2022-07-09 14:10:45 -07:00
|
|
|
% _____ _ _ __ %
|
|
|
|
% / ____| | | |/ / %
|
|
|
|
% ___ _ __ ___ _ __ | | __ | | ' / %
|
|
|
|
% / _ \| '_ \ / _ \ '_ \| | |_ |_ | | < %
|
|
|
|
% | (_) | |_) | __/ | | | |__| | |__| | . \ %
|
|
|
|
% \___/| .__/ \___|_| |_|\_____|\____/|_|\_\ %
|
|
|
|
% | | %
|
|
|
|
% |_| %
|
|
|
|
% %
|
|
|
|
% Copyright 2022 Mattia Montanari, University of Oxford %
|
|
|
|
% %
|
|
|
|
% This program is free software: you can redistribute it and/or modify it under %
|
|
|
|
% the terms of the GNU General Public License as published by the Free Software %
|
|
|
|
% Foundation, either version 3 of the License. You should have received a copy %
|
|
|
|
% of the GNU General Public License along with this program. If not, visit %
|
|
|
|
% %
|
|
|
|
% https://www.gnu.org/licenses/ %
|
|
|
|
% %
|
|
|
|
% This program is distributed in the hope that it will be useful, but WITHOUT %
|
|
|
|
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS %
|
|
|
|
% FOR A PARTICULAR PURPOSE. See GNU General Public License for details. %
|
|
|
|
|
|
|
|
% DEFINE BODY A AS 3xN MATRIX, WHERE N IS THE NUMBER OF VERTICES OF BODY A
|
|
|
|
A = [ 0.0 2.3 8.1 4.3 2.5 7.1 1.0 3.3 6.0
|
|
|
|
5.5 1.0 4.0 5.0 1.0 1.0 1.5 0.5 1.4
|
|
|
|
0.0 -2.0 2.4 2.2 2.3 2.4 0.3 0.3 0.2];
|
|
|
|
|
|
|
|
% DEFINE BODY B IN THE OPPOSITE QUADRANT OF BODY A
|
|
|
|
B = -A;
|
|
|
|
|
|
|
|
% COMPUTE MINIMUM DISTANCE AND RETURN VALUE
|
|
|
|
dist = openGJK( A, B );
|
|
|
|
fprintf('The minimum distance between A and B is %.2f\n',dist);
|
|
|
|
|
2023-02-14 06:05:20 -08:00
|
|
|
% VISUALISE RESULTS ONLY IN MATLAB
|
|
|
|
if(exist('OCTAVE_VERSION', 'builtin') == 0)
|
|
|
|
% .. create new figure
|
|
|
|
figure('units','centimeters', 'WindowStyle','normal', 'color','w',...
|
|
|
|
'Position',[0 8.5 9 6],'defaultAxesColorOrder',parula,...
|
|
|
|
'Renderer','opengl')
|
|
|
|
% .. adjust properties
|
|
|
|
axis equal tight off; hold all;
|
|
|
|
% .. display body A
|
|
|
|
DT = delaunayTriangulation(A');
|
|
|
|
[K,~] = convexHull(DT);
|
|
|
|
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
|
|
|
|
'EdgeColor','none','FaceColor',[.4 1 .9 ],...
|
|
|
|
'FaceLighting','flat' )
|
|
|
|
% .. display body B
|
|
|
|
DT = delaunayTriangulation(B');
|
|
|
|
[K,~] = convexHull(DT);
|
|
|
|
trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
|
|
|
|
'EdgeColor','none','FaceColor',[.4 1 .8 ],...
|
|
|
|
'FaceLighting','flat' )
|
|
|
|
% .. represent the computed distance as a sphere
|
|
|
|
[x,y,z] = sphere(100);
|
|
|
|
surf(x.*dist/2,y.*dist/2,z.*dist/2,'facecolor',[.9 .9 .9],...
|
|
|
|
'EdgeColor','none','FaceLighting','flat','SpecularColorReflectance',0,...
|
|
|
|
'SpecularStrength',1,'SpecularExponent',10,'facealpha',.7)
|
|
|
|
% ... adjust point of view
|
|
|
|
view(42,21)
|
|
|
|
% ... add light
|
|
|
|
light('Position',[5 -10 20],'Style','local');
|
|
|
|
end
|