initial commit

master
michael 2022-12-05 20:25:34 -08:00
commit 978ae6afb2
8 changed files with 805 additions and 0 deletions

189
.gitignore vendored Normal file
View File

@ -0,0 +1,189 @@
config.yaml
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk

15
Pipfile Normal file
View File

@ -0,0 +1,15 @@
[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"
[packages]
requests = "*"
revchatgpt = "*"
pyyaml = "*"
openai = "*"
[dev-packages]
[requires]
python_version = "3.10"

363
Pipfile.lock generated Normal file
View File

@ -0,0 +1,363 @@
{
"_meta": {
"hash": {
"sha256": "6bf4ee0ba2075d7a3779ce5c094275855e5531b0b5f318ebe3166a02f06db8ce"
},
"pipfile-spec": 6,
"requires": {
"python_version": "3.10"
},
"sources": [
{
"name": "pypi",
"url": "https://pypi.org/simple",
"verify_ssl": true
}
]
},
"default": {
"beautifulsoup4": {
"hashes": [
"sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30",
"sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"
],
"markers": "python_full_version >= '3.6.0'",
"version": "==4.11.1"
},
"bs4": {
"hashes": [
"sha256:36ecea1fd7cc5c0c6e4a1ff075df26d50da647b75376626cc186e2212886dd3a"
],
"version": "==0.0.1"
},
"certifi": {
"hashes": [
"sha256:0d9c601124e5a6ba9712dbc60d9c53c21e34f5f641fe83002317394311bdce14",
"sha256:90c1a32f1d68f940488354e36370f6cca89f0f106db09518524c88d6ed83f382"
],
"markers": "python_full_version >= '3.6.0'",
"version": "==2022.9.24"
},
"charset-normalizer": {
"hashes": [
"sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845",
"sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"
],
"markers": "python_full_version >= '3.6.0'",
"version": "==2.1.1"
},
"et-xmlfile": {
"hashes": [
"sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c",
"sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"
],
"markers": "python_full_version >= '3.6.0'",
"version": "==1.1.0"
},
"idna": {
"hashes": [
"sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4",
"sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"
],
"markers": "python_version >= '3.5'",
"version": "==3.4"
},
"lxml": {
"hashes": [
"sha256:04da965dfebb5dac2619cb90fcf93efdb35b3c6994fea58a157a834f2f94b318",
"sha256:0538747a9d7827ce3e16a8fdd201a99e661c7dee3c96c885d8ecba3c35d1032c",
"sha256:0645e934e940107e2fdbe7c5b6fb8ec6232444260752598bc4d09511bd056c0b",
"sha256:079b68f197c796e42aa80b1f739f058dcee796dc725cc9a1be0cdb08fc45b000",
"sha256:0f3f0059891d3254c7b5fb935330d6db38d6519ecd238ca4fce93c234b4a0f73",
"sha256:10d2017f9150248563bb579cd0d07c61c58da85c922b780060dcc9a3aa9f432d",
"sha256:1355755b62c28950f9ce123c7a41460ed9743c699905cbe664a5bcc5c9c7c7fb",
"sha256:13c90064b224e10c14dcdf8086688d3f0e612db53766e7478d7754703295c7c8",
"sha256:1423631e3d51008871299525b541413c9b6c6423593e89f9c4cfbe8460afc0a2",
"sha256:1436cf0063bba7888e43f1ba8d58824f085410ea2025befe81150aceb123e345",
"sha256:1a7c59c6ffd6ef5db362b798f350e24ab2cfa5700d53ac6681918f314a4d3b94",
"sha256:1e1cf47774373777936c5aabad489fef7b1c087dcd1f426b621fda9dcc12994e",
"sha256:206a51077773c6c5d2ce1991327cda719063a47adc02bd703c56a662cdb6c58b",
"sha256:21fb3d24ab430fc538a96e9fbb9b150029914805d551deeac7d7822f64631dfc",
"sha256:27e590352c76156f50f538dbcebd1925317a0f70540f7dc8c97d2931c595783a",
"sha256:287605bede6bd36e930577c5925fcea17cb30453d96a7b4c63c14a257118dbb9",
"sha256:2aaf6a0a6465d39b5ca69688fce82d20088c1838534982996ec46633dc7ad6cc",
"sha256:32a73c53783becdb7eaf75a2a1525ea8e49379fb7248c3eeefb9412123536387",
"sha256:41fb58868b816c202e8881fd0f179a4644ce6e7cbbb248ef0283a34b73ec73bb",
"sha256:4780677767dd52b99f0af1f123bc2c22873d30b474aa0e2fc3fe5e02217687c7",
"sha256:4878e667ebabe9b65e785ac8da4d48886fe81193a84bbe49f12acff8f7a383a4",
"sha256:487c8e61d7acc50b8be82bda8c8d21d20e133c3cbf41bd8ad7eb1aaeb3f07c97",
"sha256:4beea0f31491bc086991b97517b9683e5cfb369205dac0148ef685ac12a20a67",
"sha256:4cfbe42c686f33944e12f45a27d25a492cc0e43e1dc1da5d6a87cbcaf2e95627",
"sha256:4d5bae0a37af799207140652a700f21a85946f107a199bcb06720b13a4f1f0b7",
"sha256:4e285b5f2bf321fc0857b491b5028c5f276ec0c873b985d58d7748ece1d770dd",
"sha256:57e4d637258703d14171b54203fd6822fda218c6c2658a7d30816b10995f29f3",
"sha256:5974895115737a74a00b321e339b9c3f45c20275d226398ae79ac008d908bff7",
"sha256:5ef87fca280fb15342726bd5f980f6faf8b84a5287fcc2d4962ea8af88b35130",
"sha256:603a464c2e67d8a546ddaa206d98e3246e5db05594b97db844c2f0a1af37cf5b",
"sha256:6653071f4f9bac46fbc30f3c7838b0e9063ee335908c5d61fb7a4a86c8fd2036",
"sha256:6ca2264f341dd81e41f3fffecec6e446aa2121e0b8d026fb5130e02de1402785",
"sha256:6d279033bf614953c3fc4a0aa9ac33a21e8044ca72d4fa8b9273fe75359d5cca",
"sha256:6d949f53ad4fc7cf02c44d6678e7ff05ec5f5552b235b9e136bd52e9bf730b91",
"sha256:6daa662aba22ef3258934105be2dd9afa5bb45748f4f702a3b39a5bf53a1f4dc",
"sha256:6eafc048ea3f1b3c136c71a86db393be36b5b3d9c87b1c25204e7d397cee9536",
"sha256:830c88747dce8a3e7525defa68afd742b4580df6aa2fdd6f0855481e3994d391",
"sha256:86e92728ef3fc842c50a5cb1d5ba2bc66db7da08a7af53fb3da79e202d1b2cd3",
"sha256:8caf4d16b31961e964c62194ea3e26a0e9561cdf72eecb1781458b67ec83423d",
"sha256:8d1a92d8e90b286d491e5626af53afef2ba04da33e82e30744795c71880eaa21",
"sha256:8f0a4d179c9a941eb80c3a63cdb495e539e064f8054230844dcf2fcb812b71d3",
"sha256:9232b09f5efee6a495a99ae6824881940d6447debe272ea400c02e3b68aad85d",
"sha256:927a9dd016d6033bc12e0bf5dee1dde140235fc8d0d51099353c76081c03dc29",
"sha256:93e414e3206779ef41e5ff2448067213febf260ba747fc65389a3ddaa3fb8715",
"sha256:98cafc618614d72b02185ac583c6f7796202062c41d2eeecdf07820bad3295ed",
"sha256:9c3a88d20e4fe4a2a4a84bf439a5ac9c9aba400b85244c63a1ab7088f85d9d25",
"sha256:9f36de4cd0c262dd9927886cc2305aa3f2210db437aa4fed3fb4940b8bf4592c",
"sha256:a60f90bba4c37962cbf210f0188ecca87daafdf60271f4c6948606e4dabf8785",
"sha256:a614e4afed58c14254e67862456d212c4dcceebab2eaa44d627c2ca04bf86837",
"sha256:ae06c1e4bc60ee076292e582a7512f304abdf6c70db59b56745cca1684f875a4",
"sha256:b122a188cd292c4d2fcd78d04f863b789ef43aa129b233d7c9004de08693728b",
"sha256:b570da8cd0012f4af9fa76a5635cd31f707473e65a5a335b186069d5c7121ff2",
"sha256:bcaa1c495ce623966d9fc8a187da80082334236a2a1c7e141763ffaf7a405067",
"sha256:bd34f6d1810d9354dc7e35158aa6cc33456be7706df4420819af6ed966e85448",
"sha256:be9eb06489bc975c38706902cbc6888f39e946b81383abc2838d186f0e8b6a9d",
"sha256:c4b2e0559b68455c085fb0f6178e9752c4be3bba104d6e881eb5573b399d1eb2",
"sha256:c62e8dd9754b7debda0c5ba59d34509c4688f853588d75b53c3791983faa96fc",
"sha256:c852b1530083a620cb0de5f3cd6826f19862bafeaf77586f1aef326e49d95f0c",
"sha256:d9fc0bf3ff86c17348dfc5d322f627d78273eba545db865c3cd14b3f19e57fa5",
"sha256:dad7b164905d3e534883281c050180afcf1e230c3d4a54e8038aa5cfcf312b84",
"sha256:e5f66bdf0976ec667fc4594d2812a00b07ed14d1b44259d19a41ae3fff99f2b8",
"sha256:e8f0c9d65da595cfe91713bc1222af9ecabd37971762cb830dea2fc3b3bb2acf",
"sha256:edffbe3c510d8f4bf8640e02ca019e48a9b72357318383ca60e3330c23aaffc7",
"sha256:eea5d6443b093e1545ad0210e6cf27f920482bfcf5c77cdc8596aec73523bb7e",
"sha256:ef72013e20dd5ba86a8ae1aed7f56f31d3374189aa8b433e7b12ad182c0d2dfb",
"sha256:f05251bbc2145349b8d0b77c0d4e5f3b228418807b1ee27cefb11f69ed3d233b",
"sha256:f1be258c4d3dc609e654a1dc59d37b17d7fef05df912c01fc2e15eb43a9735f3",
"sha256:f9ced82717c7ec65a67667bb05865ffe38af0e835cdd78728f1209c8fffe0cad",
"sha256:fe17d10b97fdf58155f858606bddb4e037b805a60ae023c009f760d8361a4eb8",
"sha256:fe749b052bb7233fe5d072fcb549221a8cb1a16725c47c37e42b0b9cb3ff2c3f"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
"version": "==4.9.1"
},
"numpy": {
"hashes": [
"sha256:01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d",
"sha256:06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07",
"sha256:09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df",
"sha256:0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9",
"sha256:0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d",
"sha256:1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a",
"sha256:33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719",
"sha256:5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2",
"sha256:522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280",
"sha256:56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa",
"sha256:58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387",
"sha256:5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1",
"sha256:7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43",
"sha256:8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f",
"sha256:92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398",
"sha256:9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63",
"sha256:a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de",
"sha256:abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8",
"sha256:af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481",
"sha256:b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0",
"sha256:bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d",
"sha256:ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e",
"sha256:ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96",
"sha256:d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb",
"sha256:dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6",
"sha256:e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d",
"sha256:f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a",
"sha256:f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135"
],
"markers": "python_version >= '3.8'",
"version": "==1.23.5"
},
"openai": {
"hashes": [
"sha256:59ac6531e4f7bf8e9a53186e853d9ffb1d5f07973ecb4f7d273163a314814510"
],
"index": "pypi",
"version": "==0.25.0"
},
"openpyxl": {
"hashes": [
"sha256:0ab6d25d01799f97a9464630abacbb34aafecdcaa0ef3cba6d6b3499867d0355",
"sha256:e47805627aebcf860edb4edf7987b1309c1b3632f3750538ed962bbcc3bd7449"
],
"markers": "python_full_version >= '3.6.0'",
"version": "==3.0.10"
},
"pandas": {
"hashes": [
"sha256:0183cb04a057cc38fde5244909fca9826d5d57c4a5b7390c0cc3fa7acd9fa883",
"sha256:1fc87eac0541a7d24648a001d553406f4256e744d92df1df8ebe41829a915028",
"sha256:220b98d15cee0b2cd839a6358bd1f273d0356bf964c1a1aeb32d47db0215488b",
"sha256:2552bffc808641c6eb471e55aa6899fa002ac94e4eebfa9ec058649122db5824",
"sha256:315e19a3e5c2ab47a67467fc0362cb36c7c60a93b6457f675d7d9615edad2ebe",
"sha256:344021ed3e639e017b452aa8f5f6bf38a8806f5852e217a7594417fb9bbfa00e",
"sha256:375262829c8c700c3e7cbb336810b94367b9c4889818bbd910d0ecb4e45dc261",
"sha256:457d8c3d42314ff47cc2d6c54f8fc0d23954b47977b2caed09cd9635cb75388b",
"sha256:4aed257c7484d01c9a194d9a94758b37d3d751849c05a0050c087a358c41ad1f",
"sha256:530948945e7b6c95e6fa7aa4be2be25764af53fba93fe76d912e35d1c9ee46f5",
"sha256:5ae7e989f12628f41e804847a8cc2943d362440132919a69429d4dea1f164da0",
"sha256:71f510b0efe1629bf2f7c0eadb1ff0b9cf611e87b73cd017e6b7d6adb40e2b3a",
"sha256:73f219fdc1777cf3c45fde7f0708732ec6950dfc598afc50588d0d285fddaefc",
"sha256:8092a368d3eb7116e270525329a3e5c15ae796ccdf7ccb17839a73b4f5084a39",
"sha256:82ae615826da838a8e5d4d630eb70c993ab8636f0eff13cb28aafc4291b632b5",
"sha256:9608000a5a45f663be6af5c70c3cbe634fa19243e720eb380c0d378666bc7702",
"sha256:a40dd1e9f22e01e66ed534d6a965eb99546b41d4d52dbdb66565608fde48203f",
"sha256:b4f5a82afa4f1ff482ab8ded2ae8a453a2cdfde2001567b3ca24a4c5c5ca0db3",
"sha256:c009a92e81ce836212ce7aa98b219db7961a8b95999b97af566b8dc8c33e9519",
"sha256:c218796d59d5abd8780170c937b812c9637e84c32f8271bbf9845970f8c1351f",
"sha256:cc3cd122bea268998b79adebbb8343b735a5511ec14efb70a39e7acbc11ccbdc",
"sha256:d0d8fd58df5d17ddb8c72a5075d87cd80d71b542571b5f78178fb067fa4e9c72",
"sha256:e18bc3764cbb5e118be139b3b611bc3fbc5d3be42a7e827d1096f46087b395eb",
"sha256:e2b83abd292194f350bb04e188f9379d36b8dfac24dd445d5c87575f3beaf789",
"sha256:e7469271497960b6a781eaa930cba8af400dd59b62ec9ca2f4d31a19f2f91090",
"sha256:e9dbacd22555c2d47f262ef96bb4e30880e5956169741400af8b306bbb24a273",
"sha256:f6257b314fc14958f8122779e5a1557517b0f8e500cfb2bd53fa1f75a8ad0af2"
],
"markers": "python_version >= '3.8'",
"version": "==1.5.2"
},
"pandas-stubs": {
"hashes": [
"sha256:5a2c47a0cf8e12e113d760d5da9c48daa2b977b14a4c368b8bbff27dbfcfd2bb",
"sha256:d6bab9f373ff3c309bf560065d230a38ce4dcd22368be393fad6eb353d102b7c"
],
"markers": "python_version < '3.12' and python_version >= '3.8'",
"version": "==1.5.2.221124"
},
"python-dateutil": {
"hashes": [
"sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86",
"sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==2.8.2"
},
"pytz": {
"hashes": [
"sha256:222439474e9c98fced559f1709d89e6c9cbf8d79c794ff3eb9f8800064291427",
"sha256:e89512406b793ca39f5971bc999cc538ce125c0e51c27941bef4568b460095e2"
],
"version": "==2022.6"
},
"pyyaml": {
"hashes": [
"sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf",
"sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293",
"sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b",
"sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57",
"sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b",
"sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4",
"sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07",
"sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba",
"sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9",
"sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287",
"sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513",
"sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0",
"sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782",
"sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0",
"sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92",
"sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f",
"sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2",
"sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc",
"sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1",
"sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c",
"sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86",
"sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4",
"sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c",
"sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34",
"sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b",
"sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d",
"sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c",
"sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb",
"sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7",
"sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737",
"sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3",
"sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d",
"sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358",
"sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53",
"sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78",
"sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803",
"sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a",
"sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f",
"sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174",
"sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"
],
"index": "pypi",
"version": "==6.0"
},
"requests": {
"hashes": [
"sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983",
"sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"
],
"index": "pypi",
"version": "==2.28.1"
},
"revchatgpt": {
"hashes": [
"sha256:36860b0297d5e846172c2fcfcdf27b4f19b80eac299b4e00c93a5dccf27f18c1",
"sha256:3fce7e348a8817e4335130a9ab2e523633c8c49cad1d2ca577571aeaa4a00115"
],
"index": "pypi",
"version": "==0.0.23.5"
},
"six": {
"hashes": [
"sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926",
"sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==1.16.0"
},
"soupsieve": {
"hashes": [
"sha256:3b2503d3c7084a42b1ebd08116e5f81aadfaea95863628c80a3b774a11b7c759",
"sha256:fc53893b3da2c33de295667a0e19f078c14bf86544af307354de5fcf12a3f30d"
],
"markers": "python_full_version >= '3.6.0'",
"version": "==2.3.2.post1"
},
"tls-client": {
"hashes": [
"sha256:cd65d7b1405cd2075050fca4e59abc6e04207b29ea47eabc6f406ce16735421f"
],
"version": "==0.1.5"
},
"tqdm": {
"hashes": [
"sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4",
"sha256:6fee160d6ffcd1b1c68c65f14c829c22832bc401726335ce92c52d395944a6a1"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==4.64.1"
},
"types-pytz": {
"hashes": [
"sha256:bea605ce5d5a5d52a8e1afd7656c9b42476e18a0f888de6be91587355313ddf4",
"sha256:d078196374d1277e9f9984d49373ea043cf2c64d5d5c491fbc86c258557bd46f"
],
"version": "==2022.6.0.1"
},
"typing-extensions": {
"hashes": [
"sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa",
"sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"
],
"markers": "python_version >= '3.7'",
"version": "==4.4.0"
},
"urllib3": {
"hashes": [
"sha256:47cc05d99aaa09c9e72ed5809b60e7ba354e64b59c9c173ac3018642d8bb41fc",
"sha256:c083dd0dce68dbfbe1129d5271cb90f9447dea7d52097c6e0126120c521ddea8"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'",
"version": "==1.26.13"
}
},
"develop": {}
}

3
config.example.yaml Normal file
View File

@ -0,0 +1,3 @@
OPENAI_API_KEY: xyz123
Authorization: Bearer xyz123
session_token: (from browser)

71
docugen-chatgpt.py Normal file
View File

@ -0,0 +1,71 @@
import yaml
from yaml import CLoader, CDumper
from revChatGPT.revChatGPT import Chatbot
import os
from sys import argv
import re
# from argparse import ArgumentParser
# argparser = ArgumentParser(
# prog="docugen",
# description="generate docs with le AI(tm)",
# epilog="https://docugen.com"
# )
# argparser.add_argument("file", required=True)
file_path = os.path.dirname(os.path.realpath(__file__))
with open(f"{file_path}/config.yaml", "r") as file:
config = yaml.load(file, Loader=CLoader)
infile = open(argv[1], "r")
# print(infile)
# top level functions only for now
functions = []
function_head = ""
function_content = ""
function_body_indent_level = 0
for line in infile:
curr_indent_level = len(line) - len(line.lstrip())
function_found = re.search('^def(\s+)(.*)\(.*\)(\s*):$', line.strip())
if function_found and len(function_head) == 0:
function_head = re.search("(\s+)(.*)\(.*\)", line).string.replace('def', '').replace('):', ')').strip()
function_content = line
function_body_indent_level = curr_indent_level + 1
elif len(function_head) > 0 and (curr_indent_level < function_body_indent_level):
functions.append({
"head": function_head,
"content": function_content
})
if function_found:
function_head = ""
function_content = ""
elif len(function_head) > 0 and curr_indent_level >= function_body_indent_level:
function_content += line
print(f"Found {len(functions)} functions.")
doc_prompt_head = "Explain what this function does in one short sentence, then give example code that uses the function:\n"
# doc_prompt_example = "Return only example code using this function:\n"
bot = Chatbot({
'Authorization': config['Authorization'],
'session_token': config['session_token'],
# 'session': config['password']
}, conversation_id=None)
bot.refresh_session()
with open(f"{argv[1].split('.')[0]}-doc.md", "w") as outfile:
outfile.write(f"# Documentation for `{argv[1]}`\n\n")
for function in functions:
head_ask = doc_prompt_head + function["content"]
resp = bot.get_chat_response(head_ask, output="text")
print(f'Generated documentation for {function["head"]}.')
# append results to doc
output = f"## `{function['head']}`\n" + resp['message'] + "\n\n"
outfile.write(output)

44
docugen-gpt3.py Normal file
View File

@ -0,0 +1,44 @@
import openai
import yaml
from yaml import CLoader, CDumper
import os
file_path = os.path.dirname(os.path.realpath(__file__))
with open(f"{file_path}/config.yaml", "r") as file:
config = yaml.load(file, Loader=CLoader)
openai.api_key = config['OPENAI_API_KEY']
prompt = """Write example code that uses this function:
const mineBlock = async (data) => {
if (current_transactions.length != BLOCK_SIZE) return;
console.log("Mining block.")
let x = 5;
let y = 0;
while (true) {
let valid = false;
let val = await digestTxt(`${data}${x*y}`);
for (let c = 0; c < POW_DIFFICULTY; c++) {
res = parseInt(val[val.length - (c+1)]) ?? 100;
if (!(res == 0)) { // check if res character is acceptable
valid = false;
break;
} else {
valid = true;
}
}
if (!valid) {
y += 1;
} else {
console.log(res)
console.log(`Done.\nNonce: ${y}\nHash: ${val}`)
return {val, y};
}
}
}
"""
res = openai.Completion.create(engine="davinci", prompt=prompt)
print(res)

58
example_code-doc.md Normal file
View File

@ -0,0 +1,58 @@
# Documentation for `example_code.py`
## `remove_dirt(image)`
This function removes small dirt and noise from a binary image by closing small holes and removing small objects.
Here is an example of how to use the function:
```
import skimage.morphology as morphology
from skimage import data
# Load a binary image
image = data.coins() > 100
# Remove dirt from the image
cleaned_image = remove_dirt(image)
```
## `center_of_mass(X)`
This function calculates the center of mass of a 2D shape defined by a set of points.
Here is an example of how to use the function:
```
import numpy as np
# Define a set of points that define a shape
X = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])
# Calculate the center of mass of the shape
center_of_mass = center_of_mass(X)
# Print the center of mass
print(center_of_mass)
```
The output will be `[0.5, 0.5]`, which is the coordinates of the center of the square defined by the points `X`.
## `center_of_mass(X)`
This function calculates the center of mass of a 2D shape defined by a set of points.
Here is an example of how to use the function:
```
import numpy as np
# Define a set of points that define a shape
X = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])
# Calculate the center of mass of the shape
center_of_mass = center_of_mass(X)
# Print the center of mass
print(center_of_mass)
```
The output will be `[0.5, 0.5]`, which is the coordinates of the center of the square defined by the points `X`.

62
example_code.py Normal file
View File

@ -0,0 +1,62 @@
def remove_dirt(image):
image = morphology.area_closing(image, area_threshold=250, connectivity=1)
# image = morphology.opening(image, morphology.square(5))
return image
def calculate_area(countour):
c = np.expand_dims(countour.astype(np.float32), 1)
c = cv.UMat(c)
return cv.contourArea(c)
def center_of_mass(X):
x = X[:,0]
y = X[:,1]
g = (x[:-1]*y[1:] - x[1:]*y[:-1])
A = 0.5*g.sum()
cx = ((x[:-1] + x[1:])*g).sum()
cy = ((y[:-1] + y[1:])*g).sum()
return 1./(6*A)*np.array([cx,cy])
img = remove_dirt(thresh_gray)
def rg_ratio_normalize(imgarr):
# set max & min to most extreme values,
# work up & down respectively from there
tmin = MAX_TEMP
tmax = 0
imgnew = imgarr
for i in range(len(imgarr)):
for j in range(len(imgarr[i])):
px = imgarr[i][j]
r_norm = normalization_func(px[0])
g_norm = normalization_func(px[1])
# apply camera calibration func
temp_C = pyrometry_calibration_formula(g_norm, r_norm)
# remove pixels outside calibration range
if MAX_TEMP != None and temp_C > MAX_TEMP or MIN_TEMP != None and temp_C < MIN_TEMP:
temp_C = 0
# update min & max
if temp_C < tmin and temp_C >= 0:
tmin = temp_C
if temp_C > tmax:
tmax = temp_C
imgnew[i][j] = [temp_C, temp_C, temp_C]
return imgnew, tmin, tmax
def pyrometry_calibration_formula(i_ng, i_nr):
return 362.73 * math.log10(
(i_ng/i_nr) ** 3
) + 2186.7 * math.log10(
(i_ng/i_nr) ** 2
) + 4466.5 * math.log10(
(i_ng / i_nr)
) + 3753.5