Add pybind11 interface
parent
73a5aae3cd
commit
443f63120a
|
@ -0,0 +1,2 @@
|
|||
#!/bin/bash
|
||||
g++ -Wall -fPIC -shared `python3 -m pybind11 --includes` -I../include -I/usr/include/eigen3 pyopenGJK.cpp ../src/openGJK.c -o opengjkc`python3-config --extension-suffix`
|
|
@ -0,0 +1,31 @@
|
|||
#include "openGJK/openGJK.h"
|
||||
#include <pybind11/eigen.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_MODULE(opengjkc, m)
|
||||
{
|
||||
m.def("gjk",
|
||||
[](Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor>& arr1,
|
||||
Eigen::Array<double, Eigen::Dynamic, 3, Eigen::RowMajor>& arr2)
|
||||
-> double {
|
||||
struct simplex s;
|
||||
struct bd bd1;
|
||||
struct bd bd2;
|
||||
bd1.numpoints = arr1.rows();
|
||||
std::vector<double*> arr1_rows(arr1.rows());
|
||||
for (int i = 0; i < arr1.rows(); ++i)
|
||||
arr1_rows[i] = arr1.row(i).data();
|
||||
bd1.coord = arr1_rows.data();
|
||||
|
||||
bd2.numpoints = arr2.rows();
|
||||
std::vector<double*> arr2_rows(arr2.rows());
|
||||
for (int i = 0; i < arr2.rows(); ++i)
|
||||
arr2_rows[i] = arr2.row(i).data();
|
||||
bd2.coord = arr2_rows.data();
|
||||
|
||||
double a = gjk(bd1, bd2, &s);
|
||||
|
||||
return a;
|
||||
});
|
||||
}
|
|
@ -0,0 +1,181 @@
|
|||
import opengjkc as opengjk
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
def distance_point_to_line_3D(P1, P2, point):
|
||||
"""
|
||||
distance from point to line
|
||||
"""
|
||||
return np.linalg.norm(np.cross(P2-P1, P1-point))/np.linalg.norm(P2-P1)
|
||||
|
||||
|
||||
def distance_point_to_plane_3D(P1, P2, P3, point):
|
||||
"""
|
||||
Distance from point to plane
|
||||
"""
|
||||
return np.abs(np.dot(np.cross(P2-P1, P3-P1) /
|
||||
np.linalg.norm(np.cross(P2-P1, P3-P1)), point-P2))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0, -2])
|
||||
def test_line_point_distance(delta):
|
||||
line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=np.float64)
|
||||
point_on_line = line[0] + 0.27*(line[1]-line[0])
|
||||
normal = np.cross(line[0], line[1])
|
||||
point = point_on_line + delta * normal
|
||||
distance = opengjk.gjk(line, point)
|
||||
actual_distance = distance_point_to_line_3D(
|
||||
line[0], line[1], point)
|
||||
print(distance, actual_distance)
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0])
|
||||
def test_line_line_distance(delta):
|
||||
line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=np.float64)
|
||||
point_on_line = line[0] + 0.38*(line[1]-line[0])
|
||||
normal = np.cross(line[0], line[1])
|
||||
point = point_on_line + delta * normal
|
||||
line_2 = np.array([point, [2, 5, 6]], dtype=np.float64)
|
||||
distance = opengjk.gjk(line, line_2)
|
||||
actual_distance = distance_point_to_line_3D(
|
||||
line[0], line[1], line_2[0])
|
||||
print(distance, actual_distance)
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [0.1**(3*i) for i in range(6)])
|
||||
def test_tri_distance(delta):
|
||||
tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=np.float64)
|
||||
tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [
|
||||
1, 1, 0]], dtype=np.float64)
|
||||
P1 = tri_1[2]
|
||||
P2 = tri_1[1]
|
||||
point = tri_2[0]
|
||||
actual_distance = distance_point_to_line_3D(P1, P2, point)
|
||||
distance = opengjk.gjk(tri_1, tri_2)
|
||||
print("Computed distance ", distance, "Actual distance ", actual_distance)
|
||||
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [0.1*0.1**(3*i) for i in range(6)])
|
||||
def test_quad_distance2d(delta):
|
||||
quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
|
||||
[1, 1, 0]], dtype=np.float64)
|
||||
quad_2 = np.array([[0, 1+delta, 0], [2, 2, 0],
|
||||
[2, 4, 0], [4, 4, 0]], dtype=np.float64)
|
||||
P1 = quad_1[2]
|
||||
P2 = quad_1[3]
|
||||
point = quad_2[0]
|
||||
actual_distance = distance_point_to_line_3D(P1, P2, point)
|
||||
distance = opengjk.gjk(quad_1, quad_2)
|
||||
print("Computed distance ", distance, "Actual distance ", actual_distance)
|
||||
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [1*0.5**(3*i) for i in range(7)])
|
||||
def test_tetra_distance_3d(delta):
|
||||
tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3],
|
||||
[0, 0, 1]], dtype=np.float64)
|
||||
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
|
||||
[0.5, 0.3, -delta]], dtype=np.float64)
|
||||
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
|
||||
tetra_1[2], tetra_2[3])
|
||||
distance = opengjk.gjk(tetra_1, tetra_2)
|
||||
print("Computed distance ", distance, "Actual distance ", actual_distance)
|
||||
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [(-1)**i*np.sqrt(2)*0.1**(3*i)
|
||||
for i in range(6)])
|
||||
def test_tetra_collision_3d(delta):
|
||||
tetra_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
|
||||
[0, 0, 1]], dtype=np.float64)
|
||||
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
|
||||
[0.5, 0.3, -delta]], dtype=np.float64)
|
||||
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
|
||||
tetra_1[2], tetra_2[3])
|
||||
distance = opengjk.gjk(tetra_1, tetra_2)
|
||||
|
||||
if delta < 0:
|
||||
assert(np.isclose(distance, 0, atol=1e-15))
|
||||
else:
|
||||
print("Computed distance ", distance,
|
||||
"Actual distance ", actual_distance)
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("delta", [0, -0.1, -0.49, -0.51])
|
||||
def test_hex_collision_3d(delta):
|
||||
hex_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
|
||||
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
|
||||
dtype=np.float64)
|
||||
P0 = np.array([1.5+delta, 1.5+delta, 0.5], dtype=np.float64)
|
||||
P1 = np.array([2, 2, 1], dtype=np.float64)
|
||||
P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
|
||||
P3 = P1 + P2 - P0
|
||||
quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
|
||||
n = (np.cross(quad_1[1]-quad_1[0], quad_1[2]-quad_1[0]) /
|
||||
np.linalg.norm(
|
||||
np.cross(quad_1[1]-quad_1[0],
|
||||
quad_1[2]-quad_1[0])))
|
||||
quad_2 = quad_1 + n
|
||||
hex_2 = np.zeros((8, 3), dtype=np.float64)
|
||||
hex_2[:4, :] = quad_1
|
||||
hex_2[4:, :] = quad_2
|
||||
actual_distance = np.linalg.norm(
|
||||
np.array([1, 1, P0[2]], dtype=np.float64)-hex_2[0])
|
||||
distance = opengjk.gjk(hex_1, hex_2)
|
||||
|
||||
if P0[0] < 1:
|
||||
assert(np.isclose(distance, 0, atol=1e-15))
|
||||
else:
|
||||
print("Computed distance ", distance,
|
||||
"Actual distance ", actual_distance)
|
||||
assert(np.isclose(distance, actual_distance, atol=1e-15))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("c0", [0, 1, 2, 3])
|
||||
@pytest.mark.parametrize("c1", [0, 1, 2, 3])
|
||||
def test_cube_distance(c0, c1):
|
||||
cubes = [np.array([[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
|
||||
[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]],
|
||||
dtype=np.float64)]
|
||||
|
||||
r = R.from_euler('z', 45, degrees=True)
|
||||
cubes.append(r.apply(cubes[0]))
|
||||
r = R.from_euler('y', np.arctan2(1.0, np.sqrt(2)))
|
||||
cubes.append(r.apply(cubes[1]))
|
||||
r = R.from_euler('y', 45, degrees=True)
|
||||
cubes.append(r.apply(cubes[0]))
|
||||
|
||||
dx = cubes[c0][:,0].max() - cubes[c1][:,0].min()
|
||||
cube0 = cubes[c0]
|
||||
|
||||
for delta in [1e8, 1.0, 1e-4, 1e-8, 1e-12]:
|
||||
cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
|
||||
distance = opengjk.gjk(cube0, cube1)
|
||||
print(distance, delta)
|
||||
assert(np.isclose(distance, delta))
|
||||
|
||||
def test_random_objects():
|
||||
for i in range(1, 8):
|
||||
for j in range(1, 8):
|
||||
for k in range(1000):
|
||||
arr1 = np.random.rand(i, 3)
|
||||
arr2 = np.random.rand(j, 3)
|
||||
opengjk.gjk(arr1, arr2)
|
||||
|
||||
|
||||
def test_large_random_objects():
|
||||
for i in range(1, 8):
|
||||
for j in range(1, 8):
|
||||
for k in range(1000):
|
||||
arr1 = 10000.0*np.random.rand(i, 3)
|
||||
arr2 = 10000.0*np.random.rand(j, 3)
|
||||
opengjk.gjk(arr1, arr2)
|
Loading…
Reference in New Issue