feat: add pandas
parent
b76c659f94
commit
3697b7cf2d
|
@ -2,4 +2,5 @@
|
|||
**/dist/
|
||||
**/__pycache__/
|
||||
**/.pytest_cache/
|
||||
*.pyc
|
||||
*.pyc
|
||||
/.ipynb_checkpoints/
|
|
@ -0,0 +1,73 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from homeharvest import scrape_property\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.set_option('display.max_columns', None) # Show all columns\n",
|
||||
"pd.set_option('display.max_rows', None) # Show all rows\n",
|
||||
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
|
||||
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\", site_name=\"zillow\", listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\", site_name=\"redfin\", listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -1,10 +1,11 @@
|
|||
from .core.scrapers.redfin import RedfinScraper
|
||||
from .core.scrapers.realtor import RealtorScraper
|
||||
from .core.scrapers.zillow import ZillowScraper
|
||||
from .core.scrapers.models import ListingType, Property, Building
|
||||
from .core.scrapers.models import ListingType, Property, Building, SiteName
|
||||
from .core.scrapers import ScraperInput
|
||||
from .exceptions import InvalidSite, InvalidListingType
|
||||
from typing import Union
|
||||
import pandas as pd
|
||||
|
||||
|
||||
_scrapers = {
|
||||
|
@ -18,7 +19,7 @@ def scrape_property(
|
|||
location: str,
|
||||
site_name: str,
|
||||
listing_type: str = "for_sale", #: for_sale, for_rent, sold
|
||||
) -> Union[list[Building], list[Property]]: #: eventually, return pandas dataframe
|
||||
) -> Union[list[Building], list[Property]]:
|
||||
if site_name.lower() not in _scrapers:
|
||||
raise InvalidSite(f"Provided site, '{site_name}', does not exist.")
|
||||
|
||||
|
@ -30,8 +31,69 @@ def scrape_property(
|
|||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
site_name=SiteName[site_name.upper()],
|
||||
)
|
||||
|
||||
site = _scrapers[site_name.lower()](scraper_input)
|
||||
results = site.search()
|
||||
|
||||
return site.search()
|
||||
properties_dfs = []
|
||||
|
||||
for result in results:
|
||||
prop_data = result.__dict__
|
||||
|
||||
address_data = prop_data["address"]
|
||||
prop_data["site_name"] = prop_data["site_name"].value
|
||||
prop_data["listing_type"] = prop_data["listing_type"].value
|
||||
prop_data["property_type"] = prop_data["property_type"].value.lower()
|
||||
prop_data["address_one"] = address_data.address_one
|
||||
prop_data["city"] = address_data.city
|
||||
prop_data["state"] = address_data.state
|
||||
prop_data["zip_code"] = address_data.zip_code
|
||||
prop_data["address_two"] = address_data.address_two
|
||||
|
||||
del prop_data["address"]
|
||||
|
||||
if isinstance(result, Property):
|
||||
desired_order = [
|
||||
"listing_type",
|
||||
"address_one",
|
||||
"city",
|
||||
"state",
|
||||
"zip_code",
|
||||
"address_two",
|
||||
"url",
|
||||
"property_type",
|
||||
"price",
|
||||
"beds",
|
||||
"baths",
|
||||
"square_feet",
|
||||
"price_per_square_foot",
|
||||
"lot_size",
|
||||
"stories",
|
||||
"year_built",
|
||||
"agent_name",
|
||||
"mls_id",
|
||||
"description",
|
||||
]
|
||||
|
||||
elif isinstance(result, Building):
|
||||
desired_order = [
|
||||
"address_one",
|
||||
"city",
|
||||
"state",
|
||||
"zip_code",
|
||||
"address_two",
|
||||
"url",
|
||||
"num_units",
|
||||
"min_unit_price",
|
||||
"max_unit_price",
|
||||
"avg_unit_price",
|
||||
"listing_type",
|
||||
]
|
||||
|
||||
properties_df = pd.DataFrame([prop_data])
|
||||
properties_df = properties_df[desired_order]
|
||||
properties_dfs.append(properties_df)
|
||||
|
||||
return pd.concat(properties_dfs, ignore_index=True)
|
||||
|
|
|
@ -1,12 +1,13 @@
|
|||
from dataclasses import dataclass
|
||||
import requests
|
||||
from .models import Property, ListingType
|
||||
from .models import Property, ListingType, SiteName
|
||||
|
||||
|
||||
@dataclass
|
||||
class ScraperInput:
|
||||
location: str
|
||||
listing_type: ListingType
|
||||
site_name: SiteName
|
||||
proxy_url: str | None = None
|
||||
|
||||
|
||||
|
@ -14,6 +15,8 @@ class Scraper:
|
|||
def __init__(self, scraper_input: ScraperInput):
|
||||
self.location = scraper_input.location
|
||||
self.session = requests.Session()
|
||||
self.listing_type = scraper_input.listing_type
|
||||
self.site_name = scraper_input.site_name
|
||||
|
||||
if scraper_input.proxy_url:
|
||||
self.session.proxies = {
|
||||
|
|
|
@ -2,12 +2,43 @@ from dataclasses import dataclass
|
|||
from enum import Enum
|
||||
|
||||
|
||||
class SiteName(Enum):
|
||||
ZILLOW = "zillow"
|
||||
REDFIN = "redfin"
|
||||
REALTOR = "realtor.com"
|
||||
|
||||
|
||||
class ListingType(Enum):
|
||||
FOR_SALE = "for_sale"
|
||||
FOR_RENT = "for_rent"
|
||||
SOLD = "sold"
|
||||
|
||||
|
||||
class PropertyType(Enum):
|
||||
HOUSE = "HOUSE"
|
||||
CONDO = "CONDO"
|
||||
TOWNHOUSE = "townhousE"
|
||||
SINGLE_FAMILY = "SINGLE_FAMILY"
|
||||
MULTI_FAMILY = "MULTI_FAMILY"
|
||||
LAND = "LAND"
|
||||
OTHER = "OTHER"
|
||||
|
||||
@classmethod
|
||||
def from_int_code(cls, code):
|
||||
mapping = {
|
||||
1: cls.HOUSE,
|
||||
2: cls.CONDO,
|
||||
3: cls.TOWNHOUSE,
|
||||
4: cls.MULTI_FAMILY,
|
||||
5: cls.LAND,
|
||||
6: cls.OTHER,
|
||||
8: cls.SINGLE_FAMILY,
|
||||
13: cls.SINGLE_FAMILY,
|
||||
}
|
||||
|
||||
return mapping.get(code, cls.OTHER)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Address:
|
||||
address_one: str
|
||||
|
@ -18,35 +49,35 @@ class Address:
|
|||
address_two: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Property:
|
||||
@dataclass()
|
||||
class Realty:
|
||||
site_name: SiteName
|
||||
address: Address
|
||||
url: str
|
||||
listing_type: ListingType | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Property(Realty):
|
||||
price: int | None = None
|
||||
beds: int | None = None
|
||||
baths: float | None = None
|
||||
stories: int | None = None
|
||||
agent_name: str | None = None
|
||||
year_built: int | None = None
|
||||
square_feet: int | None = None
|
||||
price_per_square_foot: int | None = None
|
||||
year_built: int | None = None
|
||||
price: int | None = None
|
||||
mls_id: str | None = None
|
||||
|
||||
listing_type: ListingType | None = None
|
||||
agent_name: str | None = None
|
||||
property_type: PropertyType | None = None
|
||||
lot_size: int | None = None
|
||||
description: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Building:
|
||||
address: Address
|
||||
url: str
|
||||
|
||||
class Building(Realty):
|
||||
num_units: int | None = None
|
||||
min_unit_price: int | None = None
|
||||
max_unit_price: int | None = None
|
||||
avg_unit_price: int | None = None
|
||||
|
||||
listing_type: str | None = None
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import json
|
||||
from ..models import Property, Address
|
||||
from ..models import Property, Address, PropertyType
|
||||
from .. import Scraper
|
||||
from typing import Any
|
||||
|
||||
|
@ -7,6 +7,7 @@ from typing import Any
|
|||
class RedfinScraper(Scraper):
|
||||
def __init__(self, scraper_input):
|
||||
super().__init__(scraper_input)
|
||||
self.listing_type = scraper_input.listing_type
|
||||
|
||||
def _handle_location(self):
|
||||
url = "https://www.redfin.com/stingray/do/location-autocomplete?v=2&al=1&location={}".format(
|
||||
|
@ -31,8 +32,7 @@ class RedfinScraper(Scraper):
|
|||
|
||||
return target["id"].split("_")[1], get_region_type(target["type"])
|
||||
|
||||
@staticmethod
|
||||
def _parse_home(home: dict, single_search: bool = False) -> Property:
|
||||
def _parse_home(self, home: dict, single_search: bool = False) -> Property:
|
||||
def get_value(key: str) -> Any | None:
|
||||
if key in home and "value" in home[key]:
|
||||
return home[key]["value"]
|
||||
|
@ -53,10 +53,12 @@ class RedfinScraper(Scraper):
|
|||
state=home["state"],
|
||||
zip_code=home["zip"],
|
||||
)
|
||||
|
||||
url = "https://www.redfin.com{}".format(home["url"])
|
||||
property_type = home["propertyType"] if "propertyType" in home else None
|
||||
|
||||
return Property(
|
||||
site_name=self.site_name,
|
||||
listing_type=self.listing_type,
|
||||
address=address,
|
||||
url=url,
|
||||
beds=home["beds"] if "beds" in home else None,
|
||||
|
@ -68,6 +70,8 @@ class RedfinScraper(Scraper):
|
|||
if not single_search
|
||||
else home["yearBuilt"],
|
||||
square_feet=get_value("sqFt"),
|
||||
lot_size=home.get("lotSize", {}).get("value", None),
|
||||
property_type=PropertyType.from_int_code(home.get("propertyType")),
|
||||
price_per_square_foot=get_value("pricePerSqFt"),
|
||||
price=get_value("price"),
|
||||
mls_id=get_value("mlsId"),
|
||||
|
|
|
@ -1,13 +1,11 @@
|
|||
import re
|
||||
import json
|
||||
from ..models import Property, Address, Building, ListingType
|
||||
from ..models import Property, Address, Building, ListingType, PropertyType
|
||||
from ....exceptions import NoResultsFound, PropertyNotFound
|
||||
from .. import Scraper
|
||||
|
||||
|
||||
class ZillowScraper(Scraper):
|
||||
listing_type: ListingType.FOR_SALE
|
||||
|
||||
def __init__(self, scraper_input):
|
||||
super().__init__(scraper_input)
|
||||
self.listing_type = scraper_input.listing_type
|
||||
|
@ -65,15 +63,17 @@ class ZillowScraper(Scraper):
|
|||
agent_name = self._extract_agent_name(home)
|
||||
beds = home["hdpData"]["homeInfo"]["bedrooms"]
|
||||
baths = home["hdpData"]["homeInfo"]["bathrooms"]
|
||||
listing_type = home["hdpData"]["homeInfo"].get("homeType")
|
||||
property_type = home["hdpData"]["homeInfo"].get("homeType")
|
||||
|
||||
return Property(
|
||||
site_name=self.site_name,
|
||||
address=address,
|
||||
agent_name=agent_name,
|
||||
url=url,
|
||||
beds=beds,
|
||||
baths=baths,
|
||||
listing_type=listing_type,
|
||||
listing_type=self.listing_type,
|
||||
property_type=PropertyType(property_type),
|
||||
**price_data,
|
||||
)
|
||||
else:
|
||||
|
@ -83,10 +83,11 @@ class ZillowScraper(Scraper):
|
|||
address = Address(address_one, city, state, zip_code, address_two)
|
||||
|
||||
building_info = self._extract_building_info(home)
|
||||
return Building(address=address, url=url, **building_info)
|
||||
return Building(
|
||||
site_name=self.site_name, address=address, url=url, **building_info
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _get_single_property_page(cls, property_data: dict):
|
||||
def _get_single_property_page(self, property_data: dict):
|
||||
"""
|
||||
This method is used when a user enters the exact location & zillow returns just one property
|
||||
"""
|
||||
|
@ -104,8 +105,11 @@ class ZillowScraper(Scraper):
|
|||
state=address_data["state"],
|
||||
zip_code=address_data["zipcode"],
|
||||
)
|
||||
property_type = property_data.get("homeType", None)
|
||||
print(property_type)
|
||||
|
||||
return Property(
|
||||
site_name=self.site_name,
|
||||
address=address,
|
||||
url=url,
|
||||
beds=property_data.get("bedrooms", None),
|
||||
|
@ -121,7 +125,8 @@ class ZillowScraper(Scraper):
|
|||
"pricePerSquareFoot", None
|
||||
),
|
||||
square_feet=property_data.get("livingArea", None),
|
||||
listing_type=property_data.get("homeType", None),
|
||||
property_type=PropertyType(property_type),
|
||||
listing_type=self.listing_type,
|
||||
)
|
||||
|
||||
def _extract_building_info(self, home: dict) -> dict:
|
||||
|
|
|
@ -142,6 +142,81 @@ files = [
|
|||
{file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "numpy"
|
||||
version = "1.25.2"
|
||||
description = "Fundamental package for array computing in Python"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3"},
|
||||
{file = "numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f"},
|
||||
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187"},
|
||||
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357"},
|
||||
{file = "numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9"},
|
||||
{file = "numpy-1.25.2-cp310-cp310-win32.whl", hash = "sha256:7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044"},
|
||||
{file = "numpy-1.25.2-cp310-cp310-win_amd64.whl", hash = "sha256:834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-win32.whl", hash = "sha256:5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d"},
|
||||
{file = "numpy-1.25.2-cp311-cp311-win_amd64.whl", hash = "sha256:5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-win32.whl", hash = "sha256:2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01"},
|
||||
{file = "numpy-1.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380"},
|
||||
{file = "numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55"},
|
||||
{file = "numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901"},
|
||||
{file = "numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf"},
|
||||
{file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "numpy"
|
||||
version = "1.26.0"
|
||||
description = "Fundamental package for array computing in Python"
|
||||
optional = false
|
||||
python-versions = "<3.13,>=3.9"
|
||||
files = [
|
||||
{file = "numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd"},
|
||||
{file = "numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292"},
|
||||
{file = "numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68"},
|
||||
{file = "numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be"},
|
||||
{file = "numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3"},
|
||||
{file = "numpy-1.26.0-cp310-cp310-win32.whl", hash = "sha256:c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896"},
|
||||
{file = "numpy-1.26.0-cp310-cp310-win_amd64.whl", hash = "sha256:09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-win32.whl", hash = "sha256:c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229"},
|
||||
{file = "numpy-1.26.0-cp311-cp311-win_amd64.whl", hash = "sha256:eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-win32.whl", hash = "sha256:bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95"},
|
||||
{file = "numpy-1.26.0-cp312-cp312-win_amd64.whl", hash = "sha256:ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-win32.whl", hash = "sha256:5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b"},
|
||||
{file = "numpy-1.26.0-cp39-cp39-win_amd64.whl", hash = "sha256:020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2"},
|
||||
{file = "numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369"},
|
||||
{file = "numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8"},
|
||||
{file = "numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299"},
|
||||
{file = "numpy-1.26.0.tar.gz", hash = "sha256:f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "packaging"
|
||||
version = "23.1"
|
||||
|
@ -153,6 +228,67 @@ files = [
|
|||
{file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "pandas"
|
||||
version = "2.1.0"
|
||||
description = "Powerful data structures for data analysis, time series, and statistics"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "pandas-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:40dd20439ff94f1b2ed55b393ecee9cb6f3b08104c2c40b0cb7186a2f0046242"},
|
||||
{file = "pandas-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d4f38e4fedeba580285eaac7ede4f686c6701a9e618d8a857b138a126d067f2f"},
|
||||
{file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e6a0fe052cf27ceb29be9429428b4918f3740e37ff185658f40d8702f0b3e09"},
|
||||
{file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d81e1813191070440d4c7a413cb673052b3b4a984ffd86b8dd468c45742d3cc"},
|
||||
{file = "pandas-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eb20252720b1cc1b7d0b2879ffc7e0542dd568f24d7c4b2347cb035206936421"},
|
||||
{file = "pandas-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:38f74ef7ebc0ffb43b3d633e23d74882bce7e27bfa09607f3c5d3e03ffd9a4a5"},
|
||||
{file = "pandas-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cda72cc8c4761c8f1d97b169661f23a86b16fdb240bdc341173aee17e4d6cedd"},
|
||||
{file = "pandas-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d97daeac0db8c993420b10da4f5f5b39b01fc9ca689a17844e07c0a35ac96b4b"},
|
||||
{file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8c58b1113892e0c8078f006a167cc210a92bdae23322bb4614f2f0b7a4b510f"},
|
||||
{file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:629124923bcf798965b054a540f9ccdfd60f71361255c81fa1ecd94a904b9dd3"},
|
||||
{file = "pandas-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:70cf866af3ab346a10debba8ea78077cf3a8cd14bd5e4bed3d41555a3280041c"},
|
||||
{file = "pandas-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d53c8c1001f6a192ff1de1efe03b31a423d0eee2e9e855e69d004308e046e694"},
|
||||
{file = "pandas-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86f100b3876b8c6d1a2c66207288ead435dc71041ee4aea789e55ef0e06408cb"},
|
||||
{file = "pandas-2.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28f330845ad21c11db51e02d8d69acc9035edfd1116926ff7245c7215db57957"},
|
||||
{file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9a6ccf0963db88f9b12df6720e55f337447aea217f426a22d71f4213a3099a6"},
|
||||
{file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d99e678180bc59b0c9443314297bddce4ad35727a1a2656dbe585fd78710b3b9"},
|
||||
{file = "pandas-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b31da36d376d50a1a492efb18097b9101bdbd8b3fbb3f49006e02d4495d4c644"},
|
||||
{file = "pandas-2.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0164b85937707ec7f70b34a6c3a578dbf0f50787f910f21ca3b26a7fd3363437"},
|
||||
{file = "pandas-2.1.0.tar.gz", hash = "sha256:62c24c7fc59e42b775ce0679cfa7b14a5f9bfb7643cfbe708c960699e05fb918"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
numpy = [
|
||||
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
|
||||
{version = ">=1.23.2", markers = "python_version >= \"3.11\""},
|
||||
]
|
||||
python-dateutil = ">=2.8.2"
|
||||
pytz = ">=2020.1"
|
||||
tzdata = ">=2022.1"
|
||||
|
||||
[package.extras]
|
||||
all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"]
|
||||
aws = ["s3fs (>=2022.05.0)"]
|
||||
clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"]
|
||||
compression = ["zstandard (>=0.17.0)"]
|
||||
computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"]
|
||||
consortium-standard = ["dataframe-api-compat (>=0.1.7)"]
|
||||
excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"]
|
||||
feather = ["pyarrow (>=7.0.0)"]
|
||||
fss = ["fsspec (>=2022.05.0)"]
|
||||
gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"]
|
||||
hdf5 = ["tables (>=3.7.0)"]
|
||||
html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"]
|
||||
mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"]
|
||||
output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"]
|
||||
parquet = ["pyarrow (>=7.0.0)"]
|
||||
performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"]
|
||||
plot = ["matplotlib (>=3.6.1)"]
|
||||
postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"]
|
||||
spss = ["pyreadstat (>=1.1.5)"]
|
||||
sql-other = ["SQLAlchemy (>=1.4.36)"]
|
||||
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"]
|
||||
xml = ["lxml (>=4.8.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "pluggy"
|
||||
version = "1.3.0"
|
||||
|
@ -190,6 +326,31 @@ tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""}
|
|||
[package.extras]
|
||||
testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
version = "2.8.2"
|
||||
description = "Extensions to the standard Python datetime module"
|
||||
optional = false
|
||||
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
|
||||
files = [
|
||||
{file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
|
||||
{file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
six = ">=1.5"
|
||||
|
||||
[[package]]
|
||||
name = "pytz"
|
||||
version = "2023.3.post1"
|
||||
description = "World timezone definitions, modern and historical"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"},
|
||||
{file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "requests"
|
||||
version = "2.31.0"
|
||||
|
@ -211,6 +372,17 @@ urllib3 = ">=1.21.1,<3"
|
|||
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
|
||||
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
||||
|
||||
[[package]]
|
||||
name = "six"
|
||||
version = "1.16.0"
|
||||
description = "Python 2 and 3 compatibility utilities"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||
files = [
|
||||
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
|
||||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.0.1"
|
||||
|
@ -222,6 +394,17 @@ files = [
|
|||
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tzdata"
|
||||
version = "2023.3"
|
||||
description = "Provider of IANA time zone data"
|
||||
optional = false
|
||||
python-versions = ">=2"
|
||||
files = [
|
||||
{file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"},
|
||||
{file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "urllib3"
|
||||
version = "2.0.4"
|
||||
|
@ -242,4 +425,4 @@ zstd = ["zstandard (>=0.18.0)"]
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "bc3567f9501f9e18bf9f53d8b4efe1e7e3fc2d750ceda2fbab165bfa22d49c64"
|
||||
content-hash = "eede625d6d45085e143b0af246cb2ce00cff8579c667be3b63387c8594a5570d"
|
||||
|
|
|
@ -9,6 +9,7 @@ readme = "README.md"
|
|||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
requests = "^2.31.0"
|
||||
pandas = "^2.1.0"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
|
|
Loading…
Reference in New Issue