mirror of https://github.com/Bunsly/JobSpy
aligned and added the telegram and chat id
parent
b147ac7f85
commit
cc782ddfc1
|
@ -2,11 +2,9 @@ from __future__ import annotations
|
|||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
from typing import List, Tuple
|
||||
from typing import Tuple
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
|
||||
from pymongo import MongoClient, UpdateOne
|
||||
|
||||
from .jobs import JobPost, JobType, Location
|
||||
from .scrapers.utils import set_logger_level, extract_salary, create_logger
|
||||
from .scrapers.indeed import IndeedScraper
|
||||
|
@ -22,14 +20,6 @@ from .scrapers.exceptions import (
|
|||
GlassdoorException,
|
||||
GoogleJobsException,
|
||||
)
|
||||
# Connect to MongoDB server
|
||||
client = MongoClient("mongodb://localhost:27017/")
|
||||
|
||||
# Access a database (it will be created automatically if it doesn't exist)
|
||||
db = client["jobs_database"]
|
||||
|
||||
# Access a collection
|
||||
jobs_collection = db["jobs"]
|
||||
|
||||
def scrape_jobs(
|
||||
site_name: str | list[str] | Site | list[Site] | None = None,
|
||||
|
@ -113,58 +103,22 @@ def scrape_jobs(
|
|||
hours_old=hours_old,
|
||||
)
|
||||
|
||||
# def insert_jobs(jobs: List[JobPost], collection):
|
||||
# # Convert JobPost objects to dictionaries
|
||||
# # job_dicts = [job.model_dump() for job in jobs]
|
||||
# job_dicts = [job.model_dump(exclude={"date_posted"}) for job in jobs]
|
||||
# collection.insert_many(job_dicts)
|
||||
# print(f"Inserted {len(job_dicts)} jobs into MongoDB.")
|
||||
def insert_jobs(jobs: List[JobPost], collection):
|
||||
"""
|
||||
Perform bulk upserts for a list of JobPost objects into a MongoDB collection.
|
||||
Only insert new jobs and return the list of newly inserted jobs.
|
||||
"""
|
||||
operations = []
|
||||
new_jobs = [] # List to store the new jobs inserted into MongoDB
|
||||
|
||||
for job in jobs:
|
||||
job_dict = job.model_dump(exclude={"date_posted"})
|
||||
operations.append(
|
||||
UpdateOne(
|
||||
{"id": job.id}, # Match by `id`
|
||||
{"$setOnInsert": job_dict}, # Only set fields if the job is being inserted (not updated)
|
||||
upsert=True # Insert if not found, but do not update if already exists
|
||||
)
|
||||
)
|
||||
|
||||
if operations:
|
||||
# Execute all operations in bulk
|
||||
result = collection.bulk_write(operations)
|
||||
print(f"Matched: {result.matched_count}, Upserts: {result.upserted_count}, Modified: {result.modified_count}")
|
||||
|
||||
# Get the newly inserted jobs (those that were upserted)
|
||||
# The `upserted_count` corresponds to how many new documents were inserted
|
||||
for i, job in enumerate(jobs):
|
||||
if result.upserted_count > 0 and i < result.upserted_count:
|
||||
new_jobs.append(job)
|
||||
print(f"New Job ID: {job.id}, Label: {job.label}")
|
||||
|
||||
return new_jobs
|
||||
|
||||
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
|
||||
scraper_class = SCRAPER_MAPPING[site]
|
||||
scraper = scraper_class(proxies=proxies, ca_cert=ca_cert)
|
||||
scraped_data: JobResponse = scraper.scrape(scraper_input)
|
||||
insert_jobs(scraped_data.jobs, jobs_collection)
|
||||
cap_name = site.value.capitalize()
|
||||
site_name = "ZipRecruiter" if cap_name == "Zip_recruiter" else cap_name
|
||||
create_logger(site_name).info(f"finished scraping")
|
||||
return site.value, scraped_data
|
||||
|
||||
site_to_jobs_dict = {}
|
||||
|
||||
merged_jobs:list[JobPost] = []
|
||||
def worker(site):
|
||||
site_val, scraped_info = scrape_site(site)
|
||||
# Add the scraped jobs to the merged list
|
||||
merged_jobs.extend(scraped_info.jobs) # Assuming scraped_info has 'jobs' as a list
|
||||
|
||||
return site_val, scraped_info
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
|
@ -176,6 +130,7 @@ def scrape_jobs(
|
|||
site_value, scraped_data = future.result()
|
||||
site_to_jobs_dict[site_value] = scraped_data
|
||||
|
||||
return merged_jobs
|
||||
def convert_to_annual(job_data: dict):
|
||||
if job_data["interval"] == "hourly":
|
||||
job_data["min_amount"] *= 2080
|
||||
|
|
83
src/main.py
83
src/main.py
|
@ -1,6 +1,72 @@
|
|||
import asyncio
|
||||
import csv
|
||||
from typing import List
|
||||
|
||||
from pymongo import MongoClient, UpdateOne
|
||||
from telegram import Bot
|
||||
|
||||
from jobspy import scrape_jobs
|
||||
from jobspy.jobs import JobPost
|
||||
TELEGRAM_API_TOKEN =
|
||||
CHAT_ID =
|
||||
# Connect to MongoDB server
|
||||
client = MongoClient("mongodb://localhost:27017/")
|
||||
# Access a database (it will be created automatically if it doesn't exist)
|
||||
db = client["jobs_database"]
|
||||
# Access a collection
|
||||
jobs_collection = db["jobs"]
|
||||
# Initialize the Telegram bot
|
||||
bot = Bot(token=TELEGRAM_API_TOKEN)
|
||||
|
||||
async def send_job_to_telegram(job:JobPost):
|
||||
"""
|
||||
Send job details to Telegram chat.
|
||||
"""
|
||||
message = f"New Job Posted:\n\n" \
|
||||
f"Job ID: {job.id}\n" \
|
||||
f"Job Title: {job.title}\n" \
|
||||
f"Company: {job.company_name}\n" \
|
||||
f"Location: {job.location}\n" \
|
||||
f"Link: {job.job_url}\n"
|
||||
try:
|
||||
await bot.sendMessage(chat_id=CHAT_ID, text=message)
|
||||
print(f"Sent job to Telegram: {job.id}")
|
||||
except Exception as e:
|
||||
print(f"Failed to send job to Telegram: {e}")
|
||||
|
||||
def insert_jobs(jobs: List[JobPost], collection):
|
||||
"""
|
||||
Perform bulk upserts for a list of JobPost objects into a MongoDB collection.
|
||||
Only insert new jobs and return the list of newly inserted jobs.
|
||||
"""
|
||||
operations = []
|
||||
new_jobs = [] # List to store the new jobs inserted into MongoDB
|
||||
|
||||
for job in jobs:
|
||||
job_dict = job.model_dump(exclude={"date_posted"})
|
||||
operations.append(
|
||||
UpdateOne(
|
||||
{"id": job.id}, # Match by `id`
|
||||
{"$setOnInsert": job_dict}, # Only set fields if the job is being inserted (not updated)
|
||||
upsert=True # Insert if not found, but do not update if already exists
|
||||
)
|
||||
)
|
||||
|
||||
if operations:
|
||||
# Execute all operations in bulk
|
||||
result = collection.bulk_write(operations)
|
||||
print(f"Matched: {result.matched_count}, Upserts: {result.upserted_count}, Modified: {result.modified_count}")
|
||||
|
||||
# Get the newly inserted jobs (those that were upserted)
|
||||
# The `upserted_count` corresponds to how many new documents were inserted
|
||||
for i, job in enumerate(jobs):
|
||||
if result.upserted_count > 0 and i < result.upserted_count:
|
||||
new_jobs.append(job)
|
||||
print(f"New Job ID: {job.id}, Label: {job.title}")
|
||||
|
||||
return new_jobs
|
||||
|
||||
async def main():
|
||||
|
||||
jobs = scrape_jobs(
|
||||
# site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor", "google"],
|
||||
|
@ -8,15 +74,18 @@ jobs = scrape_jobs(
|
|||
search_term="software engineer",
|
||||
google_search_term="software engineer jobs near Tel Aviv Israel since yesterday",
|
||||
location="Central, Israel",
|
||||
locations=["Tel Aviv, Israel","Ramat Gan, Israel","Central, Israel","Rehovot ,Israel"],
|
||||
results_wanted=200,
|
||||
locations=["Ramat Gan, Israel"],
|
||||
# locations=["Tel Aviv, Israel","Ramat Gan, Israel","Central, Israel","Rehovot ,Israel"],
|
||||
results_wanted=50,
|
||||
hours_old=200,
|
||||
country_indeed='israel',
|
||||
|
||||
# linkedin_fetch_description=True # gets more info such as description, direct job url (slower)
|
||||
# proxies=["208.195.175.46:65095", "208.195.175.45:65095", "localhost"],
|
||||
)
|
||||
print(f"Found {len(jobs)} jobs")
|
||||
|
||||
# print(jobs.head())
|
||||
# jobs.to_csv("jobs.csv", quoting=csv.QUOTE_NONNUMERIC, escapechar="\\", index=False) # to_excel
|
||||
new_jobs = insert_jobs(jobs, jobs_collection)
|
||||
|
||||
for new_job in new_jobs:
|
||||
await send_job_to_telegram(new_job)
|
||||
# Run the async main function
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Loading…
Reference in New Issue