from __future__ import annotations import re from threading import Lock import pandas as pd from typing import Tuple from concurrent.futures import ThreadPoolExecutor, as_completed from .scrapers.site import Site from .scrapers.goozali import GoozaliScraper from .jobs import JobPost, JobType, Location from .scrapers.utils import set_logger_level, extract_salary, create_logger from .scrapers.indeed import IndeedScraper from .scrapers.ziprecruiter import ZipRecruiterScraper from .scrapers.glassdoor import GlassdoorScraper from .scrapers.google import GoogleJobsScraper from .scrapers.linkedin import LinkedInScraper from .scrapers import SalarySource, ScraperInput, JobResponse, Country from .scrapers.exceptions import ( LinkedInException, IndeedException, ZipRecruiterException, GlassdoorException, GoogleJobsException, ) def scrape_jobs( site_name: str | list[str] | Site | list[Site] | None = None, search_term: str | None = None, google_search_term: str | None = None, location: str | None = None, locations: list[str] | None = None, distance: int | None = 50, is_remote: bool = False, job_type: str | None = None, easy_apply: bool | None = None, results_wanted: int = 15, country_indeed: str = "usa", hyperlinks: bool = False, proxies: list[str] | str | None = None, ca_cert: str | None = None, description_format: str = "markdown", linkedin_fetch_description: bool | None = False, linkedin_company_ids: list[int] | None = None, offset: int | None = 0, hours_old: int = None, enforce_annual_salary: bool = False, verbose: int = 2, filter_by_title:list[str] = None, ** kwargs, ) -> list[JobPost]: """ Simultaneously scrapes job data from multiple job sites. :return: pandas dataframe containing job data """ SCRAPER_MAPPING = { Site.LINKEDIN: LinkedInScraper, Site.INDEED: IndeedScraper, Site.ZIP_RECRUITER: ZipRecruiterScraper, Site.GLASSDOOR: GlassdoorScraper, Site.GOOGLE: GoogleJobsScraper, Site.GOOZALI: GoozaliScraper, } set_logger_level(verbose) def map_str_to_site(site_name: str) -> Site: return Site[site_name.upper()] def get_enum_from_value(value_str): for job_type in JobType: if value_str in job_type.value: return job_type raise Exception(f"Invalid job type: {value_str}") job_type = get_enum_from_value(job_type) if job_type else None def get_site_type(): site_types = list(Site) if isinstance(site_name, str): site_types = [map_str_to_site(site_name)] elif isinstance(site_name, Site): site_types = [site_name] elif isinstance(site_name, list): site_types = [ map_str_to_site(site) if isinstance(site, str) else site for site in site_name ] return site_types country_enum = Country.from_string(country_indeed) scraper_input = ScraperInput( site_type=get_site_type(), country=country_enum, search_term=search_term, google_search_term=google_search_term, location=location, locations=locations, distance=distance, is_remote=is_remote, job_type=job_type, easy_apply=easy_apply, description_format=description_format, linkedin_fetch_description=linkedin_fetch_description, results_wanted=results_wanted, linkedin_company_ids=linkedin_company_ids, offset=offset, hours_old=hours_old ) def scrape_site(site: Site) -> Tuple[str, JobResponse]: scraper_class = SCRAPER_MAPPING[site] scraper = scraper_class(proxies=proxies, ca_cert=ca_cert) scraped_data: JobResponse = scraper.scrape(scraper_input) cap_name = site.value.capitalize() site_name = "ZipRecruiter" if cap_name == "Zip_recruiter" else cap_name create_logger(site_name).info(f"finished scraping") return site.value, scraped_data site_to_jobs_dict = {} merged_jobs: list[JobPost] = [] lock = Lock() def worker(site): logger = create_logger(f"Worker {site}") logger.info("Starting") try: site_val, scraped_info = scrape_site(site) with lock: merged_jobs.extend(scraped_info.jobs) logger.info("Finished") return site_val, scraped_info except Exception as e: logger.error(f"Error: {e}") return None, None with ThreadPoolExecutor(max_workers=5) as executor: logger = create_logger("ThreadPoolExecutor") future_to_site = { executor.submit(worker, site): site for site in scraper_input.site_type } # An iterator over the given futures that yields each as it completes. for future in as_completed(future_to_site): try: site_value, scraped_data = future.result() if site_value and scraped_data: site_to_jobs_dict[site_value] = scraped_data except Exception as e: logger.error(f"Future Error occurred: {e}") def filter_jobs_by_title_name(job: JobPost): for filter_title in filter_by_title: if re.search(filter_title, job.title, re.IGNORECASE): logger.info(f"job filtered out by title: {job.id} , { job.title} , found {filter_title}") return False return True return list(filter(filter_jobs_by_title_name, merged_jobs))