micromissiles-unity/Assets/Scripts/Interceptors/Micromissile.cs

79 lines
3.0 KiB
C#
Raw Permalink Normal View History

2024-09-12 00:17:21 -07:00
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
2024-09-24 19:59:25 -07:00
public class Micromissile : Interceptor {
2024-09-13 22:45:25 -07:00
[SerializeField]
2024-09-14 11:45:50 -07:00
private float _navigationGain = 3f; // Typically 3-5
2024-09-13 22:45:25 -07:00
private SensorOutput _sensorOutput;
private Vector3 _accelerationCommand;
private double _elapsedTime = 0;
protected override void UpdateMidCourse(double deltaTime) {
_elapsedTime += deltaTime;
Vector3 accelerationInput = Vector3.zero;
if (HasAssignedTarget()) {
2024-09-24 19:24:50 -07:00
// Update the threat model (assuming we have a threat model)
// TODO: Implement threat model update logic
2024-09-13 22:45:25 -07:00
2024-09-24 19:24:50 -07:00
// Correct the state of the threat model at the sensor frequency
2024-09-13 22:45:25 -07:00
float sensorUpdatePeriod = 1f / _agentConfig.dynamic_config.sensor_config.frequency;
if (_elapsedTime >= sensorUpdatePeriod) {
// TODO: Implement guidance filter to estimate state from sensor output
2024-09-24 19:24:50 -07:00
// For now, we'll use the threat's actual state
2024-09-13 22:45:25 -07:00
_sensorOutput = GetComponent<Sensor>().Sense(_target);
_elapsedTime = 0;
}
2024-09-24 19:24:50 -07:00
// Check whether the threat should be considered a miss
2024-09-13 22:45:25 -07:00
SensorOutput sensorOutput = GetComponent<Sensor>().Sense(_target);
if (sensorOutput.velocity.range > 1000f) {
this.HandleInterceptMiss();
2024-09-13 22:45:25 -07:00
}
// Calculate the acceleration input
accelerationInput = CalculateAccelerationCommand(_sensorOutput);
2024-09-12 00:17:21 -07:00
}
2024-09-13 22:45:25 -07:00
// Calculate and set the total acceleration
Vector3 acceleration = CalculateAcceleration(accelerationInput, compensateForGravity: true);
GetComponent<Rigidbody>().AddForce(acceleration, ForceMode.Acceleration);
}
private Vector3 CalculateAccelerationCommand(SensorOutput sensorOutput) {
// Implement Proportional Navigation guidance law
Vector3 accelerationCommand = Vector3.zero;
// Extract relevant information from sensor output
float los_rate_az = sensorOutput.velocity.azimuth;
float los_rate_el = sensorOutput.velocity.elevation;
float closing_velocity =
-sensorOutput.velocity
.range; // Negative because closing velocity is opposite to range rate
// Navigation gain (adjust as needed)
float N = _navigationGain;
// Calculate acceleration commands in azimuth and elevation planes
float acc_az = N * closing_velocity * los_rate_az;
float acc_el = N * closing_velocity * los_rate_el;
2024-09-24 19:59:25 -07:00
// Convert acceleration commands to craft body frame
2024-09-13 22:45:25 -07:00
accelerationCommand = transform.right * acc_az + transform.up * acc_el;
// Clamp the acceleration command to the maximum acceleration
float maxAcceleration = CalculateMaxAcceleration();
accelerationCommand = Vector3.ClampMagnitude(accelerationCommand, maxAcceleration);
// Update the stored acceleration command for debugging
_accelerationCommand = accelerationCommand;
return accelerationCommand;
}
protected override void DrawDebugVectors() {
base.DrawDebugVectors();
if (_accelerationCommand != null) {
Debug.DrawRay(transform.position, _accelerationCommand * 1f, Color.green);
2024-09-12 00:17:21 -07:00
}
2024-09-13 22:45:25 -07:00
}
2024-09-12 00:17:21 -07:00
}