General repo for work with Berkeley Fire Lab https://pyro.turtlebasket.ml
 
 
 
 
 
 
Go to file
michael dcf78bb88d fix mm^2 issue 2022-11-03 17:36:22 -07:00
examples Added projected area code for images 2022-10-28 04:16:34 +00:00
images-input WIP batch processing 2022-10-21 11:41:37 -07:00
images-output WIP batch processing 2022-10-21 11:41:37 -07:00
matlab-version add matlab version 2022-10-12 12:14:13 -07:00
screenshots interface improvements 2022-10-28 20:49:54 -07:00
static update content 2022-10-31 21:01:37 -07:00
templates fix mm^2 issue 2022-11-03 17:36:22 -07:00
.gitignore cleanups 2022-10-27 10:31:42 -07:00
Makefile cleanups 2022-10-27 10:31:42 -07:00
Pipfile size projections in web interface 2022-10-28 20:11:50 -07:00
Pipfile.lock size projections in web interface 2022-10-28 20:11:50 -07:00
README.md interface improvements 2022-10-28 20:49:54 -07:00
batch-process.py cleanups 2022-10-27 10:31:42 -07:00
config.example.yaml WIP batch processing 2022-10-21 11:41:37 -07:00
flask_frontend.py size projections in web interface 2022-10-28 20:11:50 -07:00
ratio_pyrometry.py temp probability density plot 2022-10-27 12:01:35 -07:00
size_projection.py interface improvements 2022-10-28 20:49:54 -07:00

README.md

Fire Lab Work

Interface Screenshots

Input View Results Temp. Distribution
Labeling Input Labeling Results

Using the web version

Ratio Pyrometry

  1. Go to pyro.turtlebasket.ml.
  2. Select an input image.
  3. Enter your DSLR camera settings.
  4. Click "Generate Heatmap".

Projected Object Area

  1. Go to pyro.turtlebasket.ml.
  2. Navigate to "Object Area".
  3. Select an input image.
  4. Click "Generate Projected Sizes".

Using the local (batch) version

Create a new config file:

cp config.example.yaml config.yaml

...then edit the values to match your DSLR camera settings. Standard config syntax is:

---
# camera settings
iso: 64
i-darkcurrent: 7.7
exposure-time: 0.5
f-stop: 2.4

# pyrometry settings
min-temp: 600
max-temp: 1200
scaling-factor: 0.55

# output settings
smoothing-radius: 2

Install dependencies:

pipenv install

...then load images into images-input. Run:

pipenv run python3 batch-process.py

...and find outputs in images-output.

Developing the web frontend

To serve in production:

gunicorn flask_frontend:app

To autoreload on source file changes:

gunicorn flask_frontend:app --reload