JobSpy/src/jobspy/__init__.py

209 lines
7.1 KiB
Python

from __future__ import annotations
import pandas as pd
from typing import Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
from .jobs import JobType, Location
from .scrapers.utils import logger
from .scrapers.indeed import IndeedScraper
from .scrapers.ziprecruiter import ZipRecruiterScraper
from .scrapers.glassdoor import GlassdoorScraper
from .scrapers.linkedin import LinkedInScraper
from .scrapers import ScraperInput, Site, JobResponse, Country
from .scrapers.exceptions import (
LinkedInException,
IndeedException,
ZipRecruiterException,
GlassdoorException,
)
def scrape_jobs(
site_name: str | list[str] | Site | list[Site] | None = None,
search_term: str | None = None,
location: str | None = None,
distance: int | None = 50,
is_remote: bool = False,
job_type: str | None = None,
easy_apply: bool | None = None,
results_wanted: int = 15,
country_indeed: str = "usa",
hyperlinks: bool = False,
proxy: str | None = None,
description_format: str = "markdown",
linkedin_fetch_description: bool | None = False,
linkedin_company_ids: list[int] | None = None,
offset: int | None = 0,
hours_old: int = None,
**kwargs,
) -> pd.DataFrame:
"""
Simultaneously scrapes job data from multiple job sites.
:return: results_wanted: pandas dataframe containing job data
"""
SCRAPER_MAPPING = {
Site.LINKEDIN: LinkedInScraper,
Site.INDEED: IndeedScraper,
Site.ZIP_RECRUITER: ZipRecruiterScraper,
Site.GLASSDOOR: GlassdoorScraper,
}
def map_str_to_site(site_name: str) -> Site:
return Site[site_name.upper()]
def get_enum_from_value(value_str):
for job_type in JobType:
if value_str in job_type.value:
return job_type
raise Exception(f"Invalid job type: {value_str}")
job_type = get_enum_from_value(job_type) if job_type else None
def get_site_type():
site_types = list(Site)
if isinstance(site_name, str):
site_types = [map_str_to_site(site_name)]
elif isinstance(site_name, Site):
site_types = [site_name]
elif isinstance(site_name, list):
site_types = [
map_str_to_site(site) if isinstance(site, str) else site
for site in site_name
]
return site_types
country_enum = Country.from_string(country_indeed)
scraper_input = ScraperInput(
site_type=get_site_type(),
country=country_enum,
search_term=search_term,
location=location,
distance=distance,
is_remote=is_remote,
job_type=job_type,
easy_apply=easy_apply,
description_format=description_format,
linkedin_fetch_description=linkedin_fetch_description,
results_wanted=results_wanted,
linkedin_company_ids=linkedin_company_ids,
offset=offset,
hours_old=hours_old,
)
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
scraper_class = SCRAPER_MAPPING[site]
scraper = scraper_class(proxy=proxy)
scraped_data: JobResponse = scraper.scrape(scraper_input)
cap_name = site.value.capitalize()
site_name = "ZipRecruiter" if cap_name == "Zip_recruiter" else cap_name
logger.info(f"{site_name} finished scraping")
return site.value, scraped_data
site_to_jobs_dict = {}
def worker(site):
site_val, scraped_info = scrape_site(site)
return site_val, scraped_info
with ThreadPoolExecutor() as executor:
future_to_site = {
executor.submit(worker, site): site for site in scraper_input.site_type
}
for future in as_completed(future_to_site):
site_value, scraped_data = future.result()
site_to_jobs_dict[site_value] = scraped_data
jobs_dfs: list[pd.DataFrame] = []
for site, job_response in site_to_jobs_dict.items():
for job in job_response.jobs:
job_data = job.dict()
job_url = job_data["job_url"]
job_data["job_url_hyper"] = f'<a href="{job_url}">{job_url}</a>'
job_data["site"] = site
job_data["company"] = job_data["company_name"]
job_data["job_type"] = (
", ".join(job_type.value[0] for job_type in job_data["job_type"])
if job_data["job_type"]
else None
)
job_data["emails"] = (
", ".join(job_data["emails"]) if job_data["emails"] else None
)
if job_data["location"]:
job_data["location"] = Location(
**job_data["location"]
).display_location()
compensation_obj = job_data.get("compensation")
if compensation_obj and isinstance(compensation_obj, dict):
job_data["interval"] = (
compensation_obj.get("interval").value
if compensation_obj.get("interval")
else None
)
job_data["min_amount"] = compensation_obj.get("min_amount")
job_data["max_amount"] = compensation_obj.get("max_amount")
job_data["currency"] = compensation_obj.get("currency", "USD")
else:
job_data["interval"] = None
job_data["min_amount"] = None
job_data["max_amount"] = None
job_data["currency"] = None
job_df = pd.DataFrame([job_data])
jobs_dfs.append(job_df)
if jobs_dfs:
# Step 1: Filter out all-NA columns from each DataFrame before concatenation
filtered_dfs = [df.dropna(axis=1, how="all") for df in jobs_dfs]
# Step 2: Concatenate the filtered DataFrames
jobs_df = pd.concat(filtered_dfs, ignore_index=True)
# Desired column order
desired_order = [
"site",
"job_url_hyper" if hyperlinks else "job_url",
"job_url_direct",
"title",
"company",
"location",
"job_type",
"date_posted",
"interval",
"min_amount",
"max_amount",
"currency",
"is_remote",
"emails",
"description",
"company_url",
"company_url_direct",
"company_addresses",
"company_industry",
"company_num_employees",
"company_revenue",
"company_description",
"logo_photo_url",
"banner_photo_url",
"ceo_name",
"ceo_photo_url",
]
# Step 3: Ensure all desired columns are present, adding missing ones as empty
for column in desired_order:
if column not in jobs_df.columns:
jobs_df[column] = None # Add missing columns as empty
# Reorder the DataFrame according to the desired order
jobs_df = jobs_df[desired_order]
# Step 4: Sort the DataFrame as required
return jobs_df.sort_values(by=["site", "date_posted"], ascending=[True, False])
else:
return pd.DataFrame()