diff --git a/README.md b/README.md
index ad72eed..f522d1d 100644
--- a/README.md
+++ b/README.md
@@ -68,13 +68,24 @@ print(properties.head())
```
Required
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
-└── listing_type (option): Choose the type of listing.
+├── listing_type (option): Choose the type of listing.
- 'for_rent'
- 'for_sale'
- 'sold'
- - 'pending'
+ - 'pending' (for pending/contingent sales)
Optional
+├── property_type (list): Choose the type of properties.
+ - 'single_family'
+ - 'multi_family'
+ - 'condos'
+ - 'condo_townhome_rowhome_coop'
+ - 'condo_townhome'
+ - 'townhomes'
+ - 'duplex_triplex'
+ - 'farm'
+ - 'land'
+ - 'mobile'
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
│
@@ -94,7 +105,7 @@ Optional
│
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
│
-├── exclude_pending (True/False): If set, excludes pending properties from the results unless listing_type is 'pending'
+├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
│
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
```
diff --git a/examples/HomeHarvest_Demo.ipynb b/examples/HomeHarvest_Demo.ipynb
deleted file mode 100644
index 9e6aa49..0000000
--- a/examples/HomeHarvest_Demo.ipynb
+++ /dev/null
@@ -1,141 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
- "metadata": {
- "is_executing": true
- },
- "outputs": [],
- "source": [
- "from homeharvest import scrape_property\n",
- "import pandas as pd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
- "metadata": {},
- "outputs": [],
- "source": [
- "pd.set_option('display.max_columns', None) # Show all columns\n",
- "pd.set_option('display.max_rows', None) # Show all rows\n",
- "pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
- "pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
- "metadata": {},
- "outputs": [],
- "source": [
- "# check for sale properties\n",
- "scrape_property(\n",
- " location=\"dallas\",\n",
- " listing_type=\"for_sale\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "aaf86093",
- "metadata": {
- "collapsed": false,
- "jupyter": {
- "outputs_hidden": false
- }
- },
- "outputs": [],
- "source": [
- "# search a specific address\n",
- "scrape_property(\n",
- " location=\"2530 Al Lipscomb Way\",\n",
- " listing_type=\"for_sale\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
- "metadata": {},
- "outputs": [],
- "source": [
- "# check rentals\n",
- "scrape_property(\n",
- " location=\"chicago, illinois\",\n",
- " listing_type=\"for_rent\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "af280cd3",
- "metadata": {
- "collapsed": false,
- "jupyter": {
- "outputs_hidden": false
- }
- },
- "outputs": [],
- "source": [
- "# check sold properties\n",
- "properties = scrape_property(\n",
- " location=\"90210\",\n",
- " listing_type=\"sold\",\n",
- " past_days=10\n",
- ")\n",
- "display(properties)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "628c1ce2",
- "metadata": {
- "collapsed": false,
- "is_executing": true,
- "jupyter": {
- "outputs_hidden": false
- }
- },
- "outputs": [],
- "source": [
- "# display clickable URLs\n",
- "from IPython.display import display, HTML\n",
- "properties['property_url'] = '' + properties['property_url'] + ''\n",
- "\n",
- "html = properties.to_html(escape=False)\n",
- "truncate_width = f'{html}'\n",
- "display(HTML(truncate_width))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/examples/HomeHarvest_Demo.py b/examples/HomeHarvest_Demo.py
deleted file mode 100644
index 46d31b1..0000000
--- a/examples/HomeHarvest_Demo.py
+++ /dev/null
@@ -1,20 +0,0 @@
-from homeharvest import scrape_property
-from datetime import datetime
-
-# Generate filename based on current timestamp
-current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
-filename = f"HomeHarvest_{current_timestamp}.csv"
-
-properties = scrape_property(
- location="San Diego, CA",
- listing_type="sold", # or (for_sale, for_rent)
- past_days=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
- # pending_or_contingent=True # use on for_sale listings to find pending / contingent listings
- # mls_only=True, # only fetch MLS listings
- # proxy="http://user:pass@host:port" # use a proxy to change your IP address
-)
-print(f"Number of properties: {len(properties)}")
-
-# Export to csv
-properties.to_csv(filename, index=False)
-print(properties.head())
diff --git a/examples/price_of_land.py b/examples/price_of_land.py
new file mode 100644
index 0000000..4b35e21
--- /dev/null
+++ b/examples/price_of_land.py
@@ -0,0 +1,104 @@
+"""
+This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
+It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
+"""
+
+import os
+import pandas as pd
+from homeharvest import scrape_property
+
+
+def get_property_details(zip: str, listing_type):
+ properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
+ if not properties.empty:
+ properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
+
+ properties = properties[properties["sqft"].isnull()]
+ properties["ppa"] = properties.apply(
+ lambda row: (
+ int(
+ (
+ row["sold_price"]
+ if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
+ else row["list_price"]
+ )
+ / row["lot_acres"]
+ )
+ if pd.notnull(row["lot_acres"])
+ and row["lot_acres"] > 0
+ and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
+ else None
+ ),
+ axis=1,
+ )
+ properties["ppa"] = properties["ppa"].astype("Int64")
+ selected_columns = [
+ "property_url",
+ "property_id",
+ "style",
+ "status",
+ "street",
+ "city",
+ "state",
+ "zip_code",
+ "county",
+ "list_date",
+ "last_sold_date",
+ "list_price",
+ "sold_price",
+ "lot_sqft",
+ "lot_acres",
+ "ppa",
+ ]
+ properties = properties[selected_columns]
+ return properties
+
+
+def output_to_excel(zip_code, sold_df, pending_df):
+ root_folder = os.getcwd()
+ zip_folder = os.path.join(root_folder, "zips", zip_code)
+
+ # Create zip code folder if it doesn't exist
+ os.makedirs(zip_folder, exist_ok=True)
+
+ # Define file paths
+ sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
+ pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
+
+ # Save individual sold and pending files
+ sold_df.to_excel(sold_file, index=False)
+ pending_df.to_excel(pending_file, index=False)
+
+
+zip_codes = map(
+ str,
+ [
+ 22920,
+ 77024,
+ 78028,
+ 24553,
+ 22967,
+ 22971,
+ 22922,
+ 22958,
+ 22969,
+ 22949,
+ 22938,
+ 24599,
+ 24562,
+ 22976,
+ 24464,
+ 22964,
+ 24581,
+ ],
+)
+
+combined_df = pd.DataFrame()
+for zip in zip_codes:
+ sold_df = get_property_details(zip, "sold")
+ pending_df = get_property_details(zip, "pending")
+ combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
+ output_to_excel(zip, sold_df, pending_df)
+
+combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
+combined_df.to_excel(combined_file, index=False)
diff --git a/homeharvest/__init__.py b/homeharvest/__init__.py
index b4950c2..643e954 100644
--- a/homeharvest/__init__.py
+++ b/homeharvest/__init__.py
@@ -3,12 +3,13 @@ import pandas as pd
from .core.scrapers import ScraperInput
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
from .core.scrapers.realtor import RealtorScraper
-from .core.scrapers.models import ListingType
+from .core.scrapers.models import ListingType, SearchPropertyType
def scrape_property(
location: str,
listing_type: str = "for_sale",
+ property_type: list[str] | None = None,
radius: float = None,
mls_only: bool = False,
past_days: int = None,
@@ -24,6 +25,7 @@ def scrape_property(
Scrape properties from Realtor.com based on a given location and listing type.
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
+ :param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
:param mls_only: If set, fetches only listings with MLS IDs.
:param proxy: Proxy to use for scraping
@@ -41,6 +43,7 @@ def scrape_property(
scraper_input = ScraperInput(
location=location,
listing_type=ListingType[listing_type.upper()],
+ property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
proxy=proxy,
radius=radius,
mls_only=mls_only,
@@ -63,4 +66,6 @@ def scrape_property(
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
- return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": pd.NA, None: pd.NA, "": pd.NA})
+ return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
+ {"None": pd.NA, None: pd.NA, "": pd.NA}
+ )
diff --git a/homeharvest/core/scrapers/__init__.py b/homeharvest/core/scrapers/__init__.py
index 745d766..1c68061 100644
--- a/homeharvest/core/scrapers/__init__.py
+++ b/homeharvest/core/scrapers/__init__.py
@@ -5,7 +5,7 @@ from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import uuid
from ...exceptions import AuthenticationError
-from .models import Property, ListingType, SiteName
+from .models import Property, ListingType, SiteName, SearchPropertyType
import json
@@ -13,6 +13,7 @@ import json
class ScraperInput:
location: str
listing_type: ListingType
+ property_type: list[SearchPropertyType] | None = None
radius: float | None = None
mls_only: bool | None = False
proxy: str | None = None
@@ -34,11 +35,12 @@ class Scraper:
):
self.location = scraper_input.location
self.listing_type = scraper_input.listing_type
+ self.property_type = scraper_input.property_type
if not self.session:
Scraper.session = requests.Session()
retries = Retry(
- total=3, backoff_factor=3, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
+ total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
)
adapter = HTTPAdapter(max_retries=retries)
@@ -46,21 +48,21 @@ class Scraper:
Scraper.session.mount("https://", adapter)
Scraper.session.headers.update(
{
- 'accept': 'application/json, text/javascript',
- 'accept-language': 'en-US,en;q=0.9',
- 'cache-control': 'no-cache',
- 'content-type': 'application/json',
- 'origin': 'https://www.realtor.com',
- 'pragma': 'no-cache',
- 'priority': 'u=1, i',
- 'rdc-ab-tests': 'commute_travel_time_variation:v1',
- 'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
- 'sec-ch-ua-mobile': '?0',
- 'sec-ch-ua-platform': '"Windows"',
- 'sec-fetch-dest': 'empty',
- 'sec-fetch-mode': 'cors',
- 'sec-fetch-site': 'same-origin',
- 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
+ "accept": "application/json, text/javascript",
+ "accept-language": "en-US,en;q=0.9",
+ "cache-control": "no-cache",
+ "content-type": "application/json",
+ "origin": "https://www.realtor.com",
+ "pragma": "no-cache",
+ "priority": "u=1, i",
+ "rdc-ab-tests": "commute_travel_time_variation:v1",
+ "sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
+ "sec-ch-ua-mobile": "?0",
+ "sec-ch-ua-platform": '"Windows"',
+ "sec-fetch-dest": "empty",
+ "sec-fetch-mode": "cors",
+ "sec-fetch-site": "same-origin",
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
}
)
@@ -94,27 +96,29 @@ class Scraper:
response = requests.post(
"https://graph.realtor.com/auth/token",
headers={
- 'Host': 'graph.realtor.com',
- 'Accept': '*/*',
- 'Content-Type': 'Application/json',
- 'X-Client-ID': 'rdc_mobile_native,iphone',
- 'X-Visitor-ID': device_id,
- 'X-Client-Version': '24.21.23.679885',
- 'Accept-Language': 'en-US,en;q=0.9',
- 'User-Agent': 'Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0',
+ "Host": "graph.realtor.com",
+ "Accept": "*/*",
+ "Content-Type": "Application/json",
+ "X-Client-ID": "rdc_mobile_native,iphone",
+ "X-Visitor-ID": device_id,
+ "X-Client-Version": "24.21.23.679885",
+ "Accept-Language": "en-US,en;q=0.9",
+ "User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
},
- data=json.dumps({
- "grant_type": "device_mobile",
- "device_id": device_id,
- "client_app_id": "rdc_mobile_native,24.21.23.679885,iphone"
- }))
+ data=json.dumps(
+ {
+ "grant_type": "device_mobile",
+ "device_id": device_id,
+ "client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
+ }
+ ),
+ )
data = response.json()
if not (access_token := data.get("access_token")):
raise AuthenticationError(
- "Failed to get access token, use a proxy/vpn or wait a moment and try again.",
- response=response
+ "Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
)
return access_token
diff --git a/homeharvest/core/scrapers/models.py b/homeharvest/core/scrapers/models.py
index 98be66b..67c4a68 100644
--- a/homeharvest/core/scrapers/models.py
+++ b/homeharvest/core/scrapers/models.py
@@ -17,6 +17,19 @@ class SiteName(Enum):
raise ValueError(f"{value} not found in {cls}")
+class SearchPropertyType(Enum):
+ SINGLE_FAMILY = "single_family"
+ CONDOS = "condos"
+ CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
+ CONDO_TOWNHOME = "condo_townhome"
+ TOWNHOMES = "townhomes"
+ DUPLEX_TRIPLEX = "duplex_triplex"
+ FARM = "farm"
+ LAND = "land"
+ MULTI_FAMILY = "multi_family"
+ MOBILE = "mobile"
+
+
class ListingType(Enum):
FOR_SALE = "FOR_SALE"
FOR_RENT = "FOR_RENT"
diff --git a/homeharvest/core/scrapers/realtor/__init__.py b/homeharvest/core/scrapers/realtor/__init__.py
index 355b5b3..e45c2db 100644
--- a/homeharvest/core/scrapers/realtor/__init__.py
+++ b/homeharvest/core/scrapers/realtor/__init__.py
@@ -6,12 +6,28 @@ This module implements the scraper for realtor.com
"""
from __future__ import annotations
+
+import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
+from json import JSONDecodeError
from typing import Dict, Union, Optional
+from tenacity import retry, retry_if_exception_type, wait_exponential, stop_after_attempt
+
from .. import Scraper
-from ..models import Property, Address, ListingType, Description, PropertyType, Agent, Broker, Builder, Advertisers, Office
+from ..models import (
+ Property,
+ Address,
+ ListingType,
+ Description,
+ PropertyType,
+ Agent,
+ Broker,
+ Builder,
+ Advertisers,
+ Office,
+)
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
@@ -81,9 +97,12 @@ class RealtorScraper(Scraper):
return property_info["listings"][0]["listing_id"]
def handle_home(self, property_id: str) -> list[Property]:
- query = """query Home($property_id: ID!) {
+ query = (
+ """query Home($property_id: ID!) {
home(property_id: $property_id) %s
- }""" % HOMES_DATA
+ }"""
+ % HOMES_DATA
+ )
variables = {"property_id": property_id}
payload = {
@@ -96,9 +115,7 @@ class RealtorScraper(Scraper):
property_info = response_json["data"]["home"]
- return [
- self.process_property(property_info, "home")
- ]
+ return [self.process_property(property_info, "home")]
@staticmethod
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
@@ -122,7 +139,7 @@ class RealtorScraper(Scraper):
phones=advertiser.get("phones"),
)
- if advertiser.get('broker') and advertiser["broker"].get('name'): #: has a broker
+ if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
processed_advertisers.broker = Broker(
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
name=advertiser["broker"].get("name"),
@@ -153,15 +170,16 @@ class RealtorScraper(Scraper):
return
able_to_get_lat_long = (
- result
- and result.get("location")
- and result["location"].get("address")
- and result["location"]["address"].get("coordinate")
+ result
+ and result.get("location")
+ and result["location"].get("address")
+ and result["location"]["address"].get("coordinate")
)
- is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
+ is_pending = result["flags"].get("is_pending")
+ is_contingent = result["flags"].get("is_contingent")
- if is_pending and (self.exclude_pending and self.listing_type != ListingType.PENDING):
+ if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
return
property_id = result["property_id"]
@@ -184,7 +202,7 @@ class RealtorScraper(Scraper):
property_url=result["href"],
property_id=property_id,
listing_id=result.get("listing_id"),
- status="PENDING" if is_pending else result["status"].upper(),
+ status="PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper(),
list_price=result["list_price"],
list_price_min=result["list_price_min"],
list_price_max=result["list_price_max"],
@@ -225,6 +243,11 @@ class RealtorScraper(Scraper):
elif self.last_x_days:
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
+ property_type_param = ""
+ if self.property_type:
+ property_types = [pt.value for pt in self.property_type]
+ property_type_param = f"type: {json.dumps(property_types)}"
+
sort_param = (
"sort: [{ field: sold_date, direction: desc }]"
if self.listing_type == ListingType.SOLD
@@ -259,6 +282,7 @@ class RealtorScraper(Scraper):
status: %s
%s
%s
+ %s
}
%s
limit: 200
@@ -268,6 +292,7 @@ class RealtorScraper(Scraper):
is_foreclosure,
listing_type.value.lower(),
date_param,
+ property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
@@ -290,6 +315,7 @@ class RealtorScraper(Scraper):
status: %s
%s
%s
+ %s
}
%s
limit: 200
@@ -299,13 +325,14 @@ class RealtorScraper(Scraper):
is_foreclosure,
listing_type.value.lower(),
date_param,
+ property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
)
else: #: general search, came from an address
query = (
- """query Property_search(
+ """query Property_search(
$property_id: [ID]!
$offset: Int!,
) {
@@ -315,9 +342,9 @@ class RealtorScraper(Scraper):
}
limit: 1
offset: $offset
- ) %s
+ ) %s
}"""
- % GENERAL_RESULTS_QUERY
+ % GENERAL_RESULTS_QUERY
)
payload = {
@@ -332,12 +359,12 @@ class RealtorScraper(Scraper):
properties: list[Property] = []
if (
- response_json is None
- or "data" not in response_json
- or response_json["data"] is None
- or search_key not in response_json["data"]
- or response_json["data"][search_key] is None
- or "results" not in response_json["data"][search_key]
+ response_json is None
+ or "data" not in response_json
+ or response_json["data"] is None
+ or search_key not in response_json["data"]
+ or response_json["data"][search_key] is None
+ or "results" not in response_json["data"][search_key]
):
return {"total": 0, "properties": []}
@@ -347,12 +374,10 @@ class RealtorScraper(Scraper):
#: limit the number of properties to be processed
#: example, if your offset is 200, and your limit is 250, return 50
- properties_list = properties_list[:self.limit - offset]
+ properties_list = properties_list[: self.limit - offset]
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
- futures = [
- executor.submit(self.process_property, result, search_key) for result in properties_list
- ]
+ futures = [executor.submit(self.process_property, result, search_key) for result in properties_list]
for future in as_completed(futures):
result = future.result()
@@ -451,6 +476,9 @@ class RealtorScraper(Scraper):
"assessed_value": assessed_value if assessed_value else None,
}
+ @retry(
+ retry=retry_if_exception_type(JSONDecodeError), wait=wait_exponential(min=4, max=10), stop=stop_after_attempt(3)
+ )
def get_prop_details(self, property_id: str) -> dict:
if not self.extra_property_data:
return {}
@@ -534,7 +562,9 @@ class RealtorScraper(Scraper):
style = style.upper()
primary_photo = ""
- if (primary_photo_info := result.get('primary_photo')) and (primary_photo_href := primary_photo_info.get("href")):
+ if (primary_photo_info := result.get("primary_photo")) and (
+ primary_photo_href := primary_photo_info.get("href")
+ ):
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
return Description(
@@ -547,7 +577,7 @@ class RealtorScraper(Scraper):
sqft=description_data.get("sqft"),
lot_sqft=description_data.get("lot_sqft"),
sold_price=(
- result.get('last_sold_price') or description_data.get("sold_price")
+ result.get("last_sold_price") or description_data.get("sold_price")
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
else None
), #: has a sold date or list and sold price are different
@@ -581,4 +611,8 @@ class RealtorScraper(Scraper):
if not photos_info:
return None
- return [photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75") for photo_info in photos_info if photo_info.get("href")]
+ return [
+ photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
+ for photo_info in photos_info
+ if photo_info.get("href")
+ ]
diff --git a/poetry.lock b/poetry.lock
index b3bff2a..98dc4de 100644
--- a/poetry.lock
+++ b/poetry.lock
@@ -1,4 +1,4 @@
-# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
+# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "annotated-types"
@@ -667,6 +667,21 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
+[[package]]
+name = "tenacity"
+version = "9.0.0"
+description = "Retry code until it succeeds"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
+ {file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
+]
+
+[package.extras]
+doc = ["reno", "sphinx"]
+test = ["pytest", "tornado (>=4.5)", "typeguard"]
+
[[package]]
name = "tomli"
version = "2.0.1"
@@ -740,4 +755,4 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<3.13"
-content-hash = "21ef9cfb35c446a375a2b74c37691d7031afb1e4f66a8b63cb7c1669470689d2"
+content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"
diff --git a/pyproject.toml b/pyproject.toml
index 2f0d8cc..56d5bca 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "homeharvest"
-version = "0.4.3"
+version = "0.4.4"
description = "Real estate scraping library"
authors = ["Zachary Hampton ", "Cullen Watson "]
homepage = "https://github.com/Bunsly/HomeHarvest"
@@ -14,6 +14,7 @@ python = ">=3.9,<3.13"
requests = "^2.31.0"
pandas = "^2.1.1"
pydantic = "^2.7.4"
+tenacity = "^9.0.0"
[tool.poetry.group.dev.dependencies]
diff --git a/tests/test_realtor.py b/tests/test_realtor.py
index 284875a..df2249e 100644
--- a/tests/test_realtor.py
+++ b/tests/test_realtor.py
@@ -105,8 +105,12 @@ def test_realtor():
location="2530 Al Lipscomb Way",
listing_type="for_sale",
),
- scrape_property(location="Phoenix, AZ", listing_type="for_rent", limit=1000), #: does not support "city, state, USA" format
- scrape_property(location="Dallas, TX", listing_type="sold", limit=1000), #: does not support "city, state, USA" format
+ scrape_property(
+ location="Phoenix, AZ", listing_type="for_rent", limit=1000
+ ), #: does not support "city, state, USA" format
+ scrape_property(
+ location="Dallas, TX", listing_type="sold", limit=1000
+ ), #: does not support "city, state, USA" format
scrape_property(location="85281"),
]
@@ -114,11 +118,13 @@ def test_realtor():
def test_realtor_city():
- results = scrape_property(
- location="Atlanta, GA",
- listing_type="for_sale",
- limit=1000
- )
+ results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
+
+ assert results is not None and len(results) > 0
+
+
+def test_realtor_land():
+ results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
assert results is not None and len(results) > 0
@@ -241,9 +247,10 @@ def test_apartment_list_price():
results = results[results["style"] == "APARTMENT"]
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
- assert len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(
- results
- ) > 0.5
+ assert (
+ len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
+ > 0.5
+ )
def test_builder_exists():