mirror of https://github.com/Bunsly/JobSpy
feat: Ability to query by time posted for linkedin, indeed, glassdoor
parent
32282305c8
commit
e8db57695c
|
@ -43,6 +43,8 @@ def scrape_jobs(
|
|||
full_description: bool | None = False,
|
||||
linkedin_company_ids: list[int] | None = None,
|
||||
offset: int | None = 0,
|
||||
hours_old: int = None,
|
||||
**kwargs,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Simultaneously scrapes job data from multiple job sites.
|
||||
|
@ -85,6 +87,7 @@ def scrape_jobs(
|
|||
results_wanted=results_wanted,
|
||||
linkedin_company_ids=linkedin_company_ids,
|
||||
offset=offset,
|
||||
hours_old=hours_old
|
||||
)
|
||||
|
||||
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
|
||||
|
|
|
@ -23,6 +23,7 @@ class ScraperInput(BaseModel):
|
|||
linkedin_company_ids: list[int] | None = None
|
||||
|
||||
results_wanted: int = 15
|
||||
hours_old: int | None = None
|
||||
|
||||
|
||||
class Scraper:
|
||||
|
@ -30,5 +31,4 @@ class Scraper:
|
|||
self.site = site
|
||||
self.proxy = (lambda p: {"http": p, "https": p} if p else None)(proxy)
|
||||
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
|
||||
...
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse: ...
|
||||
|
|
|
@ -258,6 +258,8 @@ class GlassdoorScraper(Scraper):
|
|||
page_num: int,
|
||||
cursor: str | None = None,
|
||||
) -> str:
|
||||
# `fromage` is the posting time filter in days
|
||||
fromage = min(scraper_input.hours_old // 24, 1) if scraper_input.hours_old else None
|
||||
payload = {
|
||||
"operationName": "JobSearchResultsQuery",
|
||||
"variables": {
|
||||
|
@ -270,6 +272,7 @@ class GlassdoorScraper(Scraper):
|
|||
"parameterUrlInput": f"IL.0,12_I{location_type}{location_id}",
|
||||
"pageNumber": page_num,
|
||||
"pageCursor": cursor,
|
||||
"fromAge": fromage
|
||||
},
|
||||
"query": "query JobSearchResultsQuery($excludeJobListingIds: [Long!], $keyword: String, $locationId: Int, $locationType: LocationTypeEnum, $numJobsToShow: Int!, $pageCursor: String, $pageNumber: Int, $filterParams: [FilterParams], $originalPageUrl: String, $seoFriendlyUrlInput: String, $parameterUrlInput: String, $seoUrl: Boolean) {\n jobListings(\n contextHolder: {searchParams: {excludeJobListingIds: $excludeJobListingIds, keyword: $keyword, locationId: $locationId, locationType: $locationType, numPerPage: $numJobsToShow, pageCursor: $pageCursor, pageNumber: $pageNumber, filterParams: $filterParams, originalPageUrl: $originalPageUrl, seoFriendlyUrlInput: $seoFriendlyUrlInput, parameterUrlInput: $parameterUrlInput, seoUrl: $seoUrl, searchType: SR}}\n ) {\n companyFilterOptions {\n id\n shortName\n __typename\n }\n filterOptions\n indeedCtk\n jobListings {\n ...JobView\n __typename\n }\n jobListingSeoLinks {\n linkItems {\n position\n url\n __typename\n }\n __typename\n }\n jobSearchTrackingKey\n jobsPageSeoData {\n pageMetaDescription\n pageTitle\n __typename\n }\n paginationCursors {\n cursor\n pageNumber\n __typename\n }\n indexablePageForSeo\n searchResultsMetadata {\n searchCriteria {\n implicitLocation {\n id\n localizedDisplayName\n type\n __typename\n }\n keyword\n location {\n id\n shortName\n localizedShortName\n localizedDisplayName\n type\n __typename\n }\n __typename\n }\n footerVO {\n countryMenu {\n childNavigationLinks {\n id\n link\n textKey\n __typename\n }\n __typename\n }\n __typename\n }\n helpCenterDomain\n helpCenterLocale\n jobAlert {\n jobAlertExists\n __typename\n }\n jobSerpFaq {\n questions {\n answer\n question\n __typename\n }\n __typename\n }\n jobSerpJobOutlook {\n occupation\n paragraph\n __typename\n }\n showMachineReadableJobs\n __typename\n }\n serpSeoLinksVO {\n relatedJobTitlesResults\n searchedJobTitle\n searchedKeyword\n searchedLocationIdAsString\n searchedLocationSeoName\n searchedLocationType\n topCityIdsToNameResults {\n key\n value\n __typename\n }\n topEmployerIdsToNameResults {\n key\n value\n __typename\n }\n topEmployerNameResults\n topOccupationResults\n __typename\n }\n totalJobsCount\n __typename\n }\n}\n\nfragment JobView on JobListingSearchResult {\n jobview {\n header {\n adOrderId\n advertiserType\n adOrderSponsorshipLevel\n ageInDays\n divisionEmployerName\n easyApply\n employer {\n id\n name\n shortName\n __typename\n }\n employerNameFromSearch\n goc\n gocConfidence\n gocId\n jobCountryId\n jobLink\n jobResultTrackingKey\n jobTitleText\n locationName\n locationType\n locId\n needsCommission\n payCurrency\n payPeriod\n payPeriodAdjustedPay {\n p10\n p50\n p90\n __typename\n }\n rating\n salarySource\n savedJobId\n sponsored\n __typename\n }\n job {\n descriptionFragments\n importConfigId\n jobTitleId\n jobTitleText\n listingId\n __typename\n }\n jobListingAdminDetails {\n cpcVal\n importConfigId\n jobListingId\n jobSourceId\n userEligibleForAdminJobDetails\n __typename\n }\n overview {\n shortName\n squareLogoUrl\n __typename\n }\n __typename\n }\n __typename\n}\n",
|
||||
}
|
||||
|
|
|
@ -346,12 +346,15 @@ class IndeedScraper(Scraper):
|
|||
|
||||
@staticmethod
|
||||
def add_params(scraper_input: ScraperInput, page: int) -> dict[str, str | Any]:
|
||||
# `fromage` is the posting time filter in days
|
||||
fromage = min(scraper_input.hours_old // 24, 1) if scraper_input.hours_old else None
|
||||
params = {
|
||||
"q": scraper_input.search_term,
|
||||
"l": scraper_input.location if scraper_input.location else scraper_input.country.value[0].split(',')[-1],
|
||||
"filter": 0,
|
||||
"start": scraper_input.offset + page * 10,
|
||||
"sort": "date"
|
||||
"sort": "date",
|
||||
"fromage": fromage,
|
||||
}
|
||||
if scraper_input.distance:
|
||||
params["radius"] = scraper_input.distance
|
||||
|
|
|
@ -59,6 +59,12 @@ class LinkedInScraper(Scraper):
|
|||
url_lock = Lock()
|
||||
page = scraper_input.offset // 25 + 25 if scraper_input.offset else 0
|
||||
|
||||
seconds_old = (
|
||||
scraper_input.hours_old * 3600
|
||||
if scraper_input.hours_old
|
||||
else None
|
||||
)
|
||||
|
||||
def job_type_code(job_type_enum):
|
||||
mapping = {
|
||||
JobType.FULL_TIME: "F",
|
||||
|
@ -85,7 +91,8 @@ class LinkedInScraper(Scraper):
|
|||
"pageNum": 0,
|
||||
"start": page + scraper_input.offset,
|
||||
"f_AL": "true" if scraper_input.easy_apply else None,
|
||||
"f_C": ','.join(map(str, scraper_input.linkedin_company_ids)) if scraper_input.linkedin_company_ids else None
|
||||
"f_C": ','.join(map(str, scraper_input.linkedin_company_ids)) if scraper_input.linkedin_company_ids else None,
|
||||
"f_TPR": f"r{seconds_old}",
|
||||
}
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
@ -101,7 +108,9 @@ class LinkedInScraper(Scraper):
|
|||
response.raise_for_status()
|
||||
|
||||
except requests.HTTPError as e:
|
||||
raise LinkedInException(f"bad response status code: {e.response.status_code}")
|
||||
raise LinkedInException(
|
||||
f"bad response status code: {e.response.status_code}"
|
||||
)
|
||||
except ProxyError as e:
|
||||
raise LinkedInException("bad proxy")
|
||||
except Exception as e:
|
||||
|
@ -145,11 +154,11 @@ class LinkedInScraper(Scraper):
|
|||
|
||||
compensation = None
|
||||
if salary_tag:
|
||||
salary_text = salary_tag.get_text(separator=' ').strip()
|
||||
salary_values = [currency_parser(value) for value in salary_text.split('-')]
|
||||
salary_text = salary_tag.get_text(separator=" ").strip()
|
||||
salary_values = [currency_parser(value) for value in salary_text.split("-")]
|
||||
salary_min = salary_values[0]
|
||||
salary_max = salary_values[1]
|
||||
currency = salary_text[0] if salary_text[0] != '$' else 'USD'
|
||||
currency = salary_text[0] if salary_text[0] != "$" else "USD"
|
||||
|
||||
compensation = Compensation(
|
||||
min_amount=int(salary_min),
|
||||
|
@ -294,17 +303,17 @@ class LinkedInScraper(Scraper):
|
|||
@staticmethod
|
||||
def headers() -> dict:
|
||||
return {
|
||||
'authority': 'www.linkedin.com',
|
||||
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
||||
'accept-language': 'en-US,en;q=0.9',
|
||||
'cache-control': 'max-age=0',
|
||||
'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "Google Chrome";v="120"',
|
||||
"authority": "www.linkedin.com",
|
||||
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "max-age=0",
|
||||
"sec-ch-ua": '"Not_A Brand";v="8", "Chromium";v="120", "Google Chrome";v="120"',
|
||||
# 'sec-ch-ua-mobile': '?0',
|
||||
# 'sec-ch-ua-platform': '"macOS"',
|
||||
# 'sec-fetch-dest': 'document',
|
||||
# 'sec-fetch-mode': 'navigate',
|
||||
# 'sec-fetch-site': 'none',
|
||||
# 'sec-fetch-user': '?1',
|
||||
'upgrade-insecure-requests': '1',
|
||||
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
|
||||
"upgrade-insecure-requests": "1",
|
||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue