openGJK/example2_mex/main.m

79 lines
4.2 KiB
Matlab

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% ##### # # # %
% #### ##### ###### # # # # # # # %
% # # # # # ## # # # # # %
% # # # # ##### # # # # #### # ### %
% # # ##### # # # # # # # # # # %
% # # # # # ## # # # # # # %
% #### # ###### # # ##### ##### # # %
% %
% This file is part of openGJK. %
% %
% openGJK is free software: you can redistribute it and/or modify %
% it under the terms of the GNU General Public License as published by %
% the Free Software Foundation, either version 3 of the License, or %
% any later version. %
% %
% openGJK is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See The %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with Foobar. If not, see <https://www.gnu.org/licenses/>. %
% %
% openGJK: open-source Gilbert-Johnson-Keerthi algorithm %
% Copyright (C) Mattia Montanari 2018 - 2019 %
% http://iel.eng.ox.ac.uk/?page_id=504 %
% %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% %
% This file runs an example to illustrate how to cll the openGJK library %
% withing Matlab. It assumes that a mex file openGJK is availalbe, see %
% the runme.m script for information on how to compile it. %
% The example computes the minimum distance between two polytopes in 3D, %
% A and B, both defined as a list of points. %
% %
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %
% DEFINE BODY A AS 3xN MATRIX, WHERE N IS THE NUMBER OF VERTICES OF BODY A
A = [ 0.0 2.3 8.1 4.3 2.5 7.1 1.0 3.3 6.0
5.5 1.0 4.0 5.0 1.0 1.0 1.5 0.5 1.4
0.0 -2.0 2.4 2.2 2.3 2.4 0.3 0.3 0.2];
% DEFINE BODY B IN THE OPPOSITE QUADRANT OF BODY A
B = -A;
% COMPUTE MINIMUM DISTANCE AND RETURN VALUE
dist = openGJK( A, B );
fprintf('The minimum distance between A and B is %.2f\n',dist);
% VISUALISE RESULTS
% .. create new figure
figure('units','centimeters', 'WindowStyle','normal', 'color','w',...
'Position',[0 8.5 9 6],'defaultAxesColorOrder',parula,...
'Renderer','opengl')
% .. adjust properties
axis equal tight off; hold all;
% .. display body A
DT = delaunayTriangulation(A');
[K,~] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'EdgeColor','none','FaceColor',[.4 1 .9 ],...
'FaceLighting','flat' )
% .. display body B
DT = delaunayTriangulation(B');
[K,~] = convexHull(DT);
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'EdgeColor','none','FaceColor',[.4 1 .8 ],...
'FaceLighting','flat' )
% .. represent the computed distance as a sphere
[x,y,z] = sphere(100);
surf(x.*dist/2,y.*dist/2,z.*dist/2,'facecolor',[.9 .9 .9],...
'EdgeColor','none','FaceLighting','flat','SpecularColorReflectance',0,...
'SpecularStrength',1,'SpecularExponent',10,'facealpha',.7)
% ... adjust point of view
view(42,21)
% ... add light
light('Position',[5 -10 20],'Style','local');