import json import os from jobspy import scrape_jobs import pandas as pd # load location list def read_location_list(location_file): with open(location_file) as f: location_list = [location['name'] for location in json.load(f)] return location_list # formatting for pandas pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', 50) # set to 0 to see full job url / desc # fetch jobs for each location locations = read_location_list('location.json') for location in locations: try: jobs: pd.DataFrame = scrape_jobs( # site_name=["indeed", "linkedin", "zip_recruiter"], site_name=["indeed"], search_term="software engineer", location=location, results_wanted=30, # be wary the higher it is, the more likey you'll get blocked (rotating proxy should work tho) country_indeed='USA', # offset=25 # start jobs from an offset (use if search failed and want to continue) proxy="http://34.120.172.140:8123", # proxy="http://crawler-gost-proxy.jobright-internal.com:8080", ) except Exception as e: print(f'Error when process: {location}') print(e) continue print(f'{location}: {jobs.shape[0]} rows append.') if os.path.isfile('./jobs.csv'): jobs.to_csv('./jobs.csv', index=False, mode='a', header=False) else: jobs.to_csv('./jobs.csv', index=False, mode='a', header=True)