HomeHarvest/homeharvest/__init__.py

110 lines
3.6 KiB
Python
Raw Normal View History

import pandas as pd
from typing import Union
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from .core.scrapers import ScraperInput
2023-10-03 22:21:16 -07:00
from .utils import process_result, ordered_properties
2023-09-15 20:58:54 -07:00
from .core.scrapers.realtor import RealtorScraper
2023-09-18 11:38:17 -07:00
from .core.scrapers.models import ListingType, Property, SiteName
2023-09-15 15:17:37 -07:00
from .exceptions import InvalidSite, InvalidListingType
_scrapers = {
2023-09-17 13:06:31 -07:00
"realtor.com": RealtorScraper,
2023-09-15 15:17:37 -07:00
}
2023-09-19 13:43:24 -07:00
def _validate_input(site_name: str, listing_type: str) -> None:
2023-09-15 15:21:29 -07:00
if site_name.lower() not in _scrapers:
2023-09-15 15:17:37 -07:00
raise InvalidSite(f"Provided site, '{site_name}', does not exist.")
if listing_type.upper() not in ListingType.__members__:
2023-09-19 19:13:20 -07:00
raise InvalidListingType(f"Provided listing type, '{listing_type}', does not exist.")
2023-09-15 15:17:37 -07:00
2023-10-03 15:05:17 -07:00
def _scrape_single_site(location: str, site_name: str, listing_type: str, radius: float, proxy: str = None, sold_last_x_days: int = None) -> pd.DataFrame:
2023-09-18 08:37:07 -07:00
"""
Helper function to scrape a single site.
2023-09-18 08:37:07 -07:00
"""
2023-09-19 13:43:24 -07:00
_validate_input(site_name, listing_type)
2023-09-17 16:52:34 -07:00
2023-09-15 15:17:37 -07:00
scraper_input = ScraperInput(
location=location,
listing_type=ListingType[listing_type.upper()],
site_name=SiteName.get_by_value(site_name.lower()),
2023-09-19 13:43:24 -07:00
proxy=proxy,
2023-10-02 13:58:47 -07:00
radius=radius,
2023-10-03 15:05:17 -07:00
sold_last_x_days=sold_last_x_days
2023-09-15 15:17:37 -07:00
)
2023-09-15 15:21:29 -07:00
site = _scrapers[site_name.lower()](scraper_input)
2023-09-17 16:30:37 -07:00
results = site.search()
2023-09-15 15:17:37 -07:00
2023-10-03 22:21:16 -07:00
properties_dfs = [process_result(result) for result in results]
2023-09-18 11:38:17 -07:00
if not properties_dfs:
return pd.DataFrame()
2023-09-17 16:30:37 -07:00
2023-10-03 22:21:16 -07:00
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties]
def scrape_property(
location: str,
2023-10-03 22:21:16 -07:00
#: site_name: Union[str, list[str]] = "realtor.com",
listing_type: str = "for_sale",
2023-10-02 13:58:47 -07:00
radius: float = None,
2023-10-03 15:05:17 -07:00
sold_last_x_days: int = None,
2023-09-19 13:43:24 -07:00
proxy: str = None,
) -> pd.DataFrame:
"""
Scrape property from various sites from a given location and listing type.
2023-10-03 15:05:17 -07:00
:param sold_last_x_days: Sold in last x days
2023-10-02 13:58:47 -07:00
:param radius: Radius in miles to find comparable properties on individual addresses
2023-10-02 10:28:13 -07:00
:param keep_duplicates:
:param proxy:
:param location: US Location (e.g. 'San Francisco, CA', 'Cook County, IL', '85281', '2530 Al Lipscomb Way')
:param site_name: Site name or list of site names (e.g. ['realtor.com', 'zillow'], 'redfin')
:param listing_type: Listing type (e.g. 'for_sale', 'for_rent', 'sold')
2023-10-02 10:28:13 -07:00
:returns: pd.DataFrame containing properties
"""
2023-10-03 22:21:16 -07:00
site_name = "realtor.com"
2023-10-02 10:28:13 -07:00
if site_name is None:
site_name = list(_scrapers.keys())
if not isinstance(site_name, list):
site_name = [site_name]
2023-09-18 15:22:43 -07:00
results = []
if len(site_name) == 1:
2023-10-03 15:05:17 -07:00
final_df = _scrape_single_site(location, site_name[0], listing_type, radius, proxy, sold_last_x_days)
2023-09-18 15:22:43 -07:00
results.append(final_df)
else:
with ThreadPoolExecutor() as executor:
futures = {
2023-10-03 15:05:17 -07:00
executor.submit(_scrape_single_site, location, s_name, listing_type, radius, proxy, sold_last_x_days): s_name
2023-09-18 15:22:43 -07:00
for s_name in site_name
}
2023-09-18 15:22:43 -07:00
for future in concurrent.futures.as_completed(futures):
result = future.result()
results.append(result)
2023-09-18 19:02:12 -07:00
results = [df for df in results if not df.empty and not df.isna().all().all()]
if not results:
return pd.DataFrame()
2023-09-18 15:22:43 -07:00
final_df = pd.concat(results, ignore_index=True)
2023-10-03 22:21:16 -07:00
columns_to_track = ["Street", "Unit", "Zip"]
#: validate they exist, otherwise create them
for col in columns_to_track:
if col not in final_df.columns:
final_df[col] = None
return final_df