source": [
"# check rentals\n",
"scrape_property(\n",
" location=\"chicago\",\n",
" site_name=[\"redfin\", \"realtor.com\"],\n",
" listing_type=\"for_rent\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "af280cd3",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# check sold properties\n",
"scrape_property(\n",
" location=\"chicago, illinois\",\n",
" site_name=[\"redfin\"],\n",
" listing_type=\"sold\"\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

253
README.md
View File

@ -1,137 +1,198 @@
<img src="https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/d1a2bf8b-09f5-4c57-b33a-0ada8a34f12d" width="400">
**HomeHarvest** is a simple, yet comprehensive, real estate scraping library.
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
[![Try with Replit](https://replit.com/badge?caption=Try%20with%20Replit)](https://replit.com/@ZacharyHampton/HomeHarvestDemo)
## HomeHarvest Features
*Looking to build a data-focused software product?* **[Book a call](https://calendly.com/zachary-products/15min)** *to work with us.*
## Features
- **Source**: Fetches properties directly from **Realtor.com**.
- **Data Format**: Structures data to resemble MLS listings.
- **Export Flexibility**: Options to save as either CSV or Excel.
[Video Guide for HomeHarvest](https://youtu.be/J1qgNPgmSLI) - _updated for release v0.3.4_
- Scrapes properties from **Zillow**, **Realtor.com** & **Redfin** simultaneously
- Aggregates the properties in a Pandas DataFrame
![homeharvest](https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/b3d5d727-e67b-4a9f-85d8-1e65fd18620a)
## Installation
```bash
pip install --upgrade homeharvest
pip install -U homeharvest
```
_Python version >= [3.10](https://www.python.org/downloads/release/python-3100/) required_
_Python version >= [3.9](https://www.python.org/downloads/release/python-3100/) required_
## Usage
### Python
```py
from homeharvest import scrape_property
import pandas as pd
from datetime import datetime
properties: pd.DataFrame = scrape_property(
site_name=["zillow", "realtor.com", "redfin"],
location="85281",
listing_type="for_rent" # for_sale / sold
# Generate filename based on current timestamp
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"HomeHarvest_{current_timestamp}.csv"
properties = scrape_property(
location="San Diego, CA",
listing_type="sold", # or (for_sale, for_rent, pending)
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
# property_type=['single_family','multi_family'],
# date_from="2023-05-01", # alternative to past_days
# date_to="2023-05-28",
# foreclosure=True
# mls_only=True, # only fetch MLS listings
)
print(f"Number of properties: {len(properties)}")
#: Note, to export to CSV or Excel, use properties.to_csv() or properties.to_excel().
print(properties)
# Export to csv
properties.to_csv(filename, index=False)
print(properties.head())
```
## Output
```py
```plaintext
>>> properties.head()
street city ... mls_id description
0 420 N Scottsdale Rd Tempe ... NaN NaN
1 1255 E University Dr Tempe ... NaN NaN
2 1979 E Rio Salado Pkwy Tempe ... NaN NaN
3 548 S Wilson St Tempe ... None None
4 945 E Playa Del Norte Dr Unit 4027 Tempe ... NaN NaN
[5 rows x 23 columns]
MLS MLS # Status Style ... COEDate LotSFApx PrcSqft Stories
0 SDCA 230018348 SOLD CONDOS ... 2023-10-03 290110 803 2
1 SDCA 230016614 SOLD TOWNHOMES ... 2023-10-03 None 838 3
2 SDCA 230016367 SOLD CONDOS ... 2023-10-03 30056 649 1
3 MRCA NDP2306335 SOLD SINGLE_FAMILY ... 2023-10-03 7519 661 2
4 SDCA 230014532 SOLD CONDOS ... 2023-10-03 None 752 1
[5 rows x 22 columns]
```
### Parameters for `scrape_properties()`
```plaintext
### Parameters for `scrape_property()`
```
Required
├── location (str): address in various formats e.g. just zip, full address, city/state, etc.
└── listing_type (enum): for_rent, for_sale, sold
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
├── listing_type (option): Choose the type of listing.
- 'for_rent'
- 'for_sale'
- 'sold'
- 'pending' (for pending/contingent sales)
Optional
├── site_name (List[enum], default=all three sites): zillow, realtor.com, redfin
├── property_type (list): Choose the type of properties.
- 'single_family'
- 'multi_family'
- 'condos'
- 'condo_townhome_rowhome_coop'
- 'condo_townhome'
- 'townhomes'
- 'duplex_triplex'
- 'farm'
- 'land'
- 'mobile'
├── return_type (option): Choose the return type.
│ - 'pandas' (default)
│ - 'pydantic'
│ - 'raw' (json)
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
├── past_days (integer): Number of past days to filter properties. Utilizes 'last_sold_date' for 'sold' listing types, and 'list_date' for others (for_rent, for_sale).
│ Example: 30 (fetches properties listed/sold in the last 30 days)
├── date_from, date_to (string): Start and end dates to filter properties listed or sold, both dates are required.
| (use this to get properties in chunks as there's a 10k result limit)
│ Format for both must be "YYYY-MM-DD".
│ Example: "2023-05-01", "2023-05-15" (fetches properties listed/sold between these dates)
├── mls_only (True/False): If set, fetches only MLS listings (mainly applicable to 'sold' listings)
├── foreclosure (True/False): If set, fetches only foreclosures
├── proxy (string): In format 'http://user:pass@host:port'
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
```
### Property Schema
```plaintext
Property
├── Basic Information:
│ ├── property_url (str)
│ ├── site_name (enum): zillow, redfin, realtor.com
│ ├── listing_type (enum: ListingType)
│ └── property_type (enum): house, apartment, condo, townhouse, single_family, multi_family, building
│ ├── property_url
│ ├── property_id
│ ├── listing_id
│ ├── mls
│ ├── mls_id
│ └── status
├── Address Details:
│ ├── street_address (str)
│ ├── city (str)
│ ├── state (str)
│ ├── zip_code (str)
│ ├── unit (str)
│ └── country (str)
│ ├── street
│ ├── unit
│ ├── city
│ ├── state
│ └── zip_code
├── Property Features:
│ ├── price (int)
│ ├── tax_assessed_value (int)
│ ├── currency (str)
│ ├── square_feet (int)
│ ├── beds (int)
│ ├── baths (float)
│ ├── lot_area_value (float)
│ ├── lot_area_unit (str)
│ ├── stories (int)
│ └── year_built (int)
├── Property Description:
│ ├── style
│ ├── beds
│ ├── full_baths
│ ├── half_baths
│ ├── sqft
│ ├── year_built
│ ├── stories
│ ├── garage
│ └── lot_sqft
├── Miscellaneous Details:
│ ├── price_per_sqft (int)
│ ├── mls_id (str)
│ ├── agent_name (str)
│ ├── img_src (str)
│ ├── description (str)
│ ├── status_text (str)
│ ├── latitude (float)
│ ├── longitude (float)
│ └── posted_time (str) [Only for Zillow]
├── Property Listing Details:
│ ├── days_on_mls
│ ├── list_price
│ ├── list_price_min
│ ├── list_price_max
│ ├── list_date
│ ├── pending_date
│ ├── sold_price
│ ├── last_sold_date
│ ├── price_per_sqft
│ ├── new_construction
│ └── hoa_fee
├── Building Details (for property_type: building):
│ ├── bldg_name (str)
│ ├── bldg_unit_count (int)
│ ├── bldg_min_beds (int)
│ ├── bldg_min_baths (float)
│ └── bldg_min_area (int)
├── Tax Information:
│ ├── year
│ ├── tax
│ ├── assessment
│ │ ├── building
│ │ ├── land
│ │ └── total
├── Location Details:
│ ├── latitude
│ ├── longitude
│ ├── nearby_schools
├── Agent Info:
│ ├── agent_id
│ ├── agent_name
│ ├── agent_email
│ └── agent_phone
├── Broker Info:
│ ├── broker_id
│ └── broker_name
├── Builder Info:
│ ├── builder_id
│ └── builder_name
├── Office Info:
│ ├── office_id
│ ├── office_name
│ ├── office_phones
│ └── office_email
└── Apartment Details (for property type: apartment):
└── apt_min_price (int)
```
## Supported Countries for Property Scraping
* **Zillow**: contains listings in the **US** & **Canada**
* **Realtor.com**: mainly from the **US** but also has international listings
* **Redfin**: listings mainly in the **US**, **Canada**, & has expanded to some areas in **Mexico**
### Exceptions
The following exceptions may be raised when using HomeHarvest:
- `InvalidSite` - valid options: `zillow`, `redfin`, `realtor.com`
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`
- `NoResultsFound` - no properties found from your input
- `GeoCoordsNotFound` - if Zillow scraper is not able to create geo-coordinates from the location you input
## Frequently Asked Questions
---
**Q: Encountering issues with your queries?**
**A:** Try a single site and/or broaden the location. If problems persist, [submit an issue](https://github.com/ZacharyHampton/HomeHarvest/issues).
---
**Q: Received a Forbidden 403 response code?**
**A:** This indicates that you have been blocked by the real estate site for sending too many requests. Currently, **Zillow** is particularly aggressive with blocking. We recommend:
- Waiting a few seconds between requests.
- Trying a VPN to change your IP address.
---
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`, `pending`.
- `InvalidDate` - date_from or date_to is not in the format YYYY-MM-DD.
- `AuthenticationError` - Realtor.com token request failed.

104
examples/price_of_land.py Normal file
View File

@ -0,0 +1,104 @@
"""
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
"""
import os
import pandas as pd
from homeharvest import scrape_property
def get_property_details(zip: str, listing_type):
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
if not properties.empty:
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
properties = properties[properties["sqft"].isnull()]
properties["ppa"] = properties.apply(
lambda row: (
int(
(
row["sold_price"]
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
else row["list_price"]
)
/ row["lot_acres"]
)
if pd.notnull(row["lot_acres"])
and row["lot_acres"] > 0
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
else None
),
axis=1,
)
properties["ppa"] = properties["ppa"].astype("Int64")
selected_columns = [
"property_url",
"property_id",
"style",
"status",
"street",
"city",
"state",
"zip_code",
"county",
"list_date",
"last_sold_date",
"list_price",
"sold_price",
"lot_sqft",
"lot_acres",
"ppa",
]
properties = properties[selected_columns]
return properties
def output_to_excel(zip_code, sold_df, pending_df):
root_folder = os.getcwd()
zip_folder = os.path.join(root_folder, "zips", zip_code)
# Create zip code folder if it doesn't exist
os.makedirs(zip_folder, exist_ok=True)
# Define file paths
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
# Save individual sold and pending files
sold_df.to_excel(sold_file, index=False)
pending_df.to_excel(pending_file, index=False)
zip_codes = map(
str,
[
22920,
77024,
78028,
24553,
22967,
22971,
22922,
22958,
22969,
22949,
22938,
24599,
24562,
22976,
24464,
22964,
24581,
],
)
combined_df = pd.DataFrame()
for zip in zip_codes:
sold_df = get_property_details(zip, "sold")
pending_df = get_property_details(zip, "pending")
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
output_to_excel(zip, sold_df, pending_df)
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
combined_df.to_excel(combined_file, index=False)

View File

@ -1,179 +1,77 @@
import warnings
import pandas as pd
from typing import Union
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from .core.scrapers import ScraperInput
from .core.scrapers.redfin import RedfinScraper
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
from .core.scrapers.realtor import RealtorScraper
from .core.scrapers.zillow import ZillowScraper
from .core.scrapers.models import ListingType, Property, SiteName
from .exceptions import InvalidSite, InvalidListingType
_scrapers = {
"redfin": RedfinScraper,
"realtor.com": RealtorScraper,
"zillow": ZillowScraper,
}
def validate_input(site_name: str, listing_type: str) -> None:
if site_name.lower() not in _scrapers:
raise InvalidSite(f"Provided site, '{site_name}', does not exist.")
if listing_type.upper() not in ListingType.__members__:
raise InvalidListingType(
f"Provided listing type, '{listing_type}', does not exist."
)
def get_ordered_properties(result: Property) -> list[str]:
return [
"property_url",
"site_name",
"listing_type",
"property_type",
"status_text",
"currency",
"price",
"apt_min_price",
"tax_assessed_value",
"square_feet",
"price_per_sqft",
"beds",
"baths",
"lot_area_value",
"lot_area_unit",
"street_address",
"unit",
"city",
"state",
"zip_code",
"country",
"posted_time",
"bldg_min_beds",
"bldg_min_baths",
"bldg_min_area",
"bldg_unit_count",
"bldg_name",
"stories",
"year_built",
"agent_name",
"mls_id",
"description",
"img_src",
"latitude",
"longitude",
]
def process_result(result: Property) -> pd.DataFrame:
prop_data = result.__dict__
prop_data["site_name"] = prop_data["site_name"].value
prop_data["listing_type"] = prop_data["listing_type"].value.lower()
if "property_type" in prop_data and prop_data["property_type"] is not None:
prop_data["property_type"] = prop_data["property_type"].value.lower()
else:
prop_data["property_type"] = None
if "address" in prop_data:
address_data = prop_data["address"]
prop_data["street_address"] = address_data.street_address
prop_data["unit"] = address_data.unit
prop_data["city"] = address_data.city
prop_data["state"] = address_data.state
prop_data["zip_code"] = address_data.zip_code
prop_data["country"] = address_data.country
del prop_data["address"]
properties_df = pd.DataFrame([prop_data])
properties_df = properties_df[get_ordered_properties(result)]
return properties_df
def _scrape_single_site(
location: str, site_name: str, listing_type: str
) -> pd.DataFrame:
"""
Helper function to scrape a single site.
"""
validate_input(site_name, listing_type)
scraper_input = ScraperInput(
location=location,
listing_type=ListingType[listing_type.upper()],
site_name=SiteName.get_by_value(site_name.lower()),
)
site = _scrapers[site_name.lower()](scraper_input)
results = site.search()
properties_dfs = [process_result(result) for result in results]
properties_dfs = [
df.dropna(axis=1, how="all") for df in properties_dfs if not df.empty
]
if not properties_dfs:
return pd.DataFrame()
return pd.concat(properties_dfs, ignore_index=True)
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property
def scrape_property(
location: str,
site_name: Union[str, list[str]] = None,
listing_type: str = "for_sale",
) -> pd.DataFrame:
return_type: str = "pandas",
property_type: list[str] | None = None,
radius: float = None,
mls_only: bool = False,
past_days: int = None,
proxy: str = None,
date_from: str = None, #: TODO: Switch to one parameter, Date, with date_from and date_to, pydantic validation
date_to: str = None,
foreclosure: bool = None,
extra_property_data: bool = True,
exclude_pending: bool = False,
limit: int = 10000
) -> pd.DataFrame | list[dict] | list[Property]:
"""
Scrape property from various sites from a given location and listing type.
:returns: pd.DataFrame
:param location: US Location (e.g. 'San Francisco, CA', 'Cook County, IL', '85281', '2530 Al Lipscomb Way')
:param site_name: Site name or list of site names (e.g. ['realtor.com', 'zillow'], 'redfin')
:param listing_type: Listing type (e.g. 'for_sale', 'for_rent', 'sold')
:return: pd.DataFrame containing properties
Scrape properties from Realtor.com based on a given location and listing type.
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
:param return_type: Return type (pandas, pydantic, raw)
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
:param mls_only: If set, fetches only listings with MLS IDs.
:param proxy: Proxy to use for scraping
:param past_days: Get properties sold or listed (dependent on your listing_type) in the last _ days.
:param date_from, date_to: Get properties sold or listed (dependent on your listing_type) between these dates. format: 2021-01-28
:param foreclosure: If set, fetches only foreclosure listings.
:param extra_property_data: Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
:param exclude_pending: If true, this excludes pending or contingent properties from the results, unless listing type is pending.
:param limit: Limit the number of results returned. Maximum is 10,000.
"""
if site_name is None:
site_name = list(_scrapers.keys())
validate_input(listing_type)
validate_dates(date_from, date_to)
validate_limit(limit)
if not isinstance(site_name, list):
site_name = [site_name]
scraper_input = ScraperInput(
location=location,
listing_type=ListingType(listing_type.upper()),
return_type=ReturnType(return_type.lower()),
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
proxy=proxy,
radius=radius,
mls_only=mls_only,
last_x_days=past_days,
date_from=date_from,
date_to=date_to,
foreclosure=foreclosure,
extra_property_data=extra_property_data,
exclude_pending=exclude_pending,
limit=limit,
)
results = []
site = RealtorScraper(scraper_input)
results = site.search()
if len(site_name) == 1:
final_df = _scrape_single_site(location, site_name[0], listing_type)
results.append(final_df)
else:
with ThreadPoolExecutor() as executor:
futures = {
executor.submit(
_scrape_single_site, location, s_name, listing_type
): s_name
for s_name in site_name
}
if scraper_input.return_type != ReturnType.pandas:
return results
for future in concurrent.futures.as_completed(futures):
result = future.result()
results.append(result)
results = [df for df in results if not df.empty and not df.isna().all().all()]
if not results:
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
if not properties_dfs:
return pd.DataFrame()
final_df = pd.concat(results, ignore_index=True)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
columns_to_track = ["street_address", "city", "unit"]
#: validate they exist, otherwise create them
for col in columns_to_track:
if col not in final_df.columns:
final_df[col] = None
final_df = final_df.drop_duplicates(
subset=["street_address", "city", "unit"], keep="first"
)
return final_df
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
{"None": pd.NA, None: pd.NA, "": pd.NA}
)

85
homeharvest/cli.py Normal file
View File

@ -0,0 +1,85 @@
import argparse
import datetime
from homeharvest import scrape_property
def main():
parser = argparse.ArgumentParser(description="Home Harvest Property Scraper")
parser.add_argument("location", type=str, help="Location to scrape (e.g., San Francisco, CA)")
parser.add_argument(
"-l",
"--listing_type",
type=str,
default="for_sale",
choices=["for_sale", "for_rent", "sold", "pending"],
help="Listing type to scrape",
)
parser.add_argument(
"-o",
"--output",
type=str,
default="excel",
choices=["excel", "csv"],
help="Output format",
)
parser.add_argument(
"-f",
"--filename",
type=str,
default=None,
help="Name of the output file (without extension)",
)
parser.add_argument("-p", "--proxy", type=str, default=None, help="Proxy to use for scraping")
parser.add_argument(
"-d",
"--days",
type=int,
default=None,
help="Sold/listed in last _ days filter.",
)
parser.add_argument(
"-r",
"--radius",
type=float,
default=None,
help="Get comparable properties within _ (eg. 0.0) miles. Only applicable for individual addresses.",
)
parser.add_argument(
"-m",
"--mls_only",
action="store_true",
help="If set, fetches only MLS listings.",
)
args = parser.parse_args()
result = scrape_property(
args.location,
args.listing_type,
radius=args.radius,
proxy=args.proxy,
mls_only=args.mls_only,
past_days=args.days,
)
if not args.filename:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
args.filename = f"HomeHarvest_{timestamp}"
if args.output == "excel":
output_filename = f"{args.filename}.xlsx"
result.to_excel(output_filename, index=False)
print(f"Excel file saved as {output_filename}")
elif args.output == "csv":
output_filename = f"{args.filename}.csv"
result.to_csv(output_filename, index=False)
print(f"CSV file saved as {output_filename}")
if __name__ == "__main__":
main()

View File

@ -1,37 +1,128 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Union
import requests
from .models import Property, ListingType, SiteName
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import uuid
from ...exceptions import AuthenticationError
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
import json
@dataclass
class ScraperInput:
location: str
listing_type: ListingType
site_name: SiteName
proxy_url: str | None = None
property_type: list[SearchPropertyType] | None = None
radius: float | None = None
mls_only: bool | None = False
proxy: str | None = None
last_x_days: int | None = None
date_from: str | None = None
date_to: str | None = None
foreclosure: bool | None = False
extra_property_data: bool | None = True
exclude_pending: bool | None = False
limit: int = 10000
return_type: ReturnType = ReturnType.pandas
class Scraper:
def __init__(self, scraper_input: ScraperInput):
session = None
def __init__(
self,
scraper_input: ScraperInput,
):
self.location = scraper_input.location
self.listing_type = scraper_input.listing_type
self.property_type = scraper_input.property_type
if not self.session:
Scraper.session = requests.Session()
retries = Retry(
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
)
adapter = HTTPAdapter(max_retries=retries)
Scraper.session.mount("http://", adapter)
Scraper.session.mount("https://", adapter)
Scraper.session.headers.update(
{
"accept": "application/json, text/javascript",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": "https://www.realtor.com",
"pragma": "no-cache",
"priority": "u=1, i",
"rdc-ab-tests": "commute_travel_time_variation:v1",
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
}
)
if scraper_input.proxy:
proxy_url = scraper_input.proxy
proxies = {"http": proxy_url, "https": proxy_url}
self.session.proxies.update(proxies)
self.session = requests.Session()
self.listing_type = scraper_input.listing_type
self.site_name = scraper_input.site_name
self.radius = scraper_input.radius
self.last_x_days = scraper_input.last_x_days
self.mls_only = scraper_input.mls_only
self.date_from = scraper_input.date_from
self.date_to = scraper_input.date_to
self.foreclosure = scraper_input.foreclosure
self.extra_property_data = scraper_input.extra_property_data
self.exclude_pending = scraper_input.exclude_pending
self.limit = scraper_input.limit
self.return_type = scraper_input.return_type
if scraper_input.proxy_url:
self.session.proxies = {
"http": scraper_input.proxy_url,
"https": scraper_input.proxy_url,
}
def search(self) -> list[Property]:
...
def search(self) -> list[Union[Property | dict]]: ...
@staticmethod
def _parse_home(home) -> Property:
...
def _parse_home(home) -> Property: ...
def handle_location(self):
...
def handle_location(self): ...
@staticmethod
def get_access_token():
device_id = str(uuid.uuid4()).upper()
response = requests.post(
"https://graph.realtor.com/auth/token",
headers={
"Host": "graph.realtor.com",
"Accept": "*/*",
"Content-Type": "Application/json",
"X-Client-ID": "rdc_mobile_native,iphone",
"X-Visitor-ID": device_id,
"X-Client-Version": "24.21.23.679885",
"Accept-Language": "en-US,en;q=0.9",
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
},
data=json.dumps(
{
"grant_type": "device_mobile",
"device_id": device_id,
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
}
),
)
data = response.json()
if not (access_token := data.get("access_token")):
raise AuthenticationError(
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
)
return access_token

View File

@ -1,5 +1,13 @@
from __future__ import annotations
from dataclasses import dataclass
from enum import Enum
from typing import Optional
class ReturnType(Enum):
pydantic = "pydantic"
pandas = "pandas"
raw = "raw"
class SiteName(Enum):
@ -15,91 +23,172 @@ class SiteName(Enum):
raise ValueError(f"{value} not found in {cls}")
class SearchPropertyType(Enum):
SINGLE_FAMILY = "single_family"
APARTMENT = "apartment"
CONDOS = "condos"
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
CONDO_TOWNHOME = "condo_townhome"
TOWNHOMES = "townhomes"
DUPLEX_TRIPLEX = "duplex_triplex"
FARM = "farm"
LAND = "land"
MULTI_FAMILY = "multi_family"
MOBILE = "mobile"
class ListingType(Enum):
FOR_SALE = "FOR_SALE"
FOR_RENT = "FOR_RENT"
PENDING = "PENDING"
SOLD = "SOLD"
@dataclass
class Agent:
name: str | None = None
phone: str | None = None
class PropertyType(Enum):
HOUSE = "HOUSE"
BUILDING = "BUILDING"
CONDO = "CONDO"
TOWNHOUSE = "TOWNHOUSE"
SINGLE_FAMILY = "SINGLE_FAMILY"
MULTI_FAMILY = "MULTI_FAMILY"
MANUFACTURED = "MANUFACTURED"
NEW_CONSTRUCTION = "NEW_CONSTRUCTION"
APARTMENT = "APARTMENT"
APARTMENTS = "APARTMENTS"
BUILDING = "BUILDING"
COMMERCIAL = "COMMERCIAL"
GOVERNMENT = "GOVERNMENT"
INDUSTRIAL = "INDUSTRIAL"
CONDO_TOWNHOME = "CONDO_TOWNHOME"
CONDO_TOWNHOME_ROWHOME_COOP = "CONDO_TOWNHOME_ROWHOME_COOP"
CONDO = "CONDO"
CONDOP = "CONDOP"
CONDOS = "CONDOS"
COOP = "COOP"
DUPLEX_TRIPLEX = "DUPLEX_TRIPLEX"
FARM = "FARM"
INVESTMENT = "INVESTMENT"
LAND = "LAND"
LOT = "LOT"
MOBILE = "MOBILE"
MULTI_FAMILY = "MULTI_FAMILY"
RENTAL = "RENTAL"
SINGLE_FAMILY = "SINGLE_FAMILY"
TOWNHOMES = "TOWNHOMES"
OTHER = "OTHER"
BLANK = "BLANK"
@classmethod
def from_int_code(cls, code):
mapping = {
1: cls.HOUSE,
2: cls.CONDO,
3: cls.TOWNHOUSE,
4: cls.MULTI_FAMILY,
5: cls.LAND,
6: cls.OTHER,
8: cls.SINGLE_FAMILY,
13: cls.SINGLE_FAMILY,
}
return mapping.get(code, cls.BLANK)
@dataclass
class Address:
street_address: str
city: str
state: str
zip_code: str
full_line: str | None = None
street: str | None = None
unit: str | None = None
country: str | None = None
city: str | None = None
state: str | None = None
zip: str | None = None
@dataclass
class Description:
primary_photo: str | None = None
alt_photos: list[str] | None = None
style: PropertyType | None = None
beds: int | None = None
baths_full: int | None = None
baths_half: int | None = None
sqft: int | None = None
lot_sqft: int | None = None
sold_price: int | None = None
year_built: int | None = None
garage: float | None = None
stories: int | None = None
text: str | None = None
@dataclass
class AgentPhone: #: For documentation purposes only (at the moment)
number: str | None = None
type: str | None = None
primary: bool | None = None
ext: str | None = None
@dataclass
class Entity:
name: str
uuid: str | None = None
@dataclass
class Agent(Entity):
mls_set: str | None = None
nrds_id: str | None = None
phones: list[dict] | AgentPhone | None = None
email: str | None = None
href: str | None = None
@dataclass
class Office(Entity):
mls_set: str | None = None
email: str | None = None
href: str | None = None
phones: list[dict] | AgentPhone | None = None
@dataclass
class Broker(Entity):
pass
@dataclass
class Builder(Entity):
pass
@dataclass
class Advertisers:
agent: Agent | None = None
broker: Broker | None = None
builder: Builder | None = None
office: Office | None = None
@dataclass
class Property:
property_url: str
site_name: SiteName
listing_type: ListingType
address: Address
property_type: PropertyType | None = None
# house for sale
price: int | None = None
tax_assessed_value: int | None = None
currency: str | None = None
square_feet: int | None = None
beds: int | None = None
baths: float | None = None
lot_area_value: float | None = None
lot_area_unit: str | None = None
stories: int | None = None
year_built: int | None = None
price_per_sqft: int | None = None
property_id: str
#: allows_cats: bool
#: allows_dogs: bool
listing_id: str | None = None
mls: str | None = None
mls_id: str | None = None
status: str | None = None
address: Address | None = None
list_price: int | None = None
list_price_min: int | None = None
list_price_max: int | None = None
list_date: str | None = None
pending_date: str | None = None
last_sold_date: str | None = None
prc_sqft: int | None = None
new_construction: bool | None = None
hoa_fee: int | None = None
days_on_mls: int | None = None
description: Description | None = None
tags: list[str] | None = None
details: list[dict] | None = None
agent_name: str | None = None
img_src: str | None = None
description: str | None = None
status_text: str | None = None
latitude: float | None = None
longitude: float | None = None
posted_time: str | None = None
neighborhoods: Optional[str] = None
county: Optional[str] = None
fips_code: Optional[str] = None
nearby_schools: list[str] = None
assessed_value: int | None = None
estimated_value: int | None = None
tax: int | None = None
tax_history: list[dict] | None = None
# building for sale
bldg_name: str | None = None
bldg_unit_count: int | None = None
bldg_min_beds: int | None = None
bldg_min_baths: float | None = None
bldg_min_area: int | None = None
# apt
apt_min_price: int | None = None
advertisers: Advertisers | None = None

View File

@ -1,33 +1,54 @@
"""
homeharvest.realtor.__init__
~~~~~~~~~~~~
This module implements the scraper for realtor.com
"""
from __future__ import annotations
import json
from ..models import Property, Address
from .. import Scraper
from typing import Any, Generator
from ....exceptions import NoResultsFound
from ....utils import parse_address_two, parse_unit
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from json import JSONDecodeError
from typing import Dict, Union, Optional
from tenacity import (
retry,
retry_if_exception_type,
wait_exponential,
stop_after_attempt,
)
from .. import Scraper
from ..models import (
Property,
Address,
ListingType,
Description,
PropertyType,
Agent,
Broker,
Builder,
Advertisers,
Office,
ReturnType
)
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
class RealtorScraper(Scraper):
SEARCH_GQL_URL = "https://www.realtor.com/api/v1/rdc_search_srp?client_id=rdc-search-new-communities&schema=vesta"
PROPERTY_URL = "https://www.realtor.com/realestateandhomes-detail/"
PROPERTY_GQL = "https://graph.realtor.com/graphql"
ADDRESS_AUTOCOMPLETE_URL = "https://parser-external.geo.moveaws.com/suggest"
NUM_PROPERTY_WORKERS = 20
DEFAULT_PAGE_SIZE = 200
def __init__(self, scraper_input):
super().__init__(scraper_input)
self.search_url = "https://www.realtor.com/api/v1/rdc_search_srp?client_id=rdc-search-new-communities&schema=vesta"
def handle_location(self):
headers = {
"authority": "parser-external.geo.moveaws.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"origin": "https://www.realtor.com",
"referer": "https://www.realtor.com/",
"sec-ch-ua": '"Chromium";v="116", "Not)A;Brand";v="24", "Google Chrome";v="116"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",
}
params = {
"input": self.location,
"client_id": self.listing_type.value.lower().replace("_", "-"),
@ -36,283 +57,612 @@ class RealtorScraper(Scraper):
}
response = self.session.get(
"https://parser-external.geo.moveaws.com/suggest",
self.ADDRESS_AUTOCOMPLETE_URL,
params=params,
headers=headers,
)
response_json = response.json()
result = response_json["autocomplete"]
if not result:
raise NoResultsFound("No results found for location: " + self.location)
return None
return result[0]
def handle_address(self, property_id: str) -> list[Property]:
def get_latest_listing_id(self, property_id: str) -> str | None:
query = """query Property($property_id: ID!) {
property(id: $property_id) {
property_id
details {
date_updated
garage
permalink
year_built
stories
}
address {
address_validation_code
city
country
county
line
postal_code
state_code
street_direction
street_name
street_number
street_suffix
street_post_direction
unit_value
unit
unit_descriptor
zip
}
basic {
baths
beds
price
sqft
lot_sqft
type
sold_price
}
public_record {
lot_size
sqft
stories
units
year_built
listings {
listing_id
primary
}
}
}"""
}
"""
variables = {"property_id": property_id}
payload = {
"query": query,
"variables": variables,
}
response = self.session.post(self.search_url, json=payload)
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
response_json = response.json()
property_info = response_json["data"]["property"]
street_address, unit = parse_address_two(property_info["address"]["line"])
if property_info["listings"] is None:
return None
return [
Property(
site_name=self.site_name,
address=Address(
street_address=street_address,
city=property_info["address"]["city"],
state=property_info["address"]["state_code"],
zip_code=property_info["address"]["postal_code"],
unit=unit,
country="USA",
),
property_url="https://www.realtor.com/realestateandhomes-detail/"
+ property_info["details"]["permalink"],
beds=property_info["basic"]["beds"],
baths=property_info["basic"]["baths"],
stories=property_info["details"]["stories"],
year_built=property_info["details"]["year_built"],
square_feet=property_info["basic"]["sqft"],
price_per_sqft=property_info["basic"]["price"]
// property_info["basic"]["sqft"]
if property_info["basic"]["sqft"] is not None
and property_info["basic"]["price"] is not None
else None,
price=property_info["basic"]["price"],
mls_id=property_id,
listing_type=self.listing_type,
lot_area_value=property_info["public_record"]["lot_size"]
if property_info["public_record"] is not None
else None,
)
]
def handle_area(
self, variables: dict, return_total: bool = False
) -> list[Property] | int:
query = (
"""query Home_search(
$city: String,
$county: [String],
$state_code: String,
$postal_code: String
$offset: Int,
) {
home_search(
query: {
city: $city
county: $county
postal_code: $postal_code
state_code: $state_code
status: %s
}
limit: 200
offset: $offset
) {
count
total
results {
property_id
description {
baths
beds
lot_sqft
sqft
text
sold_price
stories
year_built
garage
unit_number
floor_number
}
location {
address {
city
country
line
postal_code
state_code
state
street_direction
street_name
street_number
street_post_direction
street_suffix
unit
coordinate {
lon
lat
}
}
}
list_price
price_per_sqft
source {
id
}
}
}
}"""
% self.listing_type.value.lower()
primary_listing = next(
(listing for listing in property_info["listings"] if listing["primary"]),
None,
)
if primary_listing:
return primary_listing["listing_id"]
else:
return property_info["listings"][0]["listing_id"]
def handle_home(self, property_id: str) -> list[Property]:
query = (
"""query Home($property_id: ID!) {
home(property_id: $property_id) %s
}"""
% HOMES_DATA
)
variables = {"property_id": property_id}
payload = {
"query": query,
"variables": variables,
}
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
response_json = response.json()
property_info = response_json["data"]["home"]
return [self.process_property(property_info)]
@staticmethod
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
if not advertisers:
return None
def _parse_fulfillment_id(fulfillment_id: str | None) -> str | None:
return fulfillment_id if fulfillment_id and fulfillment_id != "0" else None
processed_advertisers = Advertisers()
for advertiser in advertisers:
advertiser_type = advertiser.get("type")
if advertiser_type == "seller": #: agent
processed_advertisers.agent = Agent(
uuid=_parse_fulfillment_id(advertiser.get("fulfillment_id")),
nrds_id=advertiser.get("nrds_id"),
mls_set=advertiser.get("mls_set"),
name=advertiser.get("name"),
email=advertiser.get("email"),
phones=advertiser.get("phones"),
)
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
processed_advertisers.broker = Broker(
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
name=advertiser["broker"].get("name"),
)
if advertiser.get("office"): #: has an office
processed_advertisers.office = Office(
uuid=_parse_fulfillment_id(advertiser["office"].get("fulfillment_id")),
mls_set=advertiser["office"].get("mls_set"),
name=advertiser["office"].get("name"),
email=advertiser["office"].get("email"),
phones=advertiser["office"].get("phones"),
)
if advertiser_type == "community": #: could be builder
if advertiser.get("builder"):
processed_advertisers.builder = Builder(
uuid=_parse_fulfillment_id(advertiser["builder"].get("fulfillment_id")),
name=advertiser["builder"].get("name"),
)
return processed_advertisers
def process_property(self, result: dict) -> Property | None:
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
if not mls and self.mls_only:
return
able_to_get_lat_long = (
result
and result.get("location")
and result["location"].get("address")
and result["location"]["address"].get("coordinate")
)
is_pending = result["flags"].get("is_pending")
is_contingent = result["flags"].get("is_contingent")
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
return
property_id = result["property_id"]
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
advertisers = self.process_advertisers(result.get("advertisers"))
realty_property = Property(
mls=mls,
mls_id=(
result["source"].get("listing_id")
if "source" in result and isinstance(result["source"], dict)
else None
),
property_url=result["href"],
property_id=property_id,
listing_id=result.get("listing_id"),
status=("PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper()),
list_price=result["list_price"],
list_price_min=result["list_price_min"],
list_price_max=result["list_price_max"],
list_date=(result["list_date"].split("T")[0] if result.get("list_date") else None),
prc_sqft=result.get("price_per_sqft"),
last_sold_date=result.get("last_sold_date"),
new_construction=result["flags"].get("is_new_construction") is True,
hoa_fee=(result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None),
latitude=(result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None),
longitude=(result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None),
address=self._parse_address(result, search_type="general_search"),
description=self._parse_description(result),
neighborhoods=self._parse_neighborhoods(result),
county=(result["location"]["county"].get("name") if result["location"]["county"] else None),
fips_code=(result["location"]["county"].get("fips_code") if result["location"]["county"] else None),
days_on_mls=self.calculate_days_on_mls(result),
nearby_schools=prop_details.get("schools"),
assessed_value=prop_details.get("assessed_value"),
estimated_value=estimated_value if estimated_value else None,
advertisers=advertisers,
tax=prop_details.get("tax"),
tax_history=prop_details.get("tax_history"),
)
return realty_property
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]:
"""
Handles a location area & returns a list of properties
"""
date_param = ""
if self.listing_type == ListingType.SOLD:
if self.date_from and self.date_to:
date_param = f'sold_date: {{ min: "{self.date_from}", max: "{self.date_to}" }}'
elif self.last_x_days:
date_param = f'sold_date: {{ min: "$today-{self.last_x_days}D" }}'
else:
if self.date_from and self.date_to:
date_param = f'list_date: {{ min: "{self.date_from}", max: "{self.date_to}" }}'
elif self.last_x_days:
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
property_type_param = ""
if self.property_type:
property_types = [pt.value for pt in self.property_type]
property_type_param = f"type: {json.dumps(property_types)}"
sort_param = (
"sort: [{ field: sold_date, direction: desc }]"
if self.listing_type == ListingType.SOLD
else "" #: "sort: [{ field: list_date, direction: desc }]" #: prioritize normal fractal sort from realtor
)
pending_or_contingent_param = (
"or_filters: { contingent: true, pending: true }" if self.listing_type == ListingType.PENDING else ""
)
listing_type = ListingType.FOR_SALE if self.listing_type == ListingType.PENDING else self.listing_type
is_foreclosure = ""
if variables.get("foreclosure") is True:
is_foreclosure = "foreclosure: true"
elif variables.get("foreclosure") is False:
is_foreclosure = "foreclosure: false"
if search_type == "comps": #: comps search, came from an address
query = """query Property_search(
$coordinates: [Float]!
$radius: String!
$offset: Int!,
) {
home_search(
query: {
%s
nearby: {
coordinates: $coordinates
radius: $radius
}
status: %s
%s
%s
%s
}
%s
limit: 200
offset: $offset
) %s
}""" % (
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
)
elif search_type == "area": #: general search, came from a general location
query = """query Home_search(
$location: String!,
$offset: Int,
) {
home_search(
query: {
%s
search_location: {location: $location}
status: %s
unique: true
%s
%s
%s
}
bucket: { sort: "fractal_v1.1.3_fr" }
%s
limit: 200
offset: $offset
) %s
}""" % (
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
)
else: #: general search, came from an address
query = (
"""query Property_search(
$property_id: [ID]!
$offset: Int!,
) {
home_search(
query: {
property_id: $property_id
}
limit: 1
offset: $offset
) %s
}"""
% GENERAL_RESULTS_QUERY
)
payload = {
"query": query,
"variables": variables,
}
response = self.session.post(self.search_url, json=payload)
response.raise_for_status()
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
response_json = response.json()
search_key = "home_search" if "home_search" in query else "property_search"
if return_total:
return response_json["data"]["home_search"]["total"]
properties: list[Property] = []
properties: list[Union[Property, dict]] = []
if (
response_json is None
or "data" not in response_json
or response_json["data"] is None
or "home_search" not in response_json["data"]
or response_json["data"]["home_search"] is None
or "results" not in response_json["data"]["home_search"]
or search_key not in response_json["data"]
or response_json["data"][search_key] is None
or "results" not in response_json["data"][search_key]
):
return []
return {"total": 0, "properties": []}
for result in response_json["data"]["home_search"]["results"]:
street_address, unit = parse_address_two(
result["location"]["address"]["line"]
)
realty_property = Property(
address=Address(
street_address=street_address,
city=result["location"]["address"]["city"],
state=result["location"]["address"]["state_code"],
zip_code=result["location"]["address"]["postal_code"],
unit=parse_unit(result["location"]["address"]["unit"]),
country="USA",
),
latitude=result["location"]["address"]["coordinate"]["lat"]
if result
and result.get("location")
and result["location"].get("address")
and result["location"]["address"].get("coordinate")
and "lat" in result["location"]["address"]["coordinate"]
else None,
longitude=result["location"]["address"]["coordinate"]["lon"]
if result
and result.get("location")
and result["location"].get("address")
and result["location"]["address"].get("coordinate")
and "lon" in result["location"]["address"]["coordinate"]
else None,
site_name=self.site_name,
property_url="https://www.realtor.com/realestateandhomes-detail/"
+ result["property_id"],
beds=result["description"]["beds"],
baths=result["description"]["baths"],
stories=result["description"]["stories"],
year_built=result["description"]["year_built"],
square_feet=result["description"]["sqft"],
price_per_sqft=result["price_per_sqft"],
price=result["list_price"],
mls_id=result["property_id"],
listing_type=self.listing_type,
lot_area_value=result["description"]["lot_sqft"],
)
properties_list = response_json["data"][search_key]["results"]
total_properties = response_json["data"][search_key]["total"]
offset = variables.get("offset", 0)
properties.append(realty_property)
#: limit the number of properties to be processed
#: example, if your offset is 200, and your limit is 250, return 50
properties_list: list[dict] = properties_list[: self.limit - offset]
return properties
if self.extra_property_data:
property_ids = [data["property_id"] for data in properties_list]
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
for result in properties_list:
result.update(extra_property_details.get(result["property_id"], {}))
if self.return_type != ReturnType.raw:
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
futures = [executor.submit(self.process_property, result) for result in properties_list]
for future in as_completed(futures):
result = future.result()
if result:
properties.append(result)
else:
properties = properties_list
return {
"total": total_properties,
"properties": properties,
}
def search(self):
location_info = self.handle_location()
if not location_info:
return []
location_type = location_info["area_type"]
if location_type == "address":
property_id = location_info["mpr_id"]
return self.handle_address(property_id)
offset = 0
search_variables = {
"city": location_info.get("city"),
"county": location_info.get("county"),
"state_code": location_info.get("state_code"),
"postal_code": location_info.get("postal_code"),
"offset": offset,
"offset": 0,
}
total = self.handle_area(search_variables, return_total=True)
search_type = (
"comps"
if self.radius and location_type == "address"
else "address" if location_type == "address" and not self.radius else "area"
)
if location_type == "address":
if not self.radius: #: single address search, non comps
property_id = location_info["mpr_id"]
return self.handle_home(property_id)
homes = []
with ThreadPoolExecutor(max_workers=10) as executor:
else: #: general search, comps (radius)
if not location_info.get("centroid"):
return []
coordinates = list(location_info["centroid"].values())
search_variables |= {
"coordinates": coordinates,
"radius": "{}mi".format(self.radius),
}
elif location_type == "postal_code":
search_variables |= {
"postal_code": location_info.get("postal_code"),
}
else: #: general search, location
search_variables |= {
"location": self.location,
}
if self.foreclosure:
search_variables["foreclosure"] = self.foreclosure
result = self.general_search(search_variables, search_type=search_type)
total = result["total"]
homes = result["properties"]
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(
self.handle_area,
self.general_search,
variables=search_variables | {"offset": i},
return_total=False,
search_type=search_type,
)
for i in range(
self.DEFAULT_PAGE_SIZE,
min(total, self.limit),
self.DEFAULT_PAGE_SIZE,
)
for i in range(0, total, 200)
]
for future in as_completed(futures):
homes.extend(future.result())
homes.extend(future.result()["properties"])
return homes
@staticmethod
def get_key(data: dict, keys: list):
try:
value = data
for key in keys:
value = value[key]
return value or {}
except (KeyError, TypeError, IndexError):
return {}
def process_extra_property_details(self, result: dict) -> dict:
schools = self.get_key(result, ["nearbySchools", "schools"])
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
tax_history = self.get_key(result, ["taxHistory"])
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
# Process tax history
latest_tax = None
processed_tax_history = None
if tax_history and isinstance(tax_history, list):
tax_history = sorted(tax_history, key=lambda x: x.get("year", 0), reverse=True)
if tax_history and "tax" in tax_history[0]:
latest_tax = tax_history[0]["tax"]
processed_tax_history = []
for entry in tax_history:
if "year" in entry and "tax" in entry:
processed_entry = {
"year": entry["year"],
"tax": entry["tax"],
}
if "assessment" in entry and isinstance(entry["assessment"], dict):
processed_entry["assessment"] = {
"building": entry["assessment"].get("building"),
"land": entry["assessment"].get("land"),
"total": entry["assessment"].get("total"),
}
processed_tax_history.append(processed_entry)
return {
"schools": schools if schools else None,
"assessed_value": assessed_value if assessed_value else None,
"tax": latest_tax,
"tax_history": processed_tax_history,
}
@retry(
retry=retry_if_exception_type(JSONDecodeError),
wait=wait_exponential(min=4, max=10),
stop=stop_after_attempt(3),
)
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
"""
Fetch extra property details for multiple properties in a single GraphQL query.
Returns a map of property_id to its details.
"""
if not self.extra_property_data or not property_ids:
return {}
property_ids = list(set(property_ids))
# Construct the bulk query
fragments = "\n".join(
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
for property_id in property_ids
)
query = f"""{HOME_FRAGMENT}
query GetHomes {{
{fragments}
}}"""
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
data = response.json()
if "data" not in data:
return {}
properties = data["data"]
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
@staticmethod
def _parse_neighborhoods(result: dict) -> Optional[str]:
neighborhoods_list = []
neighborhoods = result["location"].get("neighborhoods", [])
if neighborhoods:
for neighborhood in neighborhoods:
name = neighborhood.get("name")
if name:
neighborhoods_list.append(name)
return ", ".join(neighborhoods_list) if neighborhoods_list else None
@staticmethod
def handle_none_safely(address_part):
if address_part is None:
return ""
return address_part
@staticmethod
def _parse_address(result: dict, search_type):
if search_type == "general_search":
address = result["location"]["address"]
else:
address = result["address"]
return Address(
full_line=address.get("line"),
street=" ".join(
part
for part in [
address.get("street_number"),
address.get("street_direction"),
address.get("street_name"),
address.get("street_suffix"),
]
if part is not None
).strip(),
unit=address["unit"],
city=address["city"],
state=address["state_code"],
zip=address["postal_code"],
)
@staticmethod
def _parse_description(result: dict) -> Description | None:
if not result:
return None
description_data = result.get("description", {})
if description_data is None or not isinstance(description_data, dict):
description_data = {}
style = description_data.get("type", "")
if style is not None:
style = style.upper()
primary_photo = ""
if (primary_photo_info := result.get("primary_photo")) and (
primary_photo_href := primary_photo_info.get("href")
):
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
return Description(
primary_photo=primary_photo,
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
style=(PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None),
beds=description_data.get("beds"),
baths_full=description_data.get("baths_full"),
baths_half=description_data.get("baths_half"),
sqft=description_data.get("sqft"),
lot_sqft=description_data.get("lot_sqft"),
sold_price=(
result.get("last_sold_price") or description_data.get("sold_price")
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
else None
), #: has a sold date or list and sold price are different
year_built=description_data.get("year_built"),
garage=description_data.get("garage"),
stories=description_data.get("stories"),
text=description_data.get("text"),
)
@staticmethod
def calculate_days_on_mls(result: dict) -> Optional[int]:
list_date_str = result.get("list_date")
list_date = datetime.strptime(list_date_str.split("T")[0], "%Y-%m-%d") if list_date_str else None
last_sold_date_str = result.get("last_sold_date")
last_sold_date = datetime.strptime(last_sold_date_str, "%Y-%m-%d") if last_sold_date_str else None
today = datetime.now()
if list_date:
if result["status"] == "sold":
if last_sold_date:
days = (last_sold_date - list_date).days
if days >= 0:
return days
elif result["status"] in ("for_sale", "for_rent"):
days = (today - list_date).days
if days >= 0:
return days
@staticmethod
def process_alt_photos(photos_info: list[dict]) -> list[str] | None:
if not photos_info:
return None
return [
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
for photo_info in photos_info
if photo_info.get("href")
]

View File

@ -0,0 +1,242 @@
_SEARCH_HOMES_DATA_BASE = """{
pending_date
listing_id
property_id
href
list_date
status
last_sold_price
last_sold_date
list_price
list_price_max
list_price_min
price_per_sqft
tags
details {
category
text
parent_category
}
pet_policy {
cats
dogs
dogs_small
dogs_large
__typename
}
units {
availability {
date
__typename
}
description {
baths_consolidated
baths
beds
sqft
__typename
}
list_price
__typename
}
flags {
is_contingent
is_pending
is_new_construction
}
description {
type
sqft
beds
baths_full
baths_half
lot_sqft
year_built
garage
type
name
stories
text
}
source {
id
listing_id
}
hoa {
fee
}
location {
address {
street_direction
street_number
street_name
street_suffix
line
unit
city
state_code
postal_code
coordinate {
lon
lat
}
}
county {
name
fips_code
}
neighborhoods {
name
}
}
tax_record {
public_record_id
}
primary_photo(https: true) {
href
}
photos(https: true) {
href
tags {
label
}
}
advertisers {
email
broker {
name
fulfillment_id
}
type
name
fulfillment_id
builder {
name
fulfillment_id
}
phones {
ext
primary
type
number
}
office {
name
email
fulfillment_id
href
phones {
number
type
primary
ext
}
mls_set
}
corporation {
specialties
name
bio
href
fulfillment_id
}
mls_set
nrds_id
rental_corporation {
fulfillment_id
}
rental_management {
name
href
fulfillment_id
}
}
"""
HOME_FRAGMENT = """
fragment HomeData on Home {
property_id
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
monthly_fees {
description
display_amount
}
one_time_fees {
description
display_amount
}
parking {
unassigned_space_rent
assigned_spaces_available
description
assigned_space_rent
}
terms {
text
category
}
}
"""
HOMES_DATA = """%s
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
monthly_fees {
description
display_amount
}
one_time_fees {
description
display_amount
}
parking {
unassigned_space_rent
assigned_spaces_available
description
assigned_space_rent
}
terms {
text
category
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
estimates {
__typename
currentValues: current_values {
__typename
source { __typename type name }
estimate
estimateHigh: estimate_high
estimateLow: estimate_low
date
isBestHomeValue: isbest_homevalue
}
}
}""" % _SEARCH_HOMES_DATA_BASE
SEARCH_HOMES_DATA = """%s
current_estimates {
__typename
source {
__typename
type
name
}
estimate
estimateHigh: estimate_high
estimateLow: estimate_low
date
isBestHomeValue: isbest_homevalue
}
}""" % _SEARCH_HOMES_DATA_BASE
GENERAL_RESULTS_QUERY = """{
count
total
results %s
}""" % SEARCH_HOMES_DATA

View File

@ -1,185 +0,0 @@
import json
from typing import Any
from .. import Scraper
from ....utils import parse_address_two, parse_unit
from ..models import Property, Address, PropertyType
from ....exceptions import NoResultsFound
class RedfinScraper(Scraper):
def __init__(self, scraper_input):
super().__init__(scraper_input)
self.listing_type = scraper_input.listing_type
def _handle_location(self):
url = "https://www.redfin.com/stingray/do/location-autocomplete?v=2&al=1&location={}".format(
self.location
)
response = self.session.get(url)
response_json = json.loads(response.text.replace("{}&&", ""))
def get_region_type(match_type: str):
if match_type == "4":
return "2" #: zip
elif match_type == "2":
return "6" #: city
elif match_type == "1":
return "address" #: address, needs to be handled differently
if "exactMatch" not in response_json["payload"]:
raise NoResultsFound(
"No results found for location: {}".format(self.location)
)
if response_json["payload"]["exactMatch"] is not None:
target = response_json["payload"]["exactMatch"]
else:
target = response_json["payload"]["sections"][0]["rows"][0]
return target["id"].split("_")[1], get_region_type(target["type"])
def _parse_home(self, home: dict, single_search: bool = False) -> Property:
def get_value(key: str) -> Any | None:
if key in home and "value" in home[key]:
return home[key]["value"]
if not single_search:
street_address, unit = parse_address_two(get_value("streetLine"))
unit = parse_unit(get_value("streetLine"))
address = Address(
street_address=street_address,
city=home["city"],
state=home["state"],
zip_code=home["zip"],
unit=unit,
country="USA",
)
else:
address_info = home["streetAddress"]
street_address, unit = parse_address_two(address_info["assembledAddress"])
address = Address(
street_address=street_address,
city=home["city"],
state=home["state"],
zip_code=home["zip"],
unit=unit,
country="USA",
)
url = "https://www.redfin.com{}".format(home["url"])
#: property_type = home["propertyType"] if "propertyType" in home else None
lot_size_data = home.get("lotSize")
if not isinstance(lot_size_data, int):
lot_size = (
lot_size_data.get("value", None)
if isinstance(lot_size_data, dict)
else None
)
else:
lot_size = lot_size_data
return Property(
site_name=self.site_name,
listing_type=self.listing_type,
address=address,
property_url=url,
beds=home["beds"] if "beds" in home else None,
baths=home["baths"] if "baths" in home else None,
stories=home["stories"] if "stories" in home else None,
agent_name=get_value("listingAgent"),
description=home["listingRemarks"] if "listingRemarks" in home else None,
year_built=get_value("yearBuilt")
if not single_search
else home["yearBuilt"],
square_feet=get_value("sqFt"),
lot_area_value=lot_size,
property_type=PropertyType.from_int_code(home.get("propertyType")),
price_per_sqft=get_value("pricePerSqFt"),
price=get_value("price"),
mls_id=get_value("mlsId"),
latitude=home["latLong"]["latitude"]
if "latLong" in home and "latitude" in home["latLong"]
else None,
longitude=home["latLong"]["longitude"]
if "latLong" in home and "longitude" in home["latLong"]
else None,
)
def _parse_building(self, building: dict) -> Property:
street_address = " ".join(
[
building["address"]["streetNumber"],
building["address"]["directionalPrefix"],
building["address"]["streetName"],
building["address"]["streetType"],
]
)
street_address, unit = parse_address_two(street_address)
return Property(
site_name=self.site_name,
property_type=PropertyType("BUILDING"),
address=Address(
street_address=street_address,
city=building["address"]["city"],
state=building["address"]["stateOrProvinceCode"],
zip_code=building["address"]["postalCode"],
unit=parse_unit(
" ".join(
[
building["address"]["unitType"],
building["address"]["unitValue"],
]
)
),
),
property_url="https://www.redfin.com{}".format(building["url"]),
listing_type=self.listing_type,
bldg_unit_count=building["numUnitsForSale"],
)
def handle_address(self, home_id: str):
"""
EPs:
https://www.redfin.com/stingray/api/home/details/initialInfo?al=1&path=/TX/Austin/70-Rainey-St-78701/unit-1608/home/147337694
https://www.redfin.com/stingray/api/home/details/mainHouseInfoPanelInfo?propertyId=147337694&accessLevel=3
https://www.redfin.com/stingray/api/home/details/aboveTheFold?propertyId=147337694&accessLevel=3
https://www.redfin.com/stingray/api/home/details/belowTheFold?propertyId=147337694&accessLevel=3
"""
url = "https://www.redfin.com/stingray/api/home/details/aboveTheFold?propertyId={}&accessLevel=3".format(
home_id
)
response = self.session.get(url)
response_json = json.loads(response.text.replace("{}&&", ""))
parsed_home = self._parse_home(
response_json["payload"]["addressSectionInfo"], single_search=True
)
return [parsed_home]
def search(self):
region_id, region_type = self._handle_location()
if region_type == "address":
home_id = region_id
return self.handle_address(home_id)
url = "https://www.redfin.com/stingray/api/gis?al=1&region_id={}&region_type={}".format(
region_id, region_type
)
response = self.session.get(url)
response_json = json.loads(response.text.replace("{}&&", ""))
homes = [
self._parse_home(home) for home in response_json["payload"]["homes"]
] + [
self._parse_building(building)
for building in response_json["payload"]["buildings"].values()
]
return homes

View File

@ -1,329 +0,0 @@
import re
import json
import string
from .. import Scraper
from ....utils import parse_address_two, parse_unit
from ....exceptions import GeoCoordsNotFound, NoResultsFound
from ..models import Property, Address, ListingType, PropertyType
class ZillowScraper(Scraper):
def __init__(self, scraper_input):
super().__init__(scraper_input)
self.listing_type = scraper_input.listing_type
if not self.is_plausible_location(self.location):
raise NoResultsFound("Invalid location input: {}".format(self.location))
if self.listing_type == ListingType.FOR_SALE:
self.url = f"https://www.zillow.com/homes/for_sale/{self.location}_rb/"
elif self.listing_type == ListingType.FOR_RENT:
self.url = f"https://www.zillow.com/homes/for_rent/{self.location}_rb/"
else:
self.url = f"https://www.zillow.com/homes/recently_sold/{self.location}_rb/"
@staticmethod
def is_plausible_location(location: str) -> bool:
blocks = location.split()
for block in blocks:
if (
any(char.isdigit() for char in block)
and any(char.isalpha() for char in block)
and len(block) > 6
):
return False
return True
def search(self):
resp = self.session.get(self.url, headers=self._get_headers())
resp.raise_for_status()
content = resp.text
match = re.search(
r'<script id="__NEXT_DATA__" type="application/json">(.*?)</script>',
content,
re.DOTALL,
)
if not match:
raise NoResultsFound(
"No results were found for Zillow with the given Location."
)
json_str = match.group(1)
data = json.loads(json_str)
if "searchPageState" in data["props"]["pageProps"]:
pattern = r'window\.mapBounds = \{\s*"west":\s*(-?\d+\.\d+),\s*"east":\s*(-?\d+\.\d+),\s*"south":\s*(-?\d+\.\d+),\s*"north":\s*(-?\d+\.\d+)\s*\};'
match = re.search(pattern, content)
if match:
coords = [float(coord) for coord in match.groups()]
return self._fetch_properties_backend(coords)
else:
raise GeoCoordsNotFound("Box bounds could not be located.")
elif "gdpClientCache" in data["props"]["pageProps"]:
gdp_client_cache = json.loads(data["props"]["pageProps"]["gdpClientCache"])
main_key = list(gdp_client_cache.keys())[0]
property_data = gdp_client_cache[main_key]["property"]
property = self._get_single_property_page(property_data)
return [property]
raise NoResultsFound("Specific property data not found in the response.")
def _fetch_properties_backend(self, coords):
url = "https://www.zillow.com/async-create-search-page-state"
filter_state_for_sale = {
"sortSelection": {
# "value": "globalrelevanceex"
"value": "days"
},
"isAllHomes": {"value": True},
}
filter_state_for_rent = {
"isForRent": {"value": True},
"isForSaleByAgent": {"value": False},
"isForSaleByOwner": {"value": False},
"isNewConstruction": {"value": False},
"isComingSoon": {"value": False},
"isAuction": {"value": False},
"isForSaleForeclosure": {"value": False},
"isAllHomes": {"value": True},
}
filter_state_sold = {
"isRecentlySold": {"value": True},
"isForSaleByAgent": {"value": False},
"isForSaleByOwner": {"value": False},
"isNewConstruction": {"value": False},
"isComingSoon": {"value": False},
"isAuction": {"value": False},
"isForSaleForeclosure": {"value": False},
"isAllHomes": {"value": True},
}
selected_filter = (
filter_state_for_rent
if self.listing_type == ListingType.FOR_RENT
else filter_state_for_sale
if self.listing_type == ListingType.FOR_SALE
else filter_state_sold
)
payload = {
"searchQueryState": {
"pagination": {},
"isMapVisible": True,
"mapBounds": {
"west": coords[0],
"east": coords[1],
"south": coords[2],
"north": coords[3],
},
"filterState": selected_filter,
"isListVisible": True,
"mapZoom": 11,
},
"wants": {"cat1": ["mapResults"]},
"isDebugRequest": False,
}
resp = self.session.put(url, headers=self._get_headers(), json=payload)
resp.raise_for_status()
a = resp.json()
return self._parse_properties(resp.json())
def _parse_properties(self, property_data: dict):
mapresults = property_data["cat1"]["searchResults"]["mapResults"]
properties_list = []
for result in mapresults:
if "hdpData" in result:
home_info = result["hdpData"]["homeInfo"]
address_data = {
"street_address": parse_address_two(home_info["streetAddress"])[0],
"unit": parse_unit(home_info["unit"])
if "unit" in home_info
else None,
"city": home_info["city"],
"state": home_info["state"],
"zip_code": home_info["zipcode"],
"country": home_info["country"],
}
property_data = {
"site_name": self.site_name,
"address": Address(**address_data),
"property_url": f"https://www.zillow.com{result['detailUrl']}",
"beds": int(home_info["bedrooms"])
if "bedrooms" in home_info
else None,
"baths": home_info.get("bathrooms"),
"square_feet": int(home_info["livingArea"])
if "livingArea" in home_info
else None,
"currency": home_info["currency"],
"price": home_info.get("price"),
"tax_assessed_value": int(home_info["taxAssessedValue"])
if "taxAssessedValue" in home_info
else None,
"property_type": PropertyType(home_info["homeType"]),
"listing_type": ListingType(
home_info["statusType"]
if "statusType" in home_info
else self.listing_type
),
"lot_area_value": round(home_info["lotAreaValue"], 2)
if "lotAreaValue" in home_info
else None,
"lot_area_unit": home_info.get("lotAreaUnit"),
"latitude": result["latLong"]["latitude"],
"longitude": result["latLong"]["longitude"],
"status_text": result.get("statusText"),
"posted_time": result["variableData"]["text"]
if "variableData" in result
and "text" in result["variableData"]
and result["variableData"]["type"] == "TIME_ON_INFO"
else None,
"img_src": result.get("imgSrc"),
"price_per_sqft": int(home_info["price"] // home_info["livingArea"])
if "livingArea" in home_info and "price" in home_info
else None,
}
property_obj = Property(**property_data)
properties_list.append(property_obj)
elif "isBuilding" in result:
price = result["price"]
building_data = {
"property_url": f"https://www.zillow.com{result['detailUrl']}",
"site_name": self.site_name,
"property_type": PropertyType("BUILDING"),
"listing_type": ListingType(result["statusType"]),
"img_src": result["imgSrc"],
"price": int(price.replace("From $", "").replace(",", ""))
if "From $" in price
else None,
"apt_min_price": int(
price.replace("$", "").replace(",", "").replace("+/mo", "")
)
if "+/mo" in price
else None,
"address": self._extract_address(result["address"]),
"bldg_min_beds": result["minBeds"],
"currency": "USD",
"bldg_min_baths": result["minBaths"],
"bldg_min_area": result.get("minArea"),
"bldg_unit_count": result["unitCount"],
"bldg_name": result.get("communityName"),
"status_text": result["statusText"],
"latitude": result["latLong"]["latitude"],
"longitude": result["latLong"]["longitude"],
}
building_obj = Property(**building_data)
properties_list.append(building_obj)
return properties_list
def _get_single_property_page(self, property_data: dict):
"""
This method is used when a user enters the exact location & zillow returns just one property
"""
url = (
f"https://www.zillow.com{property_data['hdpUrl']}"
if "zillow.com" not in property_data["hdpUrl"]
else property_data["hdpUrl"]
)
address_data = property_data["address"]
street_address, unit = parse_address_two(address_data["streetAddress"])
address = Address(
street_address=street_address,
unit=unit,
city=address_data["city"],
state=address_data["state"],
zip_code=address_data["zipcode"],
country=property_data.get("country"),
)
property_type = property_data.get("homeType", None)
return Property(
site_name=self.site_name,
address=address,
property_url=url,
beds=property_data.get("bedrooms", None),
baths=property_data.get("bathrooms", None),
year_built=property_data.get("yearBuilt", None),
price=property_data.get("price", None),
tax_assessed_value=property_data.get("taxAssessedValue", None),
latitude=property_data.get("latitude"),
longitude=property_data.get("longitude"),
img_src=property_data.get("streetViewTileImageUrlMediumAddress"),
currency=property_data.get("currency", None),
lot_area_value=property_data.get("lotAreaValue"),
lot_area_unit=property_data["lotAreaUnits"].lower()
if "lotAreaUnits" in property_data
else None,
agent_name=property_data.get("attributionInfo", {}).get("agentName", None),
stories=property_data.get("resoFacts", {}).get("stories", None),
description=property_data.get("description", None),
mls_id=property_data.get("attributionInfo", {}).get("mlsId", None),
price_per_sqft=property_data.get("resoFacts", {}).get(
"pricePerSquareFoot", None
),
square_feet=property_data.get("livingArea", None),
property_type=PropertyType(property_type),
listing_type=self.listing_type,
)
def _extract_address(self, address_str):
"""
Extract address components from a string formatted like '555 Wedglea Dr, Dallas, TX',
and return an Address object.
"""
parts = address_str.split(", ")
if len(parts) != 3:
raise ValueError(f"Unexpected address format: {address_str}")
street_address = parts[0].strip()
city = parts[1].strip()
state_zip = parts[2].split(" ")
if len(state_zip) == 1:
state = state_zip[0].strip()
zip_code = None
elif len(state_zip) == 2:
state = state_zip[0].strip()
zip_code = state_zip[1].strip()
else:
raise ValueError(f"Unexpected state/zip format in address: {address_str}")
street_address, unit = parse_address_two(street_address)
return Address(
street_address=street_address,
city=city,
unit=unit,
state=state,
zip_code=zip_code,
country="USA",
)
@staticmethod
def _get_headers():
return {
"authority": "www.zillow.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"content-type": "application/json",
"cookie": 'zjs_user_id=null; zg_anonymous_id=%220976ab81-2950-4013-98f0-108b15a554d2%22; zguid=24|%246b1bc625-3955-4d1e-a723-e59602e4ed08; g_state={"i_p":1693611172520,"i_l":1}; zgsession=1|d48820e2-1659-4d2f-b7d2-99a8127dd4f3; zjs_anonymous_id=%226b1bc625-3955-4d1e-a723-e59602e4ed08%22; JSESSIONID=82E8274D3DC8AF3AB9C8E613B38CF861; search=6|1697585860120%7Crb%3DDallas%252C-TX%26rect%3D33.016646%252C-96.555516%252C32.618763%252C-96.999347%26disp%3Dmap%26mdm%3Dauto%26sort%3Ddays%26listPriceActive%3D1%26fs%3D1%26fr%3D0%26mmm%3D0%26rs%3D0%26ah%3D0%26singlestory%3D0%26abo%3D0%26garage%3D0%26pool%3D0%26ac%3D0%26waterfront%3D0%26finished%3D0%26unfinished%3D0%26cityview%3D0%26mountainview%3D0%26parkview%3D0%26waterview%3D0%26hoadata%3D1%263dhome%3D0%26commuteMode%3Ddriving%26commuteTimeOfDay%3Dnow%09%0938128%09%7B%22isList%22%3Atrue%2C%22isMap%22%3Atrue%7D%09%09%09%09%09; AWSALB=gAlFj5Ngnd4bWP8k7CME/+YlTtX9bHK4yEkdPHa3VhL6K523oGyysFxBEpE1HNuuyL+GaRPvt2i/CSseAb+zEPpO4SNjnbLAJzJOOO01ipnWN3ZgPaa5qdv+fAki; AWSALBCORS=gAlFj5Ngnd4bWP8k7CME/+YlTtX9bHK4yEkdPHa3VhL6K523oGyysFxBEpE1HNuuyL+GaRPvt2i/CSseAb+zEPpO4SNjnbLAJzJOOO01ipnWN3ZgPaa5qdv+fAki; search=6|1697587741808%7Crect%3D33.37188814545521%2C-96.34484483007813%2C32.260490641365685%2C-97.21001816992188%26disp%3Dmap%26mdm%3Dauto%26p%3D1%26sort%3Ddays%26z%3D1%26listPriceActive%3D1%26fs%3D1%26fr%3D0%26mmm%3D0%26rs%3D0%26ah%3D0%26singlestory%3D0%26housing-connector%3D0%26abo%3D0%26garage%3D0%26pool%3D0%26ac%3D0%26waterfront%3D0%26finished%3D0%26unfinished%3D0%26cityview%3D0%26mountainview%3D0%26parkview%3D0%26waterview%3D0%26hoadata%3D1%26zillow-owned%3D0%263dhome%3D0%26featuredMultiFamilyBuilding%3D0%26commuteMode%3Ddriving%26commuteTimeOfDay%3Dnow%09%09%09%7B%22isList%22%3Atrue%2C%22isMap%22%3Atrue%7D%09%09%09%09%09',
"origin": "https://www.zillow.com",
"referer": "https://www.zillow.com",
"sec-ch-ua": '"Chromium";v="116", "Not)A;Brand";v="24", "Google Chrome";v="116"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",
}

View File

@ -1,14 +1,14 @@
class InvalidSite(Exception):
"""Raised when a provided site is does not exist."""
class InvalidListingType(Exception):
"""Raised when a provided listing type is does not exist."""
class NoResultsFound(Exception):
"""Raised when no results are found for the given location"""
class InvalidDate(Exception):
"""Raised when only one of date_from or date_to is provided or not in the correct format. ex: 2023-10-23"""
class GeoCoordsNotFound(Exception):
"""Raised when no property is found for the given address"""
class AuthenticationError(Exception):
"""Raised when there is an issue with the authentication process."""
def __init__(self, *args, response):
super().__init__(*args)
self.response = response

View File

@ -1,48 +1,166 @@
import re
from __future__ import annotations
import pandas as pd
from datetime import datetime
from .core.scrapers.models import Property, ListingType, Advertisers
from .exceptions import InvalidListingType, InvalidDate
ordered_properties = [
"property_url",
"property_id",
"listing_id",
"mls",
"mls_id",
"status",
"text",
"style",
"full_street_line",
"street",
"unit",
"city",
"state",
"zip_code",
"beds",
"full_baths",
"half_baths",
"sqft",
"year_built",
"days_on_mls",
"list_price",
"list_price_min",
"list_price_max",
"list_date",
"sold_price",
"last_sold_date",
"assessed_value",
"estimated_value",
"tax",
"tax_history",
"new_construction",
"lot_sqft",
"price_per_sqft",
"latitude",
"longitude",
"neighborhoods",
"county",
"fips_code",
"stories",
"hoa_fee",
"parking_garage",
"agent_id",
"agent_name",
"agent_email",
"agent_phones",
"agent_mls_set",
"agent_nrds_id",
"broker_id",
"broker_name",
"builder_id",
"builder_name",
"office_id",
"office_mls_set",
"office_name",
"office_email",
"office_phones",
"nearby_schools",
"primary_photo",
"alt_photos",
]
def parse_address_two(street_address: str) -> tuple:
if not street_address:
return street_address, None
def process_result(result: Property) -> pd.DataFrame:
prop_data = {prop: None for prop in ordered_properties}
prop_data.update(result.__dict__)
apt_match = re.search(
r"(APT\s*[\dA-Z]+|#[\dA-Z]+|UNIT\s*[\dA-Z]+|LOT\s*[\dA-Z]+|SUITE\s*[\dA-Z]+)$",
street_address,
re.I,
)
if "address" in prop_data:
address_data = prop_data["address"]
prop_data["full_street_line"] = address_data.full_line
prop_data["street"] = address_data.street
prop_data["unit"] = address_data.unit
prop_data["city"] = address_data.city
prop_data["state"] = address_data.state
prop_data["zip_code"] = address_data.zip
if apt_match:
apt_str = apt_match.group().strip()
cleaned_apt_str = re.sub(
r"(APT\s*|UNIT\s*|LOT\s*|SUITE\s*)", "#", apt_str, flags=re.I
if "advertisers" in prop_data and prop_data.get("advertisers"):
advertiser_data: Advertisers | None = prop_data["advertisers"]
if advertiser_data.agent:
agent_data = advertiser_data.agent
prop_data["agent_id"] = agent_data.uuid
prop_data["agent_name"] = agent_data.name
prop_data["agent_email"] = agent_data.email
prop_data["agent_phones"] = agent_data.phones
prop_data["agent_mls_set"] = agent_data.mls_set
prop_data["agent_nrds_id"] = agent_data.nrds_id
if advertiser_data.broker:
broker_data = advertiser_data.broker
prop_data["broker_id"] = broker_data.uuid
prop_data["broker_name"] = broker_data.name
if advertiser_data.builder:
builder_data = advertiser_data.builder
prop_data["builder_id"] = builder_data.uuid
prop_data["builder_name"] = builder_data.name
if advertiser_data.office:
office_data = advertiser_data.office
prop_data["office_id"] = office_data.uuid
prop_data["office_name"] = office_data.name
prop_data["office_email"] = office_data.email
prop_data["office_phones"] = office_data.phones
prop_data["office_mls_set"] = office_data.mls_set
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
prop_data["nearby_schools"] = ", ".join(set(prop_data["nearby_schools"])) if prop_data["nearby_schools"] else None
description = result.description
if description:
prop_data["primary_photo"] = description.primary_photo
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
prop_data["style"] = (
description.style
if isinstance(description.style, str)
else description.style.value if description.style else None
)
prop_data["beds"] = description.beds
prop_data["full_baths"] = description.baths_full
prop_data["half_baths"] = description.baths_half
prop_data["sqft"] = description.sqft
prop_data["lot_sqft"] = description.lot_sqft
prop_data["sold_price"] = description.sold_price
prop_data["year_built"] = description.year_built
prop_data["parking_garage"] = description.garage
prop_data["stories"] = description.stories
prop_data["text"] = description.text
main_address = street_address.replace(apt_str, "").strip()
return main_address, cleaned_apt_str
else:
return street_address, None
properties_df = pd.DataFrame([prop_data])
properties_df = properties_df.reindex(columns=ordered_properties)
return properties_df[ordered_properties]
def parse_unit(street_address: str):
if not street_address:
return None
apt_match = re.search(
r"(APT\s*[\dA-Z]+|#[\dA-Z]+|UNIT\s*[\dA-Z]+|LOT\s*[\dA-Z]+)$",
street_address,
re.I,
)
if apt_match:
apt_str = apt_match.group().strip()
apt_str = re.sub(r"(APT\s*|UNIT\s*|LOT\s*)", "#", apt_str, flags=re.I)
return apt_str
else:
return None
def validate_input(listing_type: str) -> None:
if listing_type.upper() not in ListingType.__members__:
raise InvalidListingType(f"Provided listing type, '{listing_type}', does not exist.")
if __name__ == "__main__":
print(parse_address_two("4303 E Cactus Rd Apt 126"))
print(parse_address_two("1234 Elm Street apt 2B"))
print(parse_address_two("1234 Elm Street UNIT 3A"))
print(parse_address_two("1234 Elm Street unit 3A"))
print(parse_address_two("1234 Elm Street SuIte 3A"))
def validate_dates(date_from: str | None, date_to: str | None) -> None:
if isinstance(date_from, str) != isinstance(date_to, str):
raise InvalidDate("Both date_from and date_to must be provided.")
if date_from and date_to:
try:
date_from_obj = datetime.strptime(date_from, "%Y-%m-%d")
date_to_obj = datetime.strptime(date_to, "%Y-%m-%d")
if date_to_obj < date_from_obj:
raise InvalidDate("date_to must be after date_from.")
except ValueError:
raise InvalidDate(f"Invalid date format or range")
def validate_limit(limit: int) -> None:
#: 1 -> 10000 limit
if limit is not None and (limit < 1 or limit > 10000):
raise ValueError("Property limit must be between 1 and 10,000.")

600
poetry.lock generated
View File

@ -1,4 +1,15 @@
# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "annotated-types"
version = "0.7.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"},
{file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"},
]
[[package]]
name = "certifi"
@ -11,88 +22,114 @@ files = [
{file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"},
]
[[package]]
name = "cfgv"
version = "3.4.0"
description = "Validate configuration and produce human readable error messages."
optional = false
python-versions = ">=3.8"
files = [
{file = "cfgv-3.4.0-py2.py3-none-any.whl", hash = "sha256:b7265b1f29fd3316bfcd2b330d63d024f2bfd8bcb8b0272f8e19a504856c48f9"},
{file = "cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560"},
]
[[package]]
name = "charset-normalizer"
version = "3.2.0"
version = "3.3.0"
description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
optional = false
python-versions = ">=3.7.0"
files = [
{file = "charset-normalizer-3.2.0.tar.gz", hash = "sha256:3bb3d25a8e6c0aedd251753a79ae98a093c7e7b471faa3aa9a93a81431987ace"},
{file = "charset_normalizer-3.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b87549028f680ca955556e3bd57013ab47474c3124dc069faa0b6545b6c9710"},
{file = "charset_normalizer-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7c70087bfee18a42b4040bb9ec1ca15a08242cf5867c58726530bdf3945672ed"},
{file = "charset_normalizer-3.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a103b3a7069b62f5d4890ae1b8f0597618f628b286b03d4bc9195230b154bfa9"},
{file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94aea8eff76ee6d1cdacb07dd2123a68283cb5569e0250feab1240058f53b623"},
{file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db901e2ac34c931d73054d9797383d0f8009991e723dab15109740a63e7f902a"},
{file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0dac0ff919ba34d4df1b6131f59ce95b08b9065233446be7e459f95554c0dc8"},
{file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:193cbc708ea3aca45e7221ae58f0fd63f933753a9bfb498a3b474878f12caaad"},
{file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09393e1b2a9461950b1c9a45d5fd251dc7c6f228acab64da1c9c0165d9c7765c"},
{file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:baacc6aee0b2ef6f3d308e197b5d7a81c0e70b06beae1f1fcacffdbd124fe0e3"},
{file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bf420121d4c8dce6b889f0e8e4ec0ca34b7f40186203f06a946fa0276ba54029"},
{file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:c04a46716adde8d927adb9457bbe39cf473e1e2c2f5d0a16ceb837e5d841ad4f"},
{file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:aaf63899c94de41fe3cf934601b0f7ccb6b428c6e4eeb80da72c58eab077b19a"},
{file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d62e51710986674142526ab9f78663ca2b0726066ae26b78b22e0f5e571238dd"},
{file = "charset_normalizer-3.2.0-cp310-cp310-win32.whl", hash = "sha256:04e57ab9fbf9607b77f7d057974694b4f6b142da9ed4a199859d9d4d5c63fe96"},
{file = "charset_normalizer-3.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:48021783bdf96e3d6de03a6e39a1171ed5bd7e8bb93fc84cc649d11490f87cea"},
{file = "charset_normalizer-3.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4957669ef390f0e6719db3613ab3a7631e68424604a7b448f079bee145da6e09"},
{file = "charset_normalizer-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46fb8c61d794b78ec7134a715a3e564aafc8f6b5e338417cb19fe9f57a5a9bf2"},
{file = "charset_normalizer-3.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f779d3ad205f108d14e99bb3859aa7dd8e9c68874617c72354d7ecaec2a054ac"},
{file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25c229a6ba38a35ae6e25ca1264621cc25d4d38dca2942a7fce0b67a4efe918"},
{file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2efb1bd13885392adfda4614c33d3b68dee4921fd0ac1d3988f8cbb7d589e72a"},
{file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f30b48dd7fa1474554b0b0f3fdfdd4c13b5c737a3c6284d3cdc424ec0ffff3a"},
{file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:246de67b99b6851627d945db38147d1b209a899311b1305dd84916f2b88526c6"},
{file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd9b3b31adcb054116447ea22caa61a285d92e94d710aa5ec97992ff5eb7cf3"},
{file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:8c2f5e83493748286002f9369f3e6607c565a6a90425a3a1fef5ae32a36d749d"},
{file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3170c9399da12c9dc66366e9d14da8bf7147e1e9d9ea566067bbce7bb74bd9c2"},
{file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7a4826ad2bd6b07ca615c74ab91f32f6c96d08f6fcc3902ceeedaec8cdc3bcd6"},
{file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:3b1613dd5aee995ec6d4c69f00378bbd07614702a315a2cf6c1d21461fe17c23"},
{file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9e608aafdb55eb9f255034709e20d5a83b6d60c054df0802fa9c9883d0a937aa"},
{file = "charset_normalizer-3.2.0-cp311-cp311-win32.whl", hash = "sha256:f2a1d0fd4242bd8643ce6f98927cf9c04540af6efa92323e9d3124f57727bfc1"},
{file = "charset_normalizer-3.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:681eb3d7e02e3c3655d1b16059fbfb605ac464c834a0c629048a30fad2b27489"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c57921cda3a80d0f2b8aec7e25c8aa14479ea92b5b51b6876d975d925a2ea346"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41b25eaa7d15909cf3ac4c96088c1f266a9a93ec44f87f1d13d4a0e86c81b982"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f058f6963fd82eb143c692cecdc89e075fa0828db2e5b291070485390b2f1c9c"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7647ebdfb9682b7bb97e2a5e7cb6ae735b1c25008a70b906aecca294ee96cf4"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eef9df1eefada2c09a5e7a40991b9fc6ac6ef20b1372abd48d2794a316dc0449"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e03b8895a6990c9ab2cdcd0f2fe44088ca1c65ae592b8f795c3294af00a461c3"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:ee4006268ed33370957f55bf2e6f4d263eaf4dc3cfc473d1d90baff6ed36ce4a"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c4983bf937209c57240cff65906b18bb35e64ae872da6a0db937d7b4af845dd7"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:3bb7fda7260735efe66d5107fb7e6af6a7c04c7fce9b2514e04b7a74b06bf5dd"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:72814c01533f51d68702802d74f77ea026b5ec52793c791e2da806a3844a46c3"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:70c610f6cbe4b9fce272c407dd9d07e33e6bf7b4aa1b7ffb6f6ded8e634e3592"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-win32.whl", hash = "sha256:a401b4598e5d3f4a9a811f3daf42ee2291790c7f9d74b18d75d6e21dda98a1a1"},
{file = "charset_normalizer-3.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c0b21078a4b56965e2b12f247467b234734491897e99c1d51cee628da9786959"},
{file = "charset_normalizer-3.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:95eb302ff792e12aba9a8b8f8474ab229a83c103d74a750ec0bd1c1eea32e669"},
{file = "charset_normalizer-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a100c6d595a7f316f1b6f01d20815d916e75ff98c27a01ae817439ea7726329"},
{file = "charset_normalizer-3.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6339d047dab2780cc6220f46306628e04d9750f02f983ddb37439ca47ced7149"},
{file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4b749b9cc6ee664a3300bb3a273c1ca8068c46be705b6c31cf5d276f8628a94"},
{file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a38856a971c602f98472050165cea2cdc97709240373041b69030be15047691f"},
{file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f87f746ee241d30d6ed93969de31e5ffd09a2961a051e60ae6bddde9ec3583aa"},
{file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89f1b185a01fe560bc8ae5f619e924407efca2191b56ce749ec84982fc59a32a"},
{file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1c8a2f4c69e08e89632defbfabec2feb8a8d99edc9f89ce33c4b9e36ab63037"},
{file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2f4ac36d8e2b4cc1aa71df3dd84ff8efbe3bfb97ac41242fbcfc053c67434f46"},
{file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a386ebe437176aab38c041de1260cd3ea459c6ce5263594399880bbc398225b2"},
{file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:ccd16eb18a849fd8dcb23e23380e2f0a354e8daa0c984b8a732d9cfaba3a776d"},
{file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:e6a5bf2cba5ae1bb80b154ed68a3cfa2fa00fde979a7f50d6598d3e17d9ac20c"},
{file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:45de3f87179c1823e6d9e32156fb14c1927fcc9aba21433f088fdfb555b77c10"},
{file = "charset_normalizer-3.2.0-cp38-cp38-win32.whl", hash = "sha256:1000fba1057b92a65daec275aec30586c3de2401ccdcd41f8a5c1e2c87078706"},
{file = "charset_normalizer-3.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:8b2c760cfc7042b27ebdb4a43a4453bd829a5742503599144d54a032c5dc7e9e"},
{file = "charset_normalizer-3.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:855eafa5d5a2034b4621c74925d89c5efef61418570e5ef9b37717d9c796419c"},
{file = "charset_normalizer-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:203f0c8871d5a7987be20c72442488a0b8cfd0f43b7973771640fc593f56321f"},
{file = "charset_normalizer-3.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e857a2232ba53ae940d3456f7533ce6ca98b81917d47adc3c7fd55dad8fab858"},
{file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e86d77b090dbddbe78867a0275cb4df08ea195e660f1f7f13435a4649e954e5"},
{file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4fb39a81950ec280984b3a44f5bd12819953dc5fa3a7e6fa7a80db5ee853952"},
{file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dee8e57f052ef5353cf608e0b4c871aee320dd1b87d351c28764fc0ca55f9f4"},
{file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8700f06d0ce6f128de3ccdbc1acaea1ee264d2caa9ca05daaf492fde7c2a7200"},
{file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1920d4ff15ce893210c1f0c0e9d19bfbecb7983c76b33f046c13a8ffbd570252"},
{file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c1c76a1743432b4b60ab3358c937a3fe1341c828ae6194108a94c69028247f22"},
{file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f7560358a6811e52e9c4d142d497f1a6e10103d3a6881f18d04dbce3729c0e2c"},
{file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:c8063cf17b19661471ecbdb3df1c84f24ad2e389e326ccaf89e3fb2484d8dd7e"},
{file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:cd6dbe0238f7743d0efe563ab46294f54f9bc8f4b9bcf57c3c666cc5bc9d1299"},
{file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1249cbbf3d3b04902ff081ffbb33ce3377fa6e4c7356f759f3cd076cc138d020"},
{file = "charset_normalizer-3.2.0-cp39-cp39-win32.whl", hash = "sha256:6c409c0deba34f147f77efaa67b8e4bb83d2f11c8806405f76397ae5b8c0d1c9"},
{file = "charset_normalizer-3.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:7095f6fbfaa55defb6b733cfeb14efaae7a29f0b59d8cf213be4e7ca0b857b80"},
{file = "charset_normalizer-3.2.0-py3-none-any.whl", hash = "sha256:8e098148dd37b4ce3baca71fb394c81dc5d9c7728c95df695d2dca218edf40e6"},
{file = "charset-normalizer-3.3.0.tar.gz", hash = "sha256:63563193aec44bce707e0c5ca64ff69fa72ed7cf34ce6e11d5127555756fd2f6"},
{file = "charset_normalizer-3.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:effe5406c9bd748a871dbcaf3ac69167c38d72db8c9baf3ff954c344f31c4cbe"},
{file = "charset_normalizer-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4162918ef3098851fcd8a628bf9b6a98d10c380725df9e04caf5ca6dd48c847a"},
{file = "charset_normalizer-3.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0570d21da019941634a531444364f2482e8db0b3425fcd5ac0c36565a64142c8"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5707a746c6083a3a74b46b3a631d78d129edab06195a92a8ece755aac25a3f3d"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:278c296c6f96fa686d74eb449ea1697f3c03dc28b75f873b65b5201806346a69"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a4b71f4d1765639372a3b32d2638197f5cd5221b19531f9245fcc9ee62d38f56"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5969baeaea61c97efa706b9b107dcba02784b1601c74ac84f2a532ea079403e"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3f93dab657839dfa61025056606600a11d0b696d79386f974e459a3fbc568ec"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:db756e48f9c5c607b5e33dd36b1d5872d0422e960145b08ab0ec7fd420e9d649"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:232ac332403e37e4a03d209a3f92ed9071f7d3dbda70e2a5e9cff1c4ba9f0678"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e5c1502d4ace69a179305abb3f0bb6141cbe4714bc9b31d427329a95acfc8bdd"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:2502dd2a736c879c0f0d3e2161e74d9907231e25d35794584b1ca5284e43f596"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23e8565ab7ff33218530bc817922fae827420f143479b753104ab801145b1d5b"},
{file = "charset_normalizer-3.3.0-cp310-cp310-win32.whl", hash = "sha256:1872d01ac8c618a8da634e232f24793883d6e456a66593135aeafe3784b0848d"},
{file = "charset_normalizer-3.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:557b21a44ceac6c6b9773bc65aa1b4cc3e248a5ad2f5b914b91579a32e22204d"},
{file = "charset_normalizer-3.3.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d7eff0f27edc5afa9e405f7165f85a6d782d308f3b6b9d96016c010597958e63"},
{file = "charset_normalizer-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6a685067d05e46641d5d1623d7c7fdf15a357546cbb2f71b0ebde91b175ffc3e"},
{file = "charset_normalizer-3.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0d3d5b7db9ed8a2b11a774db2bbea7ba1884430a205dbd54a32d61d7c2a190fa"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2935ffc78db9645cb2086c2f8f4cfd23d9b73cc0dc80334bc30aac6f03f68f8c"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fe359b2e3a7729010060fbca442ca225280c16e923b37db0e955ac2a2b72a05"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:380c4bde80bce25c6e4f77b19386f5ec9db230df9f2f2ac1e5ad7af2caa70459"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0d1e3732768fecb052d90d62b220af62ead5748ac51ef61e7b32c266cac9293"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1b2919306936ac6efb3aed1fbf81039f7087ddadb3160882a57ee2ff74fd2382"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f8888e31e3a85943743f8fc15e71536bda1c81d5aa36d014a3c0c44481d7db6e"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:82eb849f085624f6a607538ee7b83a6d8126df6d2f7d3b319cb837b289123078"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7b8b8bf1189b3ba9b8de5c8db4d541b406611a71a955bbbd7385bbc45fcb786c"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5adf257bd58c1b8632046bbe43ee38c04e1038e9d37de9c57a94d6bd6ce5da34"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c350354efb159b8767a6244c166f66e67506e06c8924ed74669b2c70bc8735b1"},
{file = "charset_normalizer-3.3.0-cp311-cp311-win32.whl", hash = "sha256:02af06682e3590ab952599fbadac535ede5d60d78848e555aa58d0c0abbde786"},
{file = "charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:86d1f65ac145e2c9ed71d8ffb1905e9bba3a91ae29ba55b4c46ae6fc31d7c0d4"},
{file = "charset_normalizer-3.3.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:3b447982ad46348c02cb90d230b75ac34e9886273df3a93eec0539308a6296d7"},
{file = "charset_normalizer-3.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:abf0d9f45ea5fb95051c8bfe43cb40cda383772f7e5023a83cc481ca2604d74e"},
{file = "charset_normalizer-3.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b09719a17a2301178fac4470d54b1680b18a5048b481cb8890e1ef820cb80455"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3d9b48ee6e3967b7901c052b670c7dda6deb812c309439adaffdec55c6d7b78"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:edfe077ab09442d4ef3c52cb1f9dab89bff02f4524afc0acf2d46be17dc479f5"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3debd1150027933210c2fc321527c2299118aa929c2f5a0a80ab6953e3bd1908"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86f63face3a527284f7bb8a9d4f78988e3c06823f7bea2bd6f0e0e9298ca0403"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:24817cb02cbef7cd499f7c9a2735286b4782bd47a5b3516a0e84c50eab44b98e"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c71f16da1ed8949774ef79f4a0260d28b83b3a50c6576f8f4f0288d109777989"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9cf3126b85822c4e53aa28c7ec9869b924d6fcfb76e77a45c44b83d91afd74f9"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:b3b2316b25644b23b54a6f6401074cebcecd1244c0b8e80111c9a3f1c8e83d65"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:03680bb39035fbcffe828eae9c3f8afc0428c91d38e7d61aa992ef7a59fb120e"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4cc152c5dd831641e995764f9f0b6589519f6f5123258ccaca8c6d34572fefa8"},
{file = "charset_normalizer-3.3.0-cp312-cp312-win32.whl", hash = "sha256:b8f3307af845803fb0b060ab76cf6dd3a13adc15b6b451f54281d25911eb92df"},
{file = "charset_normalizer-3.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:8eaf82f0eccd1505cf39a45a6bd0a8cf1c70dcfc30dba338207a969d91b965c0"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dc45229747b67ffc441b3de2f3ae5e62877a282ea828a5bdb67883c4ee4a8810"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f4a0033ce9a76e391542c182f0d48d084855b5fcba5010f707c8e8c34663d77"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ada214c6fa40f8d800e575de6b91a40d0548139e5dc457d2ebb61470abf50186"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b1121de0e9d6e6ca08289583d7491e7fcb18a439305b34a30b20d8215922d43c"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1063da2c85b95f2d1a430f1c33b55c9c17ffaf5e612e10aeaad641c55a9e2b9d"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:70f1d09c0d7748b73290b29219e854b3207aea922f839437870d8cc2168e31cc"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:250c9eb0f4600361dd80d46112213dff2286231d92d3e52af1e5a6083d10cad9"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:750b446b2ffce1739e8578576092179160f6d26bd5e23eb1789c4d64d5af7dc7"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:fc52b79d83a3fe3a360902d3f5d79073a993597d48114c29485e9431092905d8"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:588245972aca710b5b68802c8cad9edaa98589b1b42ad2b53accd6910dad3545"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e39c7eb31e3f5b1f88caff88bcff1b7f8334975b46f6ac6e9fc725d829bc35d4"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-win32.whl", hash = "sha256:abecce40dfebbfa6abf8e324e1860092eeca6f7375c8c4e655a8afb61af58f2c"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:24a91a981f185721542a0b7c92e9054b7ab4fea0508a795846bc5b0abf8118d4"},
{file = "charset_normalizer-3.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:67b8cc9574bb518ec76dc8e705d4c39ae78bb96237cb533edac149352c1f39fe"},
{file = "charset_normalizer-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac71b2977fb90c35d41c9453116e283fac47bb9096ad917b8819ca8b943abecd"},
{file = "charset_normalizer-3.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3ae38d325b512f63f8da31f826e6cb6c367336f95e418137286ba362925c877e"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542da1178c1c6af8873e143910e2269add130a299c9106eef2594e15dae5e482"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:30a85aed0b864ac88309b7d94be09f6046c834ef60762a8833b660139cfbad13"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aae32c93e0f64469f74ccc730a7cb21c7610af3a775157e50bbd38f816536b38"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15b26ddf78d57f1d143bdf32e820fd8935d36abe8a25eb9ec0b5a71c82eb3895"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f5d10bae5d78e4551b7be7a9b29643a95aded9d0f602aa2ba584f0388e7a557"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:249c6470a2b60935bafd1d1d13cd613f8cd8388d53461c67397ee6a0f5dce741"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c5a74c359b2d47d26cdbbc7845e9662d6b08a1e915eb015d044729e92e7050b7"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:b5bcf60a228acae568e9911f410f9d9e0d43197d030ae5799e20dca8df588287"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:187d18082694a29005ba2944c882344b6748d5be69e3a89bf3cc9d878e548d5a"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:81bf654678e575403736b85ba3a7867e31c2c30a69bc57fe88e3ace52fb17b89"},
{file = "charset_normalizer-3.3.0-cp38-cp38-win32.whl", hash = "sha256:85a32721ddde63c9df9ebb0d2045b9691d9750cb139c161c80e500d210f5e26e"},
{file = "charset_normalizer-3.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:468d2a840567b13a590e67dd276c570f8de00ed767ecc611994c301d0f8c014f"},
{file = "charset_normalizer-3.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e0fc42822278451bc13a2e8626cf2218ba570f27856b536e00cfa53099724828"},
{file = "charset_normalizer-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:09c77f964f351a7369cc343911e0df63e762e42bac24cd7d18525961c81754f4"},
{file = "charset_normalizer-3.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:12ebea541c44fdc88ccb794a13fe861cc5e35d64ed689513a5c03d05b53b7c82"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:805dfea4ca10411a5296bcc75638017215a93ffb584c9e344731eef0dcfb026a"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96c2b49eb6a72c0e4991d62406e365d87067ca14c1a729a870d22354e6f68115"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aaf7b34c5bc56b38c931a54f7952f1ff0ae77a2e82496583b247f7c969eb1479"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:619d1c96099be5823db34fe89e2582b336b5b074a7f47f819d6b3a57ff7bdb86"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0ac5e7015a5920cfce654c06618ec40c33e12801711da6b4258af59a8eff00a"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:93aa7eef6ee71c629b51ef873991d6911b906d7312c6e8e99790c0f33c576f89"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7966951325782121e67c81299a031f4c115615e68046f79b85856b86ebffc4cd"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:02673e456dc5ab13659f85196c534dc596d4ef260e4d86e856c3b2773ce09843"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:c2af80fb58f0f24b3f3adcb9148e6203fa67dd3f61c4af146ecad033024dde43"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:153e7b6e724761741e0974fc4dcd406d35ba70b92bfe3fedcb497226c93b9da7"},
{file = "charset_normalizer-3.3.0-cp39-cp39-win32.whl", hash = "sha256:d47ecf253780c90ee181d4d871cd655a789da937454045b17b5798da9393901a"},
{file = "charset_normalizer-3.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:d97d85fa63f315a8bdaba2af9a6a686e0eceab77b3089af45133252618e70884"},
{file = "charset_normalizer-3.3.0-py3-none-any.whl", hash = "sha256:e46cd37076971c1040fc8c41273a8b3e2c624ce4f2be3f5dfcb7a430c1d3acc2"},
]
[[package]]
@ -106,6 +143,17 @@ files = [
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
[[package]]
name = "distlib"
version = "0.3.8"
description = "Distribution utilities"
optional = false
python-versions = "*"
files = [
{file = "distlib-0.3.8-py2.py3-none-any.whl", hash = "sha256:034db59a0b96f8ca18035f36290806a9a6e6bd9d1ff91e45a7f172eb17e51784"},
{file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"},
]
[[package]]
name = "exceptiongroup"
version = "1.1.3"
@ -120,6 +168,36 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "filelock"
version = "3.13.4"
description = "A platform independent file lock."
optional = false
python-versions = ">=3.8"
files = [
{file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"},
{file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"},
]
[package.extras]
docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"]
typing = ["typing-extensions (>=4.8)"]
[[package]]
name = "identify"
version = "2.5.35"
description = "File identification library for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "identify-2.5.35-py2.py3-none-any.whl", hash = "sha256:c4de0081837b211594f8e877a6b4fad7ca32bbfc1a9307fdd61c28bfe923f13e"},
{file = "identify-2.5.35.tar.gz", hash = "sha256:10a7ca245cfcd756a554a7288159f72ff105ad233c7c4b9c6f0f4d108f5f6791"},
]
[package.extras]
license = ["ukkonen"]
[[package]]
name = "idna"
version = "3.4"
@ -143,39 +221,19 @@ files = [
]
[[package]]
name = "numpy"
version = "1.25.2"
description = "Fundamental package for array computing in Python"
name = "nodeenv"
version = "1.8.0"
description = "Node.js virtual environment builder"
optional = false
python-versions = ">=3.9"
python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*"
files = [
{file = "numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3"},
{file = "numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357"},
{file = "numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9"},
{file = "numpy-1.25.2-cp310-cp310-win32.whl", hash = "sha256:7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044"},
{file = "numpy-1.25.2-cp310-cp310-win_amd64.whl", hash = "sha256:834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545"},
{file = "numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418"},
{file = "numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf"},
{file = "numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364"},
{file = "numpy-1.25.2-cp311-cp311-win32.whl", hash = "sha256:5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d"},
{file = "numpy-1.25.2-cp311-cp311-win_amd64.whl", hash = "sha256:5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4"},
{file = "numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3"},
{file = "numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295"},
{file = "numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f"},
{file = "numpy-1.25.2-cp39-cp39-win32.whl", hash = "sha256:2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01"},
{file = "numpy-1.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf"},
{file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
{file = "nodeenv-1.8.0-py2.py3-none-any.whl", hash = "sha256:df865724bb3c3adc86b3876fa209771517b0cfe596beff01a92700e0e8be4cec"},
{file = "nodeenv-1.8.0.tar.gz", hash = "sha256:d51e0c37e64fbf47d017feac3145cdbb58836d7eee8c6f6d3b6880c5456227d2"},
]
[package.dependencies]
setuptools = "*"
[[package]]
name = "numpy"
version = "1.26.0"
@ -219,47 +277,54 @@ files = [
[[package]]
name = "packaging"
version = "23.1"
version = "23.2"
description = "Core utilities for Python packages"
optional = false
python-versions = ">=3.7"
files = [
{file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"},
{file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"},
{file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"},
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"},
]
[[package]]
name = "pandas"
version = "2.1.0"
version = "2.1.1"
description = "Powerful data structures for data analysis, time series, and statistics"
optional = false
python-versions = ">=3.9"
files = [
{file = "pandas-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:40dd20439ff94f1b2ed55b393ecee9cb6f3b08104c2c40b0cb7186a2f0046242"},
{file = "pandas-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d4f38e4fedeba580285eaac7ede4f686c6701a9e618d8a857b138a126d067f2f"},
{file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e6a0fe052cf27ceb29be9429428b4918f3740e37ff185658f40d8702f0b3e09"},
{file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d81e1813191070440d4c7a413cb673052b3b4a984ffd86b8dd468c45742d3cc"},
{file = "pandas-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eb20252720b1cc1b7d0b2879ffc7e0542dd568f24d7c4b2347cb035206936421"},
{file = "pandas-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:38f74ef7ebc0ffb43b3d633e23d74882bce7e27bfa09607f3c5d3e03ffd9a4a5"},
{file = "pandas-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cda72cc8c4761c8f1d97b169661f23a86b16fdb240bdc341173aee17e4d6cedd"},
{file = "pandas-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d97daeac0db8c993420b10da4f5f5b39b01fc9ca689a17844e07c0a35ac96b4b"},
{file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8c58b1113892e0c8078f006a167cc210a92bdae23322bb4614f2f0b7a4b510f"},
{file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:629124923bcf798965b054a540f9ccdfd60f71361255c81fa1ecd94a904b9dd3"},
{file = "pandas-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:70cf866af3ab346a10debba8ea78077cf3a8cd14bd5e4bed3d41555a3280041c"},
{file = "pandas-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d53c8c1001f6a192ff1de1efe03b31a423d0eee2e9e855e69d004308e046e694"},
{file = "pandas-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86f100b3876b8c6d1a2c66207288ead435dc71041ee4aea789e55ef0e06408cb"},
{file = "pandas-2.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28f330845ad21c11db51e02d8d69acc9035edfd1116926ff7245c7215db57957"},
{file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9a6ccf0963db88f9b12df6720e55f337447aea217f426a22d71f4213a3099a6"},
{file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d99e678180bc59b0c9443314297bddce4ad35727a1a2656dbe585fd78710b3b9"},
{file = "pandas-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b31da36d376d50a1a492efb18097b9101bdbd8b3fbb3f49006e02d4495d4c644"},
{file = "pandas-2.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0164b85937707ec7f70b34a6c3a578dbf0f50787f910f21ca3b26a7fd3363437"},
{file = "pandas-2.1.0.tar.gz", hash = "sha256:62c24c7fc59e42b775ce0679cfa7b14a5f9bfb7643cfbe708c960699e05fb918"},
{file = "pandas-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58d997dbee0d4b64f3cb881a24f918b5f25dd64ddf31f467bb9b67ae4c63a1e4"},
{file = "pandas-2.1.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02304e11582c5d090e5a52aec726f31fe3f42895d6bfc1f28738f9b64b6f0614"},
{file = "pandas-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffa8f0966de2c22de408d0e322db2faed6f6e74265aa0856f3824813cf124363"},
{file = "pandas-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1f84c144dee086fe4f04a472b5cd51e680f061adf75c1ae4fc3a9275560f8f4"},
{file = "pandas-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:75ce97667d06d69396d72be074f0556698c7f662029322027c226fd7a26965cb"},
{file = "pandas-2.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:4c3f32fd7c4dccd035f71734df39231ac1a6ff95e8bdab8d891167197b7018d2"},
{file = "pandas-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9e2959720b70e106bb1d8b6eadd8ecd7c8e99ccdbe03ee03260877184bb2877d"},
{file = "pandas-2.1.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:25e8474a8eb258e391e30c288eecec565bfed3e026f312b0cbd709a63906b6f8"},
{file = "pandas-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8bd1685556f3374520466998929bade3076aeae77c3e67ada5ed2b90b4de7f0"},
{file = "pandas-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc3657869c7902810f32bd072f0740487f9e030c1a3ab03e0af093db35a9d14e"},
{file = "pandas-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:05674536bd477af36aa2effd4ec8f71b92234ce0cc174de34fd21e2ee99adbc2"},
{file = "pandas-2.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:b407381258a667df49d58a1b637be33e514b07f9285feb27769cedb3ab3d0b3a"},
{file = "pandas-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c747793c4e9dcece7bb20156179529898abf505fe32cb40c4052107a3c620b49"},
{file = "pandas-2.1.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3bcad1e6fb34b727b016775bea407311f7721db87e5b409e6542f4546a4951ea"},
{file = "pandas-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5ec7740f9ccb90aec64edd71434711f58ee0ea7f5ed4ac48be11cfa9abf7317"},
{file = "pandas-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29deb61de5a8a93bdd033df328441a79fcf8dd3c12d5ed0b41a395eef9cd76f0"},
{file = "pandas-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4f99bebf19b7e03cf80a4e770a3e65eee9dd4e2679039f542d7c1ace7b7b1daa"},
{file = "pandas-2.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:84e7e910096416adec68075dc87b986ff202920fb8704e6d9c8c9897fe7332d6"},
{file = "pandas-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:366da7b0e540d1b908886d4feb3d951f2f1e572e655c1160f5fde28ad4abb750"},
{file = "pandas-2.1.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e50e72b667415a816ac27dfcfe686dc5a0b02202e06196b943d54c4f9c7693e"},
{file = "pandas-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc1ab6a25da197f03ebe6d8fa17273126120874386b4ac11c1d687df288542dd"},
{file = "pandas-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0dbfea0dd3901ad4ce2306575c54348d98499c95be01b8d885a2737fe4d7a98"},
{file = "pandas-2.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0489b0e6aa3d907e909aef92975edae89b1ee1654db5eafb9be633b0124abe97"},
{file = "pandas-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:4cdb0fab0400c2cb46dafcf1a0fe084c8bb2480a1fa8d81e19d15e12e6d4ded2"},
{file = "pandas-2.1.1.tar.gz", hash = "sha256:fecb198dc389429be557cde50a2d46da8434a17fe37d7d41ff102e3987fd947b"},
]
[package.dependencies]
numpy = [
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version >= \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
@ -289,6 +354,21 @@ sql-other = ["SQLAlchemy (>=1.4.36)"]
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.8.0)"]
[[package]]
name = "platformdirs"
version = "4.2.0"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = ">=3.8"
files = [
{file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"},
{file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"},
]
[package.extras]
docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"]
[[package]]
name = "pluggy"
version = "1.3.0"
@ -304,6 +384,134 @@ files = [
dev = ["pre-commit", "tox"]
testing = ["pytest", "pytest-benchmark"]
[[package]]
name = "pre-commit"
version = "3.7.0"
description = "A framework for managing and maintaining multi-language pre-commit hooks."
optional = false
python-versions = ">=3.9"
files = [
{file = "pre_commit-3.7.0-py2.py3-none-any.whl", hash = "sha256:5eae9e10c2b5ac51577c3452ec0a490455c45a0533f7960f993a0d01e59decab"},
{file = "pre_commit-3.7.0.tar.gz", hash = "sha256:e209d61b8acdcf742404408531f0c37d49d2c734fd7cff2d6076083d191cb060"},
]
[package.dependencies]
cfgv = ">=2.0.0"
identify = ">=1.0.0"
nodeenv = ">=0.11.1"
pyyaml = ">=5.1"
virtualenv = ">=20.10.0"
[[package]]
name = "pydantic"
version = "2.7.4"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.8"
files = [
{file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"},
{file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"},
]
[package.dependencies]
annotated-types = ">=0.4.0"
pydantic-core = "2.18.4"
typing-extensions = ">=4.6.1"
[package.extras]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pydantic-core"
version = "2.18.4"
description = "Core functionality for Pydantic validation and serialization"
optional = false
python-versions = ">=3.8"
files = [
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"},
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"},
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"},
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"},
{file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"},
{file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"},
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"},
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"},
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"},
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"},
{file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"},
{file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"},
{file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"},
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"},
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"},
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"},
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"},
{file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"},
{file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"},
{file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"},
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"},
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"},
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"},
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"},
{file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"},
{file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"},
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"},
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"},
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"},
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"},
{file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"},
{file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"},
{file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]]
name = "pytest"
version = "7.4.2"
@ -351,6 +559,66 @@ files = [
{file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"},
]
[[package]]
name = "pyyaml"
version = "6.0.1"
description = "YAML parser and emitter for Python"
optional = false
python-versions = ">=3.6"
files = [
{file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
{file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"},
{file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"},
{file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"},
{file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"},
{file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"},
{file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"},
{file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
]
[[package]]
name = "requests"
version = "2.31.0"
@ -372,6 +640,22 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "setuptools"
version = "69.5.1"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"},
{file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "six"
version = "1.16.0"
@ -383,6 +667,21 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "tenacity"
version = "9.0.0"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.8"
files = [
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
]
[package.extras]
doc = ["reno", "sphinx"]
test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tomli"
version = "2.0.1"
@ -394,6 +693,17 @@ files = [
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
[[package]]
name = "typing-extensions"
version = "4.12.2"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]]
name = "tzdata"
version = "2023.3"
@ -407,13 +717,13 @@ files = [
[[package]]
name = "urllib3"
version = "2.0.4"
version = "2.0.6"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.7"
files = [
{file = "urllib3-2.0.4-py3-none-any.whl", hash = "sha256:de7df1803967d2c2a98e4b11bb7d6bd9210474c46e8a0401514e3a42a75ebde4"},
{file = "urllib3-2.0.4.tar.gz", hash = "sha256:8d22f86aae8ef5e410d4f539fde9ce6b2113a001bb4d189e0aed70642d602b11"},
{file = "urllib3-2.0.6-py3-none-any.whl", hash = "sha256:7a7c7003b000adf9e7ca2a377c9688bbc54ed41b985789ed576570342a375cd2"},
{file = "urllib3-2.0.6.tar.gz", hash = "sha256:b19e1a85d206b56d7df1d5e683df4a7725252a964e3993648dd0fb5a1c157564"},
]
[package.extras]
@ -422,7 +732,27 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "virtualenv"
version = "20.25.1"
description = "Virtual Python Environment builder"
optional = false
python-versions = ">=3.7"
files = [
{file = "virtualenv-20.25.1-py3-none-any.whl", hash = "sha256:961c026ac520bac5f69acb8ea063e8a4f071bcc9457b9c1f28f6b085c511583a"},
{file = "virtualenv-20.25.1.tar.gz", hash = "sha256:e08e13ecdca7a0bd53798f356d5831434afa5b07b93f0abdf0797b7a06ffe197"},
]
[package.dependencies]
distlib = ">=0.3.7,<1"
filelock = ">=3.12.2,<4"
platformdirs = ">=3.9.1,<5"
[package.extras]
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"]
test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "eede625d6d45085e143b0af246cb2ce00cff8579c667be3b63387c8594a5570d"
python-versions = ">=3.9,<3.13"
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"

View File

@ -1,19 +1,25 @@
[tool.poetry]
name = "homeharvest"
version = "0.2.0"
description = "Real estate scraping library supporting Zillow, Realtor.com & Redfin."
authors = ["Zachary Hampton <zachary@zacharysproducts.com>", "Cullen Watson <cullen@cullen.ai>"]
homepage = "https://github.com/ZacharyHampton/HomeHarvest"
version = "0.4.7"
description = "Real estate scraping library"
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
homepage = "https://github.com/Bunsly/HomeHarvest"
readme = "README.md"
[tool.poetry.scripts]
homeharvest = "homeharvest.cli:main"
[tool.poetry.dependencies]
python = "^3.10"
python = ">=3.9,<3.13"
requests = "^2.31.0"
pandas = "^2.1.0"
pandas = "^2.1.1"
pydantic = "^2.7.4"
tenacity = "^9.0.0"
[tool.poetry.group.dev.dependencies]
pytest = "^7.4.2"
pre-commit = "^3.7.0"
[build-system]
requires = ["poetry-core"]

View File

@ -1,40 +1,302 @@
from homeharvest import scrape_property
from homeharvest.exceptions import (
InvalidSite,
InvalidListingType,
NoResultsFound,
GeoCoordsNotFound,
)
from homeharvest import scrape_property, Property
import pandas as pd
def test_realtor_pending_or_contingent():
pending_or_contingent_result = scrape_property(location="Surprise, AZ", listing_type="pending")
regular_result = scrape_property(location="Surprise, AZ", listing_type="for_sale", exclude_pending=True)
assert all([result is not None for result in [pending_or_contingent_result, regular_result]])
assert len(pending_or_contingent_result) != len(regular_result)
def test_realtor_pending_comps():
pending_comps = scrape_property(
location="2530 Al Lipscomb Way",
radius=5,
past_days=180,
listing_type="pending",
)
for_sale_comps = scrape_property(
location="2530 Al Lipscomb Way",
radius=5,
past_days=180,
listing_type="for_sale",
)
sold_comps = scrape_property(
location="2530 Al Lipscomb Way",
radius=5,
past_days=180,
listing_type="sold",
)
results = [pending_comps, for_sale_comps, sold_comps]
assert all([result is not None for result in results])
#: assert all lengths are different
assert len(set([len(result) for result in results])) == len(results)
def test_realtor_sold_past():
result = scrape_property(
location="San Diego, CA",
past_days=30,
listing_type="sold",
)
assert result is not None and len(result) > 0
def test_realtor_comps():
result = scrape_property(
location="2530 Al Lipscomb Way",
radius=0.5,
past_days=180,
listing_type="sold",
)
assert result is not None and len(result) > 0
def test_realtor_last_x_days_sold():
days_result_30 = scrape_property(location="Dallas, TX", listing_type="sold", past_days=30)
days_result_10 = scrape_property(location="Dallas, TX", listing_type="sold", past_days=10)
assert all([result is not None for result in [days_result_30, days_result_10]]) and len(days_result_30) != len(
days_result_10
)
def test_realtor_date_range_sold():
days_result_30 = scrape_property(
location="Dallas, TX", listing_type="sold", date_from="2023-05-01", date_to="2023-05-28"
)
days_result_60 = scrape_property(
location="Dallas, TX", listing_type="sold", date_from="2023-04-01", date_to="2023-06-10"
)
assert all([result is not None for result in [days_result_30, days_result_60]]) and len(days_result_30) < len(
days_result_60
)
def test_realtor_single_property():
results = [
scrape_property(
location="15509 N 172nd Dr, Surprise, AZ 85388",
listing_type="for_sale",
),
scrape_property(
location="2530 Al Lipscomb Way",
listing_type="for_sale",
),
]
assert all([result is not None for result in results])
def test_realtor():
results = [
scrape_property(
location="2530 Al Lipscomb Way",
site_name="realtor.com",
listing_type="for_sale",
),
scrape_property(
location="Phoenix, AZ", site_name=["realtor.com"], listing_type="for_rent"
location="Phoenix, AZ", listing_type="for_rent", limit=1000
), #: does not support "city, state, USA" format
scrape_property(
location="Dallas, TX", site_name="realtor.com", listing_type="sold"
location="Dallas, TX", listing_type="sold", limit=1000
), #: does not support "city, state, USA" format
scrape_property(location="85281", site_name="realtor.com"),
scrape_property(location="85281"),
]
assert all([result is not None for result in results])
bad_results = []
try:
bad_results += [
scrape_property(
location="abceefg ju098ot498hh9",
site_name="realtor.com",
listing_type="for_sale",
)
]
except (InvalidSite, InvalidListingType, NoResultsFound, GeoCoordsNotFound):
def test_realtor_city():
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
assert results is not None and len(results) > 0
def test_realtor_land():
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
assert results is not None and len(results) > 0
def test_realtor_bad_address():
bad_results = scrape_property(
location="abceefg ju098ot498hh9",
listing_type="for_sale",
)
if len(bad_results) == 0:
assert True
assert all([result is None for result in bad_results])
def test_realtor_foreclosed():
foreclosed = scrape_property(location="Dallas, TX", listing_type="for_sale", past_days=100, foreclosure=True)
not_foreclosed = scrape_property(location="Dallas, TX", listing_type="for_sale", past_days=100, foreclosure=False)
assert len(foreclosed) != len(not_foreclosed)
def test_realtor_agent():
scraped = scrape_property(location="Detroit, MI", listing_type="for_sale", limit=1000, extra_property_data=False)
assert scraped["agent_name"].nunique() > 1
def test_realtor_without_extra_details():
results = [
scrape_property(
location="00741",
listing_type="sold",
limit=10,
extra_property_data=False,
),
scrape_property(
location="00741",
listing_type="sold",
limit=10,
extra_property_data=True,
),
]
assert not results[0].equals(results[1])
def test_pr_zip_code():
results = scrape_property(
location="00741",
listing_type="for_sale",
)
assert results is not None and len(results) > 0
def test_exclude_pending():
results = scrape_property(
location="33567",
listing_type="pending",
exclude_pending=True,
)
assert results is not None and len(results) > 0
def test_style_value_error():
results = scrape_property(
location="Alaska, AK",
listing_type="sold",
extra_property_data=False,
limit=1000,
)
assert results is not None and len(results) > 0
def test_primary_image_error():
results = scrape_property(
location="Spokane, PA",
listing_type="for_rent", # or (for_sale, for_rent, pending)
past_days=360,
radius=3,
extra_property_data=False,
)
assert results is not None and len(results) > 0
def test_limit():
over_limit = 876
extra_params = {"limit": over_limit}
over_results = scrape_property(
location="Waddell, AZ",
listing_type="for_sale",
**extra_params,
)
assert over_results is not None and len(over_results) <= over_limit
under_limit = 1
under_results = scrape_property(
location="Waddell, AZ",
listing_type="for_sale",
limit=under_limit,
)
assert under_results is not None and len(under_results) == under_limit
def test_apartment_list_price():
results = scrape_property(
location="Spokane, WA",
listing_type="for_rent", # or (for_sale, for_rent, pending)
extra_property_data=False,
)
assert results is not None
results = results[results["style"] == "APARTMENT"]
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
assert (
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
> 0.5
)
def test_builder_exists():
listing = scrape_property(
location="18149 W Poston Dr, Surprise, AZ 85387",
extra_property_data=False,
)
assert listing is not None
assert listing["builder_name"].nunique() > 0
def test_phone_number_matching():
searches = [
scrape_property(
location="Phoenix, AZ",
listing_type="for_sale",
limit=100,
),
scrape_property(
location="Phoenix, AZ",
listing_type="for_sale",
limit=100,
),
]
assert all([search is not None for search in searches])
#: random row
row = searches[0][searches[0]["agent_phones"].notnull()].sample()
#: find matching row
matching_row = searches[1].loc[searches[1]["property_url"] == row["property_url"].values[0]]
#: assert phone numbers are the same
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
def test_return_type():
results = {
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
}
assert isinstance(results["pandas"], pd.DataFrame)
assert isinstance(results["pydantic"][0], Property)
assert isinstance(results["raw"][0], dict)

View File

@ -1,38 +0,0 @@
from homeharvest import scrape_property
from homeharvest.exceptions import (
InvalidSite,
InvalidListingType,
NoResultsFound,
GeoCoordsNotFound,
)
def test_redfin():
results = [
scrape_property(
location="2530 Al Lipscomb Way", site_name="redfin", listing_type="for_sale"
),
scrape_property(
location="Phoenix, AZ, USA", site_name=["redfin"], listing_type="for_rent"
),
scrape_property(
location="Dallas, TX, USA", site_name="redfin", listing_type="sold"
),
scrape_property(location="85281", site_name="redfin"),
]
assert all([result is not None for result in results])
bad_results = []
try:
bad_results += [
scrape_property(
location="abceefg ju098ot498hh9",
site_name="redfin",
listing_type="for_sale",
)
]
except (InvalidSite, InvalidListingType, NoResultsFound, GeoCoordsNotFound):
assert True
assert all([result is None for result in bad_results])

View File

@ -1,38 +0,0 @@
from homeharvest import scrape_property
from homeharvest.exceptions import (
InvalidSite,
InvalidListingType,
NoResultsFound,
GeoCoordsNotFound,
)
def test_zillow():
results = [
scrape_property(
location="2530 Al Lipscomb Way", site_name="zillow", listing_type="for_sale"
),
scrape_property(
location="Phoenix, AZ, USA", site_name=["zillow"], listing_type="for_rent"
),
scrape_property(
location="Dallas, TX, USA", site_name="zillow", listing_type="sold"
),
scrape_property(location="85281", site_name="zillow"),
]
assert all([result is not None for result in results])
bad_results = []
try:
bad_results += [
scrape_property(
location="abceefg ju098ot498hh9",
site_name="zillow",
listing_type="for_sale",
)
]
except (InvalidSite, InvalidListingType, NoResultsFound, GeoCoordsNotFound):
assert True
assert all([result is None for result in bad_results])