commit
b6abcc5714
|
@ -0,0 +1,19 @@
|
||||||
|
name: C/C++ CI
|
||||||
|
|
||||||
|
on: [push]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Install Eigen and Pybind11
|
||||||
|
run: sudo apt update && sudo apt install -y libeigen3-dev && pip3 install pybind11 pytest numpy scipy
|
||||||
|
- name: Compile
|
||||||
|
run: export CPATH=/usr/include/eigen3 && cd python && source build.sh
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
cd python
|
||||||
|
python3 -m pytest -s -v test.py
|
|
@ -0,0 +1,2 @@
|
||||||
|
#!/bin/bash
|
||||||
|
g++ -Wall -fPIC -shared `python3 -m pybind11 --includes` -I../include -I/usr/include/eigen3 pyopenGJK.cpp ../src/openGJK.c -o opengjkc`python3-config --extension-suffix`
|
|
@ -0,0 +1,31 @@
|
||||||
|
#include "openGJK/openGJK.h"
|
||||||
|
#include <pybind11/eigen.h>
|
||||||
|
#include <pybind11/pybind11.h>
|
||||||
|
namespace py = pybind11;
|
||||||
|
|
||||||
|
PYBIND11_MODULE(opengjkc, m)
|
||||||
|
{
|
||||||
|
m.def("gjk",
|
||||||
|
[](Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor>& arr1,
|
||||||
|
Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor>& arr2)
|
||||||
|
-> double {
|
||||||
|
struct simplex s;
|
||||||
|
struct bd bd1;
|
||||||
|
struct bd bd2;
|
||||||
|
bd1.numpoints = arr1.rows();
|
||||||
|
std::vector<double*> arr1_rows(arr1.rows());
|
||||||
|
for (int i = 0; i < arr1.rows(); ++i)
|
||||||
|
arr1_rows[i] = arr1.row(i).data();
|
||||||
|
bd1.coord = arr1_rows.data();
|
||||||
|
|
||||||
|
bd2.numpoints = arr2.rows();
|
||||||
|
std::vector<double*> arr2_rows(arr2.rows());
|
||||||
|
for (int i = 0; i < arr2.rows(); ++i)
|
||||||
|
arr2_rows[i] = arr2.row(i).data();
|
||||||
|
bd2.coord = arr2_rows.data();
|
||||||
|
|
||||||
|
double a = gjk(bd1, bd2, &s);
|
||||||
|
|
||||||
|
return a;
|
||||||
|
});
|
||||||
|
}
|
|
@ -0,0 +1,181 @@
|
||||||
|
import opengjkc as opengjk
|
||||||
|
from scipy.spatial.transform import Rotation as R
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
def distance_point_to_line_3D(P1, P2, point):
|
||||||
|
"""
|
||||||
|
distance from point to line
|
||||||
|
"""
|
||||||
|
return np.linalg.norm(np.cross(P2-P1, P1-point))/np.linalg.norm(P2-P1)
|
||||||
|
|
||||||
|
|
||||||
|
def distance_point_to_plane_3D(P1, P2, P3, point):
|
||||||
|
"""
|
||||||
|
Distance from point to plane
|
||||||
|
"""
|
||||||
|
return np.abs(np.dot(np.cross(P2-P1, P3-P1) /
|
||||||
|
np.linalg.norm(np.cross(P2-P1, P3-P1)), point-P2))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0, -2])
|
||||||
|
def test_line_point_distance(delta):
|
||||||
|
line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=np.float64)
|
||||||
|
point_on_line = line[0] + 0.27*(line[1]-line[0])
|
||||||
|
normal = np.cross(line[0], line[1])
|
||||||
|
point = point_on_line + delta * normal
|
||||||
|
distance = opengjk.gjk(line, point)
|
||||||
|
actual_distance = distance_point_to_line_3D(
|
||||||
|
line[0], line[1], point)
|
||||||
|
print(distance, actual_distance)
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0])
|
||||||
|
def test_line_line_distance(delta):
|
||||||
|
line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=np.float64)
|
||||||
|
point_on_line = line[0] + 0.38*(line[1]-line[0])
|
||||||
|
normal = np.cross(line[0], line[1])
|
||||||
|
point = point_on_line + delta * normal
|
||||||
|
line_2 = np.array([point, [2, 5, 6]], dtype=np.float64)
|
||||||
|
distance = opengjk.gjk(line, line_2)
|
||||||
|
actual_distance = distance_point_to_line_3D(
|
||||||
|
line[0], line[1], line_2[0])
|
||||||
|
print(distance, actual_distance)
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [0.1**(3*i) for i in range(6)])
|
||||||
|
def test_tri_distance(delta):
|
||||||
|
tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=np.float64)
|
||||||
|
tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [
|
||||||
|
1, 1, 0]], dtype=np.float64)
|
||||||
|
P1 = tri_1[2]
|
||||||
|
P2 = tri_1[1]
|
||||||
|
point = tri_2[0]
|
||||||
|
actual_distance = distance_point_to_line_3D(P1, P2, point)
|
||||||
|
distance = opengjk.gjk(tri_1, tri_2)
|
||||||
|
print("Computed distance ", distance, "Actual distance ", actual_distance)
|
||||||
|
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [0.1*0.1**(3*i) for i in range(6)])
|
||||||
|
def test_quad_distance2d(delta):
|
||||||
|
quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
|
||||||
|
[1, 1, 0]], dtype=np.float64)
|
||||||
|
quad_2 = np.array([[0, 1+delta, 0], [2, 2, 0],
|
||||||
|
[2, 4, 0], [4, 4, 0]], dtype=np.float64)
|
||||||
|
P1 = quad_1[2]
|
||||||
|
P2 = quad_1[3]
|
||||||
|
point = quad_2[0]
|
||||||
|
actual_distance = distance_point_to_line_3D(P1, P2, point)
|
||||||
|
distance = opengjk.gjk(quad_1, quad_2)
|
||||||
|
print("Computed distance ", distance, "Actual distance ", actual_distance)
|
||||||
|
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [1*0.5**(3*i) for i in range(7)])
|
||||||
|
def test_tetra_distance_3d(delta):
|
||||||
|
tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3],
|
||||||
|
[0, 0, 1]], dtype=np.float64)
|
||||||
|
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
|
||||||
|
[0.5, 0.3, -delta]], dtype=np.float64)
|
||||||
|
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
|
||||||
|
tetra_1[2], tetra_2[3])
|
||||||
|
distance = opengjk.gjk(tetra_1, tetra_2)
|
||||||
|
print("Computed distance ", distance, "Actual distance ", actual_distance)
|
||||||
|
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [(-1)**i*np.sqrt(2)*0.1**(3*i)
|
||||||
|
for i in range(6)])
|
||||||
|
def test_tetra_collision_3d(delta):
|
||||||
|
tetra_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
|
||||||
|
[0, 0, 1]], dtype=np.float64)
|
||||||
|
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
|
||||||
|
[0.5, 0.3, -delta]], dtype=np.float64)
|
||||||
|
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
|
||||||
|
tetra_1[2], tetra_2[3])
|
||||||
|
distance = opengjk.gjk(tetra_1, tetra_2)
|
||||||
|
|
||||||
|
if delta < 0:
|
||||||
|
assert(np.isclose(distance, 0, atol=1e-15))
|
||||||
|
else:
|
||||||
|
print("Computed distance ", distance,
|
||||||
|
"Actual distance ", actual_distance)
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("delta", [0, -0.1, -0.49, -0.51])
|
||||||
|
def test_hex_collision_3d(delta):
|
||||||
|
hex_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
|
||||||
|
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
|
||||||
|
dtype=np.float64)
|
||||||
|
P0 = np.array([1.5+delta, 1.5+delta, 0.5], dtype=np.float64)
|
||||||
|
P1 = np.array([2, 2, 1], dtype=np.float64)
|
||||||
|
P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
|
||||||
|
P3 = P1 + P2 - P0
|
||||||
|
quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
|
||||||
|
n = (np.cross(quad_1[1]-quad_1[0], quad_1[2]-quad_1[0]) /
|
||||||
|
np.linalg.norm(
|
||||||
|
np.cross(quad_1[1]-quad_1[0],
|
||||||
|
quad_1[2]-quad_1[0])))
|
||||||
|
quad_2 = quad_1 + n
|
||||||
|
hex_2 = np.zeros((8, 3), dtype=np.float64)
|
||||||
|
hex_2[:4, :] = quad_1
|
||||||
|
hex_2[4:, :] = quad_2
|
||||||
|
actual_distance = np.linalg.norm(
|
||||||
|
np.array([1, 1, P0[2]], dtype=np.float64)-hex_2[0])
|
||||||
|
distance = opengjk.gjk(hex_1, hex_2)
|
||||||
|
|
||||||
|
if P0[0] < 1:
|
||||||
|
assert(np.isclose(distance, 0, atol=1e-15))
|
||||||
|
else:
|
||||||
|
print("Computed distance ", distance,
|
||||||
|
"Actual distance ", actual_distance)
|
||||||
|
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("c0", [0, 1, 2, 3])
|
||||||
|
@pytest.mark.parametrize("c1", [0, 1, 2, 3])
|
||||||
|
def test_cube_distance(c0, c1):
|
||||||
|
cubes = [np.array([[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
|
||||||
|
[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]],
|
||||||
|
dtype=np.float64)]
|
||||||
|
|
||||||
|
r = R.from_euler('z', 45, degrees=True)
|
||||||
|
cubes.append(r.apply(cubes[0]))
|
||||||
|
r = R.from_euler('y', np.arctan2(1.0, np.sqrt(2)))
|
||||||
|
cubes.append(r.apply(cubes[1]))
|
||||||
|
r = R.from_euler('y', 45, degrees=True)
|
||||||
|
cubes.append(r.apply(cubes[0]))
|
||||||
|
|
||||||
|
dx = cubes[c0][:,0].max() - cubes[c1][:,0].min()
|
||||||
|
cube0 = cubes[c0]
|
||||||
|
|
||||||
|
for delta in [1e8, 1.0, 1e-4, 1e-8, 1e-12]:
|
||||||
|
cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
|
||||||
|
distance = opengjk.gjk(cube0, cube1)
|
||||||
|
print(distance, delta)
|
||||||
|
assert(np.isclose(distance, delta))
|
||||||
|
|
||||||
|
def test_random_objects():
|
||||||
|
for i in range(1, 8):
|
||||||
|
for j in range(1, 8):
|
||||||
|
for k in range(1000):
|
||||||
|
arr1 = np.random.rand(i, 3)
|
||||||
|
arr2 = np.random.rand(j, 3)
|
||||||
|
opengjk.gjk(arr1, arr2)
|
||||||
|
|
||||||
|
|
||||||
|
def test_large_random_objects():
|
||||||
|
for i in range(1, 8):
|
||||||
|
for j in range(1, 8):
|
||||||
|
for k in range(1000):
|
||||||
|
arr1 = 10000.0*np.random.rand(i, 3)
|
||||||
|
arr2 = 10000.0*np.random.rand(j, 3)
|
||||||
|
opengjk.gjk(arr1, arr2)
|
Loading…
Reference in New Issue