diff --git a/Telemetry/visualize_log.py b/Telemetry/visualize_log.py new file mode 100644 index 0000000..c06978f --- /dev/null +++ b/Telemetry/visualize_log.py @@ -0,0 +1,199 @@ +import os +import glob +import argparse +import platform +import pandas as pd +import matplotlib.pyplot as plt +from mpl_toolkits.mplot3d import Axes3D +import numpy as np + + + +def get_logs_directory(): + if platform.system() == "Windows": + return os.path.expandvars(r"%USERPROFILE%\AppData\LocalLow\BAMLAB\micromissiles\Telemetry\Logs") + elif platform.system() == "Darwin": # macOS + return os.path.expanduser("~/Library/Application Support/BAMLAB/micromissiles/Telemetry/Logs") + else: + raise NotImplementedError(f"Unsupported platform: {platform.system()}") + +def find_latest_file(directory, file_pattern): + list_of_files = glob.glob(os.path.join(directory, file_pattern)) + if not list_of_files: + print(f"No files matching '{file_pattern}' found in {directory}") + return None + latest_file = max(list_of_files, key=os.path.getctime) + print(f"Using latest file: {latest_file}") + return latest_file + +def find_latest_telemetry_file(): + logs_dir = get_logs_directory() + latest_log_dir = max(glob.glob(os.path.join(logs_dir, "*")), key=os.path.getctime) + return find_latest_file(latest_log_dir, 'sim_telemetry_*.csv') + +def find_latest_event_log(): + latest_telemetry_file = find_latest_telemetry_file() + if latest_telemetry_file: + return latest_telemetry_file.replace('sim_telemetry_', 'sim_events_') + else: + return None + +def plot_telemetry(telemetry_file_path, event_file_path): + # Read the telemetry CSV file + df = pd.read_csv(telemetry_file_path) + + # Read the event CSV file + event_df = pd.read_csv(event_file_path) + + # Sanitize the 'Event' column to ensure consistency + event_df['Event'] = event_df['Event'].str.upper().str.strip() + + # Debugging: Print unique event types to verify correct parsing + unique_events = event_df['Event'].unique() + print(f"Unique Events Found: {unique_events}") + + # Create a 3D plot + fig = plt.figure(figsize=(14, 10)) + ax = fig.add_subplot(111, projection='3d') + + # Define colors for different agent types + colors = {'T': 'red', 'M': 'blue'} + + # Group data by AgentID + agent_types = set() + for agent_id, agent_data in df.groupby('AgentID'): + agent_type = agent_data['AgentType'].iloc[0] + color = colors.get(agent_type, 'black') + downsampled = agent_data.iloc[::10] + + ax.plot( + downsampled['AgentX'], + downsampled['AgentZ'], + downsampled['AgentY'], + color=color, + alpha=0.5, + linewidth=0.5, + label=f"Agent Type: {agent_type}" # Optional: More descriptive labels + ) + agent_types.add(agent_type) + + # Define event markers with higher zorder for visibility + event_markers = { + 'HIT': ('o', 'green', 'Hit'), + 'MISS': ('x', 'red', 'Miss'), + 'NEW_THREAT': ('^', 'orange', 'New Threat'), + 'NEW_INTERCEPTOR': ('s', 'blue', 'New Interceptor') + } + + # Plot events + for event_type, (marker, color, label) in event_markers.items(): + event_data = event_df[event_df['Event'] == event_type] + if not event_data.empty: + ax.scatter( + event_data['PositionX'], + event_data['PositionZ'], + event_data['PositionY'], + c=color, + marker=marker, + s=100, # Increased marker size for better visibility + label=label, + edgecolors='k', # Adding black edges for contrast + depthshade=True, + zorder=5 # Ensure markers are on top + ) + + # Set labels + ax.set_xlabel('X (m)', fontsize=12) + ax.set_ylabel('Z (m)', fontsize=12) + ax.set_zlabel('Y (m)', fontsize=12) + + # Set view angle for better visualization + ax.view_init(elev=20, azim=45) + + # Add a ground plane for reference + x_min, x_max = ax.get_xlim() + z_min, z_max = ax.get_ylim() + xx, zz = np.meshgrid(np.linspace(x_min, x_max, 2), np.linspace(z_min, z_max, 2)) + yy = np.zeros_like(xx) + ax.plot_surface(xx, zz, yy, alpha=0.2, color='green') + + plt.title('Agents Trajectories and Events (X: Right, Z: Forward, Y: Up)', fontsize=14) + + # Optimize legend to prevent overcrowding + handles, labels = ax.get_legend_handles_labels() + # Remove duplicate labels + unique = dict(zip(labels, handles)) + ax.legend(unique.values(), unique.keys(), loc='upper left', bbox_to_anchor=(1, 1), fontsize=10) + + plt.tight_layout() + plt.show() + +def print_summary(telemetry_file_path, event_file_path): + # Read the telemetry CSV file + df = pd.read_csv(telemetry_file_path) + + # Read the event CSV file + event_df = pd.read_csv(event_file_path) + + # Sanitize the 'Event' column to ensure consistency + event_df['Event'] = event_df['Event'].str.upper().str.strip() + + # Print total number of events + total_events = len(event_df) + print(f"Total number of events: {total_events}") + + # Print counts of each event type + event_counts = event_df['Event'].value_counts() + print("\nEvent Counts:") + for event_type, count in event_counts.items(): + print(f" {event_type}: {count}") + + # Calculate the time duration of the events + if 'Time' in event_df.columns: + start_time = event_df['Time'].min() + end_time = event_df['Time'].max() + duration = end_time - start_time + print(f"\nTotal duration of events: {duration:.2f} seconds (from {start_time:.2f} to {end_time:.2f})") + else: + print("\n'Time' column not found in event data.") + + # Provide some insightful data about the hits and misses + if 'Time' in event_df.columns: + hits = event_df[event_df['Event'] == 'HIT'] + misses = event_df[event_df['Event'] == 'MISS'] + + if not hits.empty: + first_hit_time = hits['Time'].min() + last_hit_time = hits['Time'].max() + print(f"\nFirst hit at {first_hit_time:.2f} seconds, last hit at {last_hit_time:.2f} seconds") + else: + print("\nNo hits recorded.") + + if not misses.empty: + first_miss_time = misses['Time'].min() + last_miss_time = misses['Time'].max() + print(f"First miss at {first_miss_time:.2f} seconds, last miss at {last_miss_time:.2f} seconds") + else: + print("No misses recorded.") + else: + print("\n'Time' column not found in event data.") + + + +# Update the main function to pass both telemetry and event file paths +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='Visualize telemetry data and events.') + parser.add_argument('telemetry_file', nargs='?', default=None, help='Path to telemetry CSV file.') + parser.add_argument('event_file', nargs='?', default=None, help='Path to event CSV file.') + args = parser.parse_args() + + if args.telemetry_file and args.event_file: + telemetry_file_path = args.telemetry_file + event_file_path = args.event_file + else: + telemetry_file_path = find_latest_telemetry_file() + event_file_path = find_latest_event_log() + if telemetry_file_path is None or event_file_path is None: + exit(1) + print_summary(telemetry_file_path, event_file_path) + plot_telemetry(telemetry_file_path, event_file_path) \ No newline at end of file diff --git a/Telemetry/visualize_telemetry.py b/Telemetry/visualize_telemetry.py deleted file mode 100644 index 2aec6db..0000000 --- a/Telemetry/visualize_telemetry.py +++ /dev/null @@ -1,82 +0,0 @@ -import os -import glob -import argparse -import pandas as pd -import matplotlib.pyplot as plt -from mpl_toolkits.mplot3d import Axes3D -import numpy as np - -def find_latest_telemetry_file(directory='./Logs/'): - list_of_files = glob.glob(os.path.join(directory, 'sim_telemetry_*.csv')) - if not list_of_files: - print(f"No telemetry files found in {directory}") - return None - latest_file = max(list_of_files, key=os.path.getctime) - print(f"Using latest telemetry file: {latest_file}") - return latest_file - -def plot_telemetry(file_path): - # Read the telemetry CSV file - df = pd.read_csv(file_path) - - - # Create a 3D plot - fig = plt.figure(figsize=(12, 8)) - ax = fig.add_subplot(111, projection='3d') - - # Define colors for different agent types - colors = {'T': 'red', 'M': 'blue'} - - # Group data by AgentID - for agent_id, agent_data in df.groupby('AgentID'): - agent_type = agent_data['AgentType'].iloc[0] - color = colors.get(agent_type, 'black') - downsampled = agent_data.iloc[::10] - - ax.plot( - downsampled['AgentX'], - downsampled['AgentZ'], - downsampled['AgentY'], - color=color, - alpha=0.5, - linewidth=0.5, - label=f"{agent_type}" - ) - - - ax.set_xlabel('X (m)') - ax.set_ylabel('Z (m)') - ax.set_zlabel('Y (m)') - - - ax.view_init(elev=20, azim=45) - - # Add a ground plane - x_min, x_max = ax.get_xlim() - z_min, z_max = ax.get_ylim() - xx, zz = np.meshgrid(np.linspace(x_min, x_max, 2), np.linspace(z_min, z_max, 2)) - yy = np.zeros_like(xx) - ax.plot_surface(xx, zz, yy, alpha=0.2, color='green') - - plt.title('Agents Trajectories (X: Right, Z: Forward, Y: Up)') - legend = [ - plt.Line2D([0], [0], color='red', lw=2, label='Threat'), - plt.Line2D([0], [0], color='blue', lw=2, label='Interceptor') - ] - plt.legend(handles=legend) - plt.tight_layout() - plt.show() - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description='Visualize telemetry data.') - parser.add_argument('file', nargs='?', default=None, help='Path to telemetry CSV file.') - args = parser.parse_args() - - if args.file: - file_path = args.file - else: - file_path = find_latest_telemetry_file() - if file_path is None: - exit(1) - - plot_telemetry(file_path) \ No newline at end of file