Limit legacy diff

fixes-turtlebasket
Mattia Montanari 2023-04-25 14:01:36 +02:00
parent ad2d6026b8
commit 82c625bbc8
1 changed files with 44 additions and 71 deletions

111
openGJK.c
View File

@ -168,12 +168,11 @@ crossProduct(const gkFloat* restrict a, const gkFloat* restrict b, gkFloat* rest
inline static void inline static void
projectOnLine(const gkFloat* restrict p, const gkFloat* restrict q, gkFloat* restrict v) { projectOnLine(const gkFloat* restrict p, const gkFloat* restrict q, gkFloat* restrict v) {
gkFloat pq[3]; gkFloat pq[3];
gkFloat tmp;
pq[0] = p[0] - q[0]; pq[0] = p[0] - q[0];
pq[1] = p[1] - q[1]; pq[1] = p[1] - q[1];
pq[2] = p[2] - q[2]; pq[2] = p[2] - q[2];
tmp = dotProduct(p, pq) / dotProduct(pq, pq); const gkFloat tmp = dotProduct(p, pq) / dotProduct(pq, pq);
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
v[i] = p[i] - pq[i] * tmp; v[i] = p[i] - pq[i] * tmp;
@ -183,7 +182,6 @@ projectOnLine(const gkFloat* restrict p, const gkFloat* restrict q, gkFloat* res
inline static void inline static void
projectOnPlane(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restrict r, gkFloat* restrict v) { projectOnPlane(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restrict r, gkFloat* restrict v) {
gkFloat n[3], pq[3], pr[3]; gkFloat n[3], pq[3], pr[3];
gkFloat tmp;
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
pq[i] = p[i] - q[i]; pq[i] = p[i] - q[i];
@ -193,7 +191,7 @@ projectOnPlane(const gkFloat* restrict p, const gkFloat* restrict q, const gkFlo
} }
crossProduct(pq, pr, n); crossProduct(pq, pr, n);
tmp = dotProduct(n, p) / dotProduct(n, n); const gkFloat tmp = dotProduct(n, p) / dotProduct(n, n);
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
v[i] = n[i] * tmp; v[i] = n[i] * tmp;
@ -218,7 +216,6 @@ inline static int
hff2(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restrict r) { hff2(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restrict r) {
gkFloat ntmp[3]; gkFloat ntmp[3];
gkFloat n[3], pq[3], pr[3]; gkFloat n[3], pq[3], pr[3];
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
pq[i] = q[i] - p[i]; pq[i] = q[i] - p[i];
@ -230,21 +227,12 @@ hff2(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restri
crossProduct(pq, pr, ntmp); crossProduct(pq, pr, ntmp);
crossProduct(pq, ntmp, n); crossProduct(pq, ntmp, n);
for (int i = 0; i < 3; i++) { return dotProduct(p, n) < 0; // Discard r if true
tmp = tmp + (p[i] * n[i]);
}
if (tmp < 0) {
return 1; // Discard r
}
return 0;
} }
inline static int inline static int
hff3(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restrict r) { hff3(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restrict r) {
gkFloat n[3], pq[3], pr[3]; gkFloat n[3], pq[3], pr[3];
gkFloat tmp = 0;
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
pq[i] = q[i] - p[i]; pq[i] = q[i] - p[i];
@ -254,16 +242,7 @@ hff3(const gkFloat* restrict p, const gkFloat* restrict q, const gkFloat* restri
} }
crossProduct(pq, pr, n); crossProduct(pq, pr, n);
return dotProduct(p, n) <= 0; // discard s if true
for (int i = 0; i < 3; i++) {
tmp = tmp + (p[i] * n[i]);
}
if (tmp > 0) {
return 0; // discard s
}
return 1;
} }
inline static void inline static void
@ -282,17 +261,17 @@ S1D(gkSimplex* s, gkFloat* v) {
inline static void inline static void
S2D(gkSimplex* s, gkFloat* v) { S2D(gkSimplex* s, gkFloat* v) {
gkFloat* s1p = s->vrtx[2]; const gkFloat* s1p = s->vrtx[2];
gkFloat* s2p = s->vrtx[1]; const gkFloat* s2p = s->vrtx[1];
gkFloat* s3p = s->vrtx[0]; const gkFloat* s3p = s->vrtx[0];
int hff1f_s12 = hff1(s1p, s2p); const int hff1f_s12 = hff1(s1p, s2p);
int hff1f_s13 = hff1(s1p, s3p); const int hff1f_s13 = hff1(s1p, s3p);
if (hff1f_s12) { if (hff1f_s12) {
int hff2f_23 = !hff2(s1p, s2p, s3p); const int hff2f_23 = !hff2(s1p, s2p, s3p);
if (hff2f_23) { if (hff2f_23) {
if (hff1f_s13) { if (hff1f_s13) {
int hff2f_32 = !hff2(s1p, s3p, s2p); const int hff2f_32 = !hff2(s1p, s3p, s2p);
if (hff2f_32) { if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update c
return; // Return V{1,2,3} return; // Return V{1,2,3}
@ -311,7 +290,7 @@ S2D(gkSimplex* s, gkFloat* v) {
return; // Return V{1,2} return; // Return V{1,2}
} }
} else if (hff1f_s13) { } else if (hff1f_s13) {
int hff2f_32 = !hff2(s1p, s3p, s2p); const int hff2f_32 = !hff2(s1p, s3p, s2p);
if (hff2f_32) { if (hff2f_32) {
projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update v projectOnPlane(s1p, s2p, s3p, v); // Update s, no need to update v
return; // Return V{1,2,3} return; // Return V{1,2,3}
@ -328,15 +307,15 @@ S2D(gkSimplex* s, gkFloat* v) {
inline static void inline static void
S3D(gkSimplex* s, gkFloat* v) { S3D(gkSimplex* s, gkFloat* v) {
gkFloat s1[3], s2[3], s3[3], s4[3], s1s2[3], s1s3[3], s1s4[3]; gkFloat s1s2[3], s1s3[3], s1s4[3];
gkFloat si[3], sj[3], sk[3]; // gkFloat si[3], sj[3], sk[3];
int testLineThree, testLineFour, testPlaneTwo, testPlaneThree, testPlaneFour, dotTotal; int testLineThree, testLineFour, testPlaneTwo, testPlaneThree, testPlaneFour, dotTotal;
int i, j, k, t; int i, j, k, t;
getvrtx(s1, 3); const gkFloat* s1 = s->vrtx[3];
getvrtx(s2, 2); const gkFloat* s2 = s->vrtx[2];
getvrtx(s3, 1); const gkFloat* s3 = s->vrtx[1];
getvrtx(s4, 0); const gkFloat* s4 = s->vrtx[0];
calculateEdgeVector(s1s2, s2); calculateEdgeVector(s1s2, s2);
calculateEdgeVector(s1s3, s3); calculateEdgeVector(s1s3, s3);
calculateEdgeVector(s1s4, s4); calculateEdgeVector(s1s4, s4);
@ -354,13 +333,8 @@ S3D(gkSimplex* s, gkFloat* v) {
return; return;
} }
gkFloat det134 = determinant(s1s3, s1s4, s1s2); const gkFloat det134 = determinant(s1s3, s1s4, s1s2);
int sss; const int sss = (det134 <= 0);
if (det134 > 0) {
sss = 0;
} else {
sss = 1;
}
testPlaneTwo = hff3(s1, s3, s4) - sss; testPlaneTwo = hff3(s1, s3, s4) - sss;
testPlaneTwo = testPlaneTwo * testPlaneTwo; testPlaneTwo = testPlaneTwo * testPlaneTwo;
@ -426,9 +400,9 @@ S3D(gkSimplex* s, gkFloat* v) {
j = 1; j = 1;
} }
getvrtx(si, i); const gkFloat* si = s->vrtx[i];
getvrtx(sj, j); const gkFloat* sj = s->vrtx[j];
getvrtx(sk, k); const gkFloat* sk = s->vrtx[k];
if (dotTotal == 1) { if (dotTotal == 1) {
if (hff1_tests[k]) { if (hff1_tests[k]) {
@ -562,9 +536,10 @@ S3D(gkSimplex* s, gkFloat* v) {
i = 2; // s2 i = 2; // s2
j = 1; j = 1;
} }
getvrtx(si, i);
getvrtx(sj, j); const gkFloat* si = s->vrtx[i];
getvrtx(sk, k); const gkFloat* sj = s->vrtx[j];
const gkFloat* sk = s->vrtx[k];
if (!hff2(s1, si, sj)) { if (!hff2(s1, si, sj)) {
select_1ij(); select_1ij();
@ -592,9 +567,10 @@ S3D(gkSimplex* s, gkFloat* v) {
i = 2; // s2 i = 2; // s2
j = 1; j = 1;
} }
getvrtx(si, i);
getvrtx(sj, j); const gkFloat* si = s->vrtx[i];
getvrtx(sk, k); const gkFloat* sj = s->vrtx[j];
const gkFloat* sk = s->vrtx[k];
if (!hff2(s1, sj, sk)) { if (!hff2(s1, sj, sk)) {
if (!hff2(s1, sk, sj)) { if (!hff2(s1, sk, sj)) {
@ -664,21 +640,20 @@ subalgorithm(gkSimplex* s, gkFloat* v) {
gkFloat gkFloat
compute_minimum_distance(gkPolytope bd1, gkPolytope bd2, gkSimplex* restrict s) { compute_minimum_distance(gkPolytope bd1, gkPolytope bd2, gkSimplex* restrict s) {
int k = 0; /**< Iteration counter */ unsigned int k = 0; /**< Iteration counter */
int i; /**< General purpose counter */ unsigned int i; /**< General purpose counter */
int mk = 25; /**< Maximum number of iterations of the GJK algorithm */ const int mk = 25; /**< Maximum number of iterations of the GJK algorithm */
int absTestin;
gkFloat norm2Wmax = 0;
gkFloat tesnorm;
gkFloat v[3]; /**< Search direction */ gkFloat v[3]; /**< Search direction */
gkFloat vminus[3]; /**< Search direction * -1 */ gkFloat vminus[3]; /**< Search direction * -1 */
gkFloat w[3]; /**< Vertex on CSO boundary given by the difference of support gkFloat w[3]; /**< Vertex on CSO boundary given by the difference of support
functions on both bodies */ functions on both bodies */
gkFloat eps_rel = eps_rel22; /**< Tolerance on relative */ const gkFloat eps_rel = eps_rel22; /**< Tolerance on relative */
gkFloat eps_rel2 = eps_rel * eps_rel; const gkFloat eps_rel2 = eps_rel * eps_rel;
gkFloat eps_tot = eps_tot22; const gkFloat eps_tot = eps_tot22;
gkFloat exeedtol_rel; /**< Test for 1st exit condition */ gkFloat exeedtol_rel; /**< Test for 1st exit condition */
int nullV = 0; int absTestin;
gkFloat norm2Wmax = 0;
gkFloat tesnorm;
/* Initialise search direction */ /* Initialise search direction */
v[0] = bd1.coord[0][0] - bd2.coord[0][0]; v[0] = bd1.coord[0][0] - bd2.coord[0][0];
@ -722,8 +697,7 @@ compute_minimum_distance(gkPolytope bd1, gkPolytope bd2, gkSimplex* restrict s)
break; break;
} }
nullV = norm2(v) < eps_rel2; if (norm2(v) < eps_rel2) { // it a null V
if (nullV) {
break; break;
} }
@ -753,8 +727,7 @@ compute_minimum_distance(gkPolytope bd1, gkPolytope bd2, gkSimplex* restrict s)
} while ((s->nvrtx != 4) && (k != mk)); } while ((s->nvrtx != 4) && (k != mk));
if (k == mk) { if (k == mk) {
mexPrintf("\n * * * * * * * * * * * * MAXIMUM ITERATION NUMBER REACHED!!! " mexPrintf("\n MAXIMUM ITERATION NUMBER REACHED! \n");
" * * * * * * * * * * * * * * \n");
} }
return sqrt(norm2(v)); return sqrt(norm2(v));