colors, argparse
parent
da74e67ecd
commit
2ac921d7a7
|
@ -1,40 +1,44 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import yaml
|
||||
from yaml import CLoader, CDumper
|
||||
from revChatGPT.revChatGPT import Chatbot
|
||||
import os
|
||||
from sys import argv
|
||||
import fmtutil
|
||||
from parse import py
|
||||
from argparse import ArgumentParser
|
||||
|
||||
# from argparse import ArgumentParser
|
||||
|
||||
# argparser = ArgumentParser(
|
||||
argparser = ArgumentParser(
|
||||
# prog="docugen",
|
||||
# description="generate docs with le AI(tm)",
|
||||
# epilog="https://docugen.com"
|
||||
# )
|
||||
description="generate docs with le AI(tm)",
|
||||
epilog="https://github.com/turtlebasket/docugen"
|
||||
)
|
||||
|
||||
# argparser.add_argument("file", required=True)
|
||||
argparser.add_argument("filename")
|
||||
argparser.add_argument("-o", dest="output directory", help="directory to write docs to")
|
||||
argparser.add_argument("-m", dest="model", help="model to use to generate documentation", choices=["chatgpt"])
|
||||
argparser.add_argument("-f", dest="format", help="formatting of output documentation", choices=["md"])
|
||||
args = argparser.parse_args()
|
||||
|
||||
file_path = os.path.dirname(os.path.realpath(__file__))
|
||||
with open(f"{file_path}/config.yaml", "r") as file:
|
||||
config = yaml.load(file, Loader=CLoader)
|
||||
|
||||
infile = open(argv[1], "r")
|
||||
# print(infile)
|
||||
infile = open(args.filename, "r")
|
||||
|
||||
# top level functions only for now
|
||||
# python & top level functions only for now
|
||||
functions = py.find_toplevel_funcs(infile)
|
||||
|
||||
print(f"Found {len(functions)} functions.")
|
||||
|
||||
if len(functions) >= 3:
|
||||
print(f"Grab a cup of coffee, this could take a while.")
|
||||
|
||||
doc_prompt_head = "Explain what this function does in one short sentence, then give example code that uses the function:\n"
|
||||
# doc_prompt_example = "Return only example code using this function:\n"
|
||||
|
||||
# for function in functions:
|
||||
# print(function["content"])
|
||||
# print("------------------")
|
||||
|
||||
bot = Chatbot({
|
||||
'Authorization': config['Authorization'],
|
||||
'session_token': config['session_token'],
|
||||
|
@ -42,12 +46,12 @@ bot = Chatbot({
|
|||
|
||||
bot.refresh_session()
|
||||
|
||||
with open(f"{argv[1].split('.')[0]}-doc.md", "w") as outfile:
|
||||
with open(f"{args.filename.split('.')[0]}-doc.md", "w") as outfile:
|
||||
outfile.write(f"# Documentation for `{argv[1]}`\n\n")
|
||||
for function in functions:
|
||||
head_ask = doc_prompt_head + function["content"]
|
||||
resp = bot.get_chat_response(head_ask, output="text")
|
||||
print(f'Generated documentation for {function["head"]}.')
|
||||
# append results to doc
|
||||
output = f"## `{function['head']}`\n" + resp['message'] + "\n\n"
|
||||
output = f"### `{function['head']}`\n" + fmtutil.highlight_multiline_code_md(resp['message'], "python") + "\n\n"
|
||||
outfile.write(output)
|
||||
|
|
|
@ -1,101 +1,94 @@
|
|||
# Documentation for `example/example_code.py`
|
||||
|
||||
## `remove_dirt(image)`
|
||||
This function removes small elements from an image using area closing morphological operation.
|
||||
### `remove_dirt(image)`
|
||||
The `remove_dirt` function removes small objects from the input image using area closing. Here is an example of how to use the `remove_dirt` function:
|
||||
|
||||
Example:
|
||||
```python
|
||||
import skimage.morphology as morphology
|
||||
|
||||
```
|
||||
# Import the required module
|
||||
from skimage import morphology
|
||||
# Load an image using some library (e.g. Pillow, OpenCV, etc.)
|
||||
image = ...
|
||||
|
||||
# Load the image
|
||||
image = skimage.io.imread('image.jpg')
|
||||
|
||||
# Apply the function to remove small elements from the image
|
||||
# Remove small objects from the image
|
||||
image = remove_dirt(image)
|
||||
|
||||
# Show the result
|
||||
skimage.io.imshow(image)
|
||||
```
|
||||
|
||||
## `calculate_area(countour)`
|
||||
This function calculates the area of a contour in an image.
|
||||
|
||||
Example:
|
||||
### `calculate_area(countour)`
|
||||
The `calculate_area` function calculates the area of a contour in an image using OpenCV. Here is an example of how to use the `calculate_area` function:
|
||||
|
||||
```
|
||||
# Import the required modules
|
||||
import cv2 as cv
|
||||
```python
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
# Load the image and find the contours
|
||||
image = cv.imread('image.jpg')
|
||||
contours, _ = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
|
||||
# Load an image using some library (e.g. Pillow, OpenCV, etc.)
|
||||
image = ...
|
||||
|
||||
# Iterate over the contours and calculate their areas
|
||||
# Find contours in the image using OpenCV
|
||||
contours = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
|
||||
|
||||
# Calculate the area of each contour
|
||||
for contour in contours:
|
||||
area = calculate_area(contour)
|
||||
print('Area of contour:', area)
|
||||
print(area)
|
||||
```
|
||||
|
||||
## `center_of_mass(X)`
|
||||
This function calculates the center of mass of a set of points.
|
||||
|
||||
Example:
|
||||
### `center_of_mass(X)`
|
||||
The `center_of_mass` function calculates the center of mass of a 2D shape defined by a set of points. Here is an example of how to use the `center_of_mass` function:
|
||||
|
||||
```
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
# Define a set of points
|
||||
X = np.array([[1,2], [3,4], [5,6]])
|
||||
# Define a set of points that define a shape
|
||||
X = np.array([[0,0], [0,1], [1,1], [1,0]])
|
||||
|
||||
# Calculate the center of mass of the points
|
||||
center = center_of_mass(X)
|
||||
# Calculate the center of mass of the shape
|
||||
com = center_of_mass(X)
|
||||
|
||||
# Print the result
|
||||
print('Center of mass:', center)
|
||||
# Print the center of mass
|
||||
print(com)
|
||||
```
|
||||
|
||||
The output will be `Center of mass: [3. 4.]`.
|
||||
In this example, the output would be `[0.5, 0.5]`, which is the center of the square defined by the points `X`.
|
||||
|
||||
## `center_of_mass(X)`
|
||||
This function calculates the center of mass of a set of points.
|
||||
|
||||
Example:
|
||||
### `center_of_mass(X)`
|
||||
The `center_of_mass` function calculates the center of mass of a 2D shape defined by a set of points. Here is an example of how to use the `center_of_mass` function:
|
||||
|
||||
```
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
# Define a set of points
|
||||
X = np.array([[1,2], [3,4], [5,6]])
|
||||
# Define a set of points that define a shape
|
||||
X = np.array([[0,0], [0,1], [1,1], [1,0]])
|
||||
|
||||
# Calculate the center of mass of the points
|
||||
center = center_of_mass(X)
|
||||
# Calculate the center of mass of the shape
|
||||
com = center_of_mass(X)
|
||||
|
||||
# Print the result
|
||||
print('Center of mass:', center)
|
||||
# Print the center of mass
|
||||
print(com)
|
||||
```
|
||||
|
||||
The output will be `Center of mass: [3. 4.]`.
|
||||
In this example, the output would be `[0.5, 0.5]`, which is the center of the square defined by the points `X`.
|
||||
|
||||
## `rg_ratio_normalize(imgarr)`
|
||||
This function normalizes the temperature values in an image array using the RG ratio and a pyrometry calibration formula.
|
||||
|
||||
Example:
|
||||
### `rg_ratio_normalize(imgarr)`
|
||||
The `rg_ratio_normalize` function applies a normalization function to the red and green channels of a 2D image, then applies a camera calibration formula to the resulting normalized values and returns the resulting image. Here is an example of how to use the `rg_ratio_normalize` function:
|
||||
|
||||
```
|
||||
# Import the required modules
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
# Load the image array
|
||||
imgarr = np.array(...)
|
||||
# Load an image using some library (e.g. Pillow, OpenCV, etc.)
|
||||
image = ...
|
||||
|
||||
# Normalize the temperature values in the image
|
||||
# Convert the image to a NumPy array
|
||||
imgarr = np.array(image)
|
||||
|
||||
# Apply the normalization and calibration to the image
|
||||
imgnew, tmin, tmax = rg_ratio_normalize(imgarr)
|
||||
|
||||
# Print the resulting minimum and maximum temperature values
|
||||
print('Minimum temperature:', tmin)
|
||||
print('Maximum temperature:', tmax)
|
||||
# Print the minimum and maximum temperature values in the image
|
||||
print(tmin, tmax)
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
import re
|
||||
|
||||
ext_lang_map = {
|
||||
"py": "python",
|
||||
"java": "java",
|
||||
"js": "javascript",
|
||||
"cpp": "cpp",
|
||||
"cxx": "cpp",
|
||||
"hpp": "cpp",
|
||||
}
|
||||
|
||||
|
||||
def highlight_multiline_code_md(md_text: str, language_str: str) -> str:
|
||||
"""
|
||||
Highlight markdown-embedded code blocks.
|
||||
"""
|
||||
out = ""
|
||||
in_code_block = False
|
||||
for line in md_text.split("\n"):
|
||||
if not in_code_block and re.search("^```(.*)$", line):
|
||||
in_code_block = True
|
||||
if line.strip() == "```":
|
||||
line = f"```{language_str}"
|
||||
elif in_code_block and line.strip() == "```":
|
||||
in_code_block = False
|
||||
|
||||
out += line + "\n"
|
||||
|
||||
return out
|
|
@ -0,0 +1 @@
|
|||
# add later
|
Loading…
Reference in New Issue