Description format (#107)

pull/117/head v1.1.45
Cullen Watson 2024-02-14 16:04:23 -06:00 committed by GitHub
parent aeb1a50d2c
commit ba3a16b228
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 592 additions and 592 deletions

View File

@ -11,7 +11,7 @@ work with us.*
- Scrapes job postings from **LinkedIn**, **Indeed**, **Glassdoor**, & **ZipRecruiter** simultaneously
- Aggregates the job postings in a Pandas DataFrame
- Proxy support (HTTP/S, SOCKS)
- Proxy support
[Video Guide for JobSpy](https://www.youtube.com/watch?v=RuP1HrAZnxs&pp=ygUgam9icyBzY3JhcGVyIGJvdCBsaW5rZWRpbiBpbmRlZWQ%3D) -
Updated for release v1.1.3
@ -67,12 +67,13 @@ Optional
├── location (int)
├── distance (int): in miles
├── job_type (enum): fulltime, parttime, internship, contract
├── proxy (str): in format 'http://user:pass@host:port' or [https, socks]
├── proxy (str): in format 'http://user:pass@host:port'
├── is_remote (bool)
├── full_description (bool): fetches full description for LinkedIn (slower)
├── linkedin_fetch_description (bool): fetches full description for LinkedIn (slower)
├── results_wanted (int): number of job results to retrieve for each site specified in 'site_type'
├── easy_apply (bool): filters for jobs that are hosted on the job board site
├── linkedin_company_ids (list[int): searches for linkedin jobs with specific company ids
├── description_format (enum): markdown, html (format type of the job descriptions)
├── country_indeed (enum): filters the country on Indeed (see below for correct spelling)
├── offset (num): starts the search from an offset (e.g. 25 will start the search from the 25th result)
├── hours_old (int): filters jobs by the number of hours since the job was posted (all but LinkedIn rounds up to next day)

13
poetry.lock generated
View File

@ -524,6 +524,17 @@ files = [
{file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"},
]
[[package]]
name = "html2text"
version = "2020.1.16"
description = "Turn HTML into equivalent Markdown-structured text."
optional = false
python-versions = ">=3.5"
files = [
{file = "html2text-2020.1.16-py3-none-any.whl", hash = "sha256:c7c629882da0cf377d66f073329ccf34a12ed2adf0169b9285ae4e63ef54c82b"},
{file = "html2text-2020.1.16.tar.gz", hash = "sha256:e296318e16b059ddb97f7a8a1d6a5c1d7af4544049a01e261731d2d5cc277bbb"},
]
[[package]]
name = "idna"
version = "3.4"
@ -2435,4 +2446,4 @@ files = [
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "404a77d78066cbb2ef71015562baf44aa11d12aac29a191c1ccc7758bfda598a"
content-hash = "40cdc19a57cba0d21ff4f0fcfa53e14a073fcccd9f2a871440e056ab6e8fade0"

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "python-jobspy"
version = "1.1.44"
version = "1.1.45"
description = "Job scraper for LinkedIn, Indeed, Glassdoor & ZipRecruiter"
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
homepage = "https://github.com/Bunsly/JobSpy"
@ -18,6 +18,7 @@ beautifulsoup4 = "^4.12.2"
pandas = "^2.1.0"
NUMPY = "1.24.2"
pydantic = "^2.3.0"
html2text = "^2020.1.16"
[tool.poetry.group.dev.dependencies]

View File

@ -15,17 +15,6 @@ from .scrapers.exceptions import (
GlassdoorException,
)
SCRAPER_MAPPING = {
Site.LINKEDIN: LinkedInScraper,
Site.INDEED: IndeedScraper,
Site.ZIP_RECRUITER: ZipRecruiterScraper,
Site.GLASSDOOR: GlassdoorScraper,
}
def _map_str_to_site(site_name: str) -> Site:
return Site[site_name.upper()]
def scrape_jobs(
site_name: str | list[str] | Site | list[Site] | None = None,
@ -39,7 +28,8 @@ def scrape_jobs(
country_indeed: str = "usa",
hyperlinks: bool = False,
proxy: str | None = None,
full_description: bool | None = False,
description_format: str = "markdown",
linkedin_fetch_description: bool | None = False,
linkedin_company_ids: list[int] | None = None,
offset: int | None = 0,
hours_old: int = None,
@ -49,6 +39,15 @@ def scrape_jobs(
Simultaneously scrapes job data from multiple job sites.
:return: results_wanted: pandas dataframe containing job data
"""
SCRAPER_MAPPING = {
Site.LINKEDIN: LinkedInScraper,
Site.INDEED: IndeedScraper,
Site.ZIP_RECRUITER: ZipRecruiterScraper,
Site.GLASSDOOR: GlassdoorScraper,
}
def map_str_to_site(site_name: str) -> Site:
return Site[site_name.upper()]
def get_enum_from_value(value_str):
for job_type in JobType:
@ -61,16 +60,15 @@ def scrape_jobs(
def get_site_type():
site_types = list(Site)
if isinstance(site_name, str):
site_types = [_map_str_to_site(site_name)]
site_types = [map_str_to_site(site_name)]
elif isinstance(site_name, Site):
site_types = [site_name]
elif isinstance(site_name, list):
site_types = [
_map_str_to_site(site) if isinstance(site, str) else site
map_str_to_site(site) if isinstance(site, str) else site
for site in site_name
]
return site_types
country_enum = Country.from_string(country_indeed)
scraper_input = ScraperInput(
@ -82,7 +80,8 @@ def scrape_jobs(
is_remote=is_remote,
job_type=job_type,
easy_apply=easy_apply,
full_description=full_description,
description_format=description_format,
linkedin_fetch_description=linkedin_fetch_description,
results_wanted=results_wanted,
linkedin_company_ids=linkedin_company_ids,
offset=offset,
@ -92,22 +91,7 @@ def scrape_jobs(
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
scraper_class = SCRAPER_MAPPING[site]
scraper = scraper_class(proxy=proxy)
try:
scraped_data: JobResponse = scraper.scrape(scraper_input)
except (LinkedInException, IndeedException, ZipRecruiterException) as lie:
raise lie
except Exception as e:
if site == Site.LINKEDIN:
raise LinkedInException(str(e))
if site == Site.INDEED:
raise IndeedException(str(e))
if site == Site.ZIP_RECRUITER:
raise ZipRecruiterException(str(e))
if site == Site.GLASSDOOR:
raise GlassdoorException(str(e))
else:
raise e
scraped_data: JobResponse = scraper.scrape(scraper_input)
return site.value, scraped_data
site_to_jobs_dict = {}
@ -188,8 +172,6 @@ def scrape_jobs(
"emails",
"description",
]
jobs_formatted_df = jobs_df[desired_order]
return jobs_df[desired_order].sort_values(by=['site', 'date_posted'], ascending=[True, False])
else:
jobs_formatted_df = pd.DataFrame()
return jobs_formatted_df.sort_values(by=['site', 'date_posted'], ascending=[True, False])
return pd.DataFrame()

View File

@ -210,6 +210,11 @@ class Compensation(BaseModel):
currency: Optional[str] = "USD"
class DescriptionFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
class JobPost(BaseModel):
title: str
company_name: str

View File

@ -1,4 +1,11 @@
from ..jobs import Enum, BaseModel, JobType, JobResponse, Country
from ..jobs import (
Enum,
BaseModel,
JobType,
JobResponse,
Country,
DescriptionFormat
)
class Site(Enum):
@ -18,9 +25,10 @@ class ScraperInput(BaseModel):
is_remote: bool = False
job_type: JobType | None = None
easy_apply: bool | None = None
full_description: bool = False
offset: int = 0
linkedin_fetch_description: bool = False
linkedin_company_ids: list[int] | None = None
description_format: DescriptionFormat | None = DescriptionFormat.MARKDOWN
results_wanted: int = 15
hours_old: int | None = None

View File

@ -13,7 +13,11 @@ from ..utils import count_urgent_words, extract_emails_from_text
from .. import Scraper, ScraperInput, Site
from ..exceptions import GlassdoorException
from ..utils import create_session
from ..utils import (
create_session,
markdown_converter,
logger
)
from ...jobs import (
JobPost,
Compensation,
@ -21,6 +25,7 @@ from ...jobs import (
Location,
JobResponse,
JobType,
DescriptionFormat
)
@ -32,13 +37,57 @@ class GlassdoorScraper(Scraper):
site = Site(Site.GLASSDOOR)
super().__init__(site, proxy=proxy)
self.url = None
self.base_url = None
self.country = None
self.session = None
self.scraper_input = None
self.jobs_per_page = 30
self.seen_urls = set()
def fetch_jobs_page(
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
"""
Scrapes Glassdoor for jobs with scraper_input criteria.
:param scraper_input: Information about job search criteria.
:return: JobResponse containing a list of jobs.
"""
self.scraper_input = scraper_input
self.scraper_input.results_wanted = min(900, scraper_input.results_wanted)
self.base_url = self.scraper_input.country.get_url()
location_id, location_type = self._get_location(
scraper_input.location, scraper_input.is_remote
)
if location_type is None:
return JobResponse(jobs=[])
all_jobs: list[JobPost] = []
cursor = None
max_pages = 30
self.session = create_session(self.proxy, is_tls=False, has_retry=True)
self.session.get(self.base_url)
try:
for page in range(
1 + (scraper_input.offset // self.jobs_per_page),
min(
(scraper_input.results_wanted // self.jobs_per_page) + 2,
max_pages + 1,
),
):
try:
jobs, cursor = self._fetch_jobs_page(
scraper_input, location_id, location_type, page, cursor
)
all_jobs.extend(jobs)
if len(all_jobs) >= scraper_input.results_wanted:
all_jobs = all_jobs[: scraper_input.results_wanted]
break
except Exception as e:
raise GlassdoorException(str(e))
except Exception as e:
raise GlassdoorException(str(e))
return JobResponse(jobs=all_jobs)
def _fetch_jobs_page(
self,
scraper_input: ScraperInput,
location_id: int,
@ -49,12 +98,13 @@ class GlassdoorScraper(Scraper):
"""
Scrapes a page of Glassdoor for jobs with scraper_input criteria
"""
self.scraper_input = scraper_input
try:
payload = self.add_payload(
scraper_input, location_id, location_type, page_num, cursor
payload = self._add_payload(
location_id, location_type, page_num, cursor
)
response = self.session.post(
f"{self.url}/graph", headers=self.headers(), timeout=10, data=payload
f"{self.base_url}/graph", headers=self.headers, timeout=10, data=payload
)
if response.status_code != 200:
raise GlassdoorException(
@ -70,7 +120,7 @@ class GlassdoorScraper(Scraper):
jobs = []
with ThreadPoolExecutor(max_workers=self.jobs_per_page) as executor:
future_to_job_data = {executor.submit(self.process_job, job): job for job in jobs_data}
future_to_job_data = {executor.submit(self._process_job, job): job for job in jobs_data}
for future in as_completed(future_to_job_data):
try:
job_post = future.result()
@ -83,10 +133,12 @@ class GlassdoorScraper(Scraper):
res_json["data"]["jobListings"]["paginationCursors"], page_num + 1
)
def process_job(self, job_data):
"""Processes a single job and fetches its description."""
def _process_job(self, job_data):
"""
Processes a single job and fetches its description.
"""
job_id = job_data["jobview"]["job"]["listingId"]
job_url = f'{self.url}job-listing/j?jl={job_id}'
job_url = f'{self.base_url}job-listing/j?jl={job_id}'
if job_url in self.seen_urls:
return None
self.seen_urls.add(job_url)
@ -106,15 +158,13 @@ class GlassdoorScraper(Scraper):
location = self.parse_location(location_name)
compensation = self.parse_compensation(job["header"])
try:
description = self.fetch_job_description(job_id)
description = self._fetch_job_description(job_id)
except:
description = None
job_post = JobPost(
return JobPost(
title=title,
company_url=f"{self.url}Overview/W-EI_IE{company_id}.htm" if company_id else None,
company_url=f"{self.base_url}Overview/W-EI_IE{company_id}.htm" if company_id else None,
company_name=company_name,
date_posted=date_posted,
job_url=job_url,
@ -125,53 +175,12 @@ class GlassdoorScraper(Scraper):
emails=extract_emails_from_text(description) if description else None,
num_urgent_words=count_urgent_words(description) if description else None,
)
return job_post
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
def _fetch_job_description(self, job_id):
"""
Scrapes Glassdoor for jobs with scraper_input criteria.
:param scraper_input: Information about job search criteria.
:return: JobResponse containing a list of jobs.
Fetches the job description for a single job ID.
"""
scraper_input.results_wanted = min(900, scraper_input.results_wanted)
self.country = scraper_input.country
self.url = self.country.get_url()
location_id, location_type = self.get_location(
scraper_input.location, scraper_input.is_remote
)
all_jobs: list[JobPost] = []
cursor = None
max_pages = 30
self.session = create_session(self.proxy, is_tls=False, has_retry=True)
self.session.get(self.url)
try:
for page in range(
1 + (scraper_input.offset // self.jobs_per_page),
min(
(scraper_input.results_wanted // self.jobs_per_page) + 2,
max_pages + 1,
),
):
try:
jobs, cursor = self.fetch_jobs_page(
scraper_input, location_id, location_type, page, cursor
)
all_jobs.extend(jobs)
if len(all_jobs) >= scraper_input.results_wanted:
all_jobs = all_jobs[: scraper_input.results_wanted]
break
except Exception as e:
raise GlassdoorException(str(e))
except Exception as e:
raise GlassdoorException(str(e))
return JobResponse(jobs=all_jobs)
def fetch_job_description(self, job_id):
"""Fetches the job description for a single job ID."""
url = f"{self.url}/graph"
url = f"{self.base_url}/graph"
body = [
{
"operationName": "JobDetailQuery",
@ -196,48 +205,28 @@ class GlassdoorScraper(Scraper):
"""
}
]
response = requests.post(url, json=body, headers=GlassdoorScraper.headers())
if response.status_code != 200:
res = requests.post(url, json=body, headers=self.headers)
if res.status_code != 200:
return None
data = response.json()[0]
data = res.json()[0]
desc = data['data']['jobview']['job']['description']
return desc
return markdown_converter(desc) if self.scraper_input.description_format == DescriptionFormat.MARKDOWN else desc
@staticmethod
def parse_compensation(data: dict) -> Optional[Compensation]:
pay_period = data.get("payPeriod")
adjusted_pay = data.get("payPeriodAdjustedPay")
currency = data.get("payCurrency", "USD")
if not pay_period or not adjusted_pay:
return None
interval = None
if pay_period == "ANNUAL":
interval = CompensationInterval.YEARLY
elif pay_period:
interval = CompensationInterval.get_interval(pay_period)
min_amount = int(adjusted_pay.get("p10") // 1)
max_amount = int(adjusted_pay.get("p90") // 1)
return Compensation(
interval=interval,
min_amount=min_amount,
max_amount=max_amount,
currency=currency,
)
def get_location(self, location: str, is_remote: bool) -> (int, str):
def _get_location(self, location: str, is_remote: bool) -> (int, str):
if not location or is_remote:
return "11047", "STATE" # remote options
url = f"{self.url}/findPopularLocationAjax.htm?maxLocationsToReturn=10&term={location}"
url = f"{self.base_url}/findPopularLocationAjax.htm?maxLocationsToReturn=10&term={location}"
session = create_session(self.proxy, has_retry=True)
response = session.get(url)
if response.status_code != 200:
raise GlassdoorException(
f"bad response status code: {response.status_code}"
)
items = response.json()
res = session.get(url)
if res.status_code != 200:
if res.status_code == 429:
logger.error(f'429 Response - Blocked by Glassdoor for too many requests')
return None, None
else:
logger.error(f'Glassdoor response status code {res.status_code}')
return None, None
items = res.json()
if not items:
raise ValueError(f"Location '{location}' not found on Glassdoor")
location_type = items[0]["locationType"]
@ -249,18 +238,16 @@ class GlassdoorScraper(Scraper):
location_type = "COUNTRY"
return int(items[0]["locationId"]), location_type
@staticmethod
def add_payload(
scraper_input,
def _add_payload(
self,
location_id: int,
location_type: str,
page_num: int,
cursor: str | None = None,
) -> str:
# `fromage` is the posting time filter in days
fromage = max(scraper_input.hours_old // 24, 1) if scraper_input.hours_old else None
fromage = max(self.scraper_input.hours_old // 24, 1) if self.scraper_input.hours_old else None
filter_params = []
if scraper_input.easy_apply:
if self.scraper_input.easy_apply:
filter_params.append({"filterKey": "applicationType", "values": "1"})
if fromage:
filter_params.append({"filterKey": "fromAge", "values": str(fromage)})
@ -269,7 +256,7 @@ class GlassdoorScraper(Scraper):
"variables": {
"excludeJobListingIds": [],
"filterParams": filter_params,
"keyword": scraper_input.search_term,
"keyword": self.scraper_input.search_term,
"numJobsToShow": 30,
"locationType": location_type,
"locationId": int(location_id),
@ -446,13 +433,34 @@ class GlassdoorScraper(Scraper):
}
"""
}
if scraper_input.job_type:
if self.scraper_input.job_type:
payload["variables"]["filterParams"].append(
{"filterKey": "jobType", "values": scraper_input.job_type.value[0]}
{"filterKey": "jobType", "values": self.scraper_input.job_type.value[0]}
)
return json.dumps([payload])
@staticmethod
def parse_compensation(data: dict) -> Optional[Compensation]:
pay_period = data.get("payPeriod")
adjusted_pay = data.get("payPeriodAdjustedPay")
currency = data.get("payCurrency", "USD")
if not pay_period or not adjusted_pay:
return None
interval = None
if pay_period == "ANNUAL":
interval = CompensationInterval.YEARLY
elif pay_period:
interval = CompensationInterval.get_interval(pay_period)
min_amount = int(adjusted_pay.get("p10") // 1)
max_amount = int(adjusted_pay.get("p90") // 1)
return Compensation(
interval=interval,
min_amount=min_amount,
max_amount=max_amount,
currency=currency,
)
@staticmethod
def get_job_type_enum(job_type_str: str) -> list[JobType] | None:
for job_type in JobType:
@ -472,27 +480,21 @@ class GlassdoorScraper(Scraper):
if cursor_data["pageNumber"] == page_num:
return cursor_data["cursor"]
@staticmethod
def headers() -> dict:
"""
Returns headers needed for requests
:return: dict - Dictionary containing headers
"""
return {
"authority": "www.glassdoor.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"apollographql-client-name": "job-search-next",
"apollographql-client-version": "4.65.5",
"content-type": "application/json",
"gd-csrf-token": "Ft6oHEWlRZrxDww95Cpazw:0pGUrkb2y3TyOpAIqF2vbPmUXoXVkD3oEGDVkvfeCerceQ5-n8mBg3BovySUIjmCPHCaW0H2nQVdqzbtsYqf4Q:wcqRqeegRUa9MVLJGyujVXB7vWFPjdaS1CtrrzJq-ok",
"origin": "https://www.glassdoor.com",
"referer": "https://www.glassdoor.com/",
"sec-ch-ua": '"Chromium";v="118", "Google Chrome";v="118", "Not=A?Brand";v="99"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"macOS"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
}
headers = {
"authority": "www.glassdoor.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"apollographql-client-name": "job-search-next",
"apollographql-client-version": "4.65.5",
"content-type": "application/json",
"gd-csrf-token": "Ft6oHEWlRZrxDww95Cpazw:0pGUrkb2y3TyOpAIqF2vbPmUXoXVkD3oEGDVkvfeCerceQ5-n8mBg3BovySUIjmCPHCaW0H2nQVdqzbtsYqf4Q:wcqRqeegRUa9MVLJGyujVXB7vWFPjdaS1CtrrzJq-ok",
"origin": "https://www.glassdoor.com",
"referer": "https://www.glassdoor.com/",
"sec-ch-ua": '"Chromium";v="118", "Google Chrome";v="118", "Not=A?Brand";v="99"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"macOS"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
}

View File

@ -21,6 +21,7 @@ from ..utils import (
extract_emails_from_text,
create_session,
get_enum_from_job_type,
markdown_converter,
logger
)
from ...jobs import (
@ -30,6 +31,7 @@ from ...jobs import (
Location,
JobResponse,
JobType,
DescriptionFormat
)
from .. import Scraper, ScraperInput, Site
@ -39,121 +41,23 @@ class IndeedScraper(Scraper):
"""
Initializes IndeedScraper with the Indeed job search url
"""
self.url = None
self.country = None
self.scraper_input = None
self.jobs_per_page = 25
self.num_workers = 10
self.seen_urls = set()
self.base_url = None
self.api_url = "https://apis.indeed.com/graphql"
site = Site(Site.INDEED)
super().__init__(site, proxy=proxy)
self.jobs_per_page = 25
self.seen_urls = set()
def scrape_page(
self, scraper_input: ScraperInput, page: int
) -> list[JobPost]:
"""
Scrapes a page of Indeed for jobs with scraper_input criteria
:param scraper_input:
:param page:
:return: jobs found on page, total number of jobs found for search
"""
job_list = []
self.country = scraper_input.country
domain = self.country.indeed_domain_value
self.url = f"https://{domain}.indeed.com"
try:
session = create_session(self.proxy)
response = session.get(
f"{self.url}/m/jobs",
headers=self.get_headers(),
params=self.add_params(scraper_input, page),
allow_redirects=True,
timeout_seconds=10,
)
if response.status_code not in range(200, 400):
raise IndeedException(
f"bad response with status code: {response.status_code}"
)
except Exception as e:
if "Proxy responded with" in str(e):
logger.error(f'Indeed: Bad proxy')
else:
logger.error(f'Indeed: {str(e)}')
return job_list
soup = BeautifulSoup(response.content, "html.parser")
if "did not match any jobs" in response.text:
return job_list
jobs = IndeedScraper.parse_jobs(
soup
) #: can raise exception, handled by main scrape function
if (
not jobs.get("metaData", {})
.get("mosaicProviderJobCardsModel", {})
.get("results")
):
raise IndeedException("No jobs found.")
def process_job(job: dict, job_detailed: dict) -> JobPost | None:
job_url = f'{self.url}/m/jobs/viewjob?jk={job["jobkey"]}'
job_url_client = f'{self.url}/viewjob?jk={job["jobkey"]}'
if job_url in self.seen_urls:
return None
self.seen_urls.add(job_url)
description = job_detailed['description']['html']
job_type = IndeedScraper.get_job_type(job)
timestamp_seconds = job["pubDate"] / 1000
date_posted = datetime.fromtimestamp(timestamp_seconds)
date_posted = date_posted.strftime("%Y-%m-%d")
job_post = JobPost(
title=job["normTitle"],
description=description,
company_name=job["company"],
company_url=f"{self.url}{job_detailed['employer']['relativeCompanyPageUrl']}" if job_detailed['employer'] else None,
location=Location(
city=job.get("jobLocationCity"),
state=job.get("jobLocationState"),
country=self.country,
),
job_type=job_type,
compensation=self.get_compensation(job, job_detailed),
date_posted=date_posted,
job_url=job_url_client,
emails=extract_emails_from_text(description) if description else None,
num_urgent_words=count_urgent_words(description)
if description
else None,
is_remote=IndeedScraper.is_job_remote(job, job_detailed, description)
)
return job_post
workers = 10
jobs = jobs["metaData"]["mosaicProviderJobCardsModel"]["results"]
job_keys = [job['jobkey'] for job in jobs]
jobs_detailed = self.get_job_details(job_keys)
with ThreadPoolExecutor(max_workers=workers) as executor:
job_results: list[Future] = [
executor.submit(process_job, job, job_detailed['job']) for job, job_detailed in zip(jobs, jobs_detailed)
]
job_list = [result.result() for result in job_results if result.result()]
return job_list
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
"""
Scrapes Indeed for jobs with scraper_input criteria
:param scraper_input:
:return: job_response
"""
job_list = self.scrape_page(scraper_input, 0)
self.scraper_input = scraper_input
job_list = self._scrape_page()
pages_processed = 1
while len(self.seen_urls) < scraper_input.results_wanted:
@ -162,7 +66,7 @@ class IndeedScraper(Scraper):
with ThreadPoolExecutor(max_workers=10) as executor:
futures: list[Future] = [
executor.submit(self.scrape_page, scraper_input, page + pages_processed)
executor.submit(self._scrape_page, page + pages_processed)
for page in range(pages_to_process)
]
@ -184,8 +88,136 @@ class IndeedScraper(Scraper):
return JobResponse(jobs=job_list)
def _scrape_page(self, page: int=0) -> list[JobPost]:
"""
Scrapes a page of Indeed for jobs with scraper_input criteria
:param page:
:return: jobs found on page, total number of jobs found for search
"""
job_list = []
domain = self.scraper_input.country.indeed_domain_value
self.base_url = f"https://{domain}.indeed.com"
try:
session = create_session(self.proxy)
response = session.get(
f"{self.base_url}/m/jobs",
headers=self.headers,
params=self._add_params(page),
)
if response.status_code not in range(200, 400):
if response.status_code == 429:
logger.error(f'429 Response - Blocked by Indeed for too many requests')
else:
logger.error(f'Indeed response status code {response.status_code}')
return job_list
except Exception as e:
if "Proxy responded with" in str(e):
logger.error(f'Indeed: Bad proxy')
else:
logger.error(f'Indeed: {str(e)}')
return job_list
soup = BeautifulSoup(response.content, "html.parser")
if "did not match any jobs" in response.text:
return job_list
jobs = IndeedScraper._parse_jobs(soup)
if (
not jobs.get("metaData", {})
.get("mosaicProviderJobCardsModel", {})
.get("results")
):
raise IndeedException("No jobs found.")
jobs = jobs["metaData"]["mosaicProviderJobCardsModel"]["results"]
job_keys = [job['jobkey'] for job in jobs]
jobs_detailed = self._get_job_details(job_keys)
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
job_results: list[Future] = [
executor.submit(self._process_job, job, job_detailed['job']) for job, job_detailed in zip(jobs, jobs_detailed)
]
job_list = [result.result() for result in job_results if result.result()]
return job_list
def _process_job(self, job: dict, job_detailed: dict) -> JobPost | None:
job_url = f'{self.base_url}/m/jobs/viewjob?jk={job["jobkey"]}'
job_url_client = f'{self.base_url}/viewjob?jk={job["jobkey"]}'
if job_url in self.seen_urls:
return None
self.seen_urls.add(job_url)
description = job_detailed['description']['html']
description = markdown_converter(description) if self.scraper_input.description_format == DescriptionFormat.MARKDOWN else description
job_type = self._get_job_type(job)
timestamp_seconds = job["pubDate"] / 1000
date_posted = datetime.fromtimestamp(timestamp_seconds)
date_posted = date_posted.strftime("%Y-%m-%d")
return JobPost(
title=job["normTitle"],
description=description,
company_name=job["company"],
company_url=f"{self.base_url}{job_detailed['employer']['relativeCompanyPageUrl']}" if job_detailed[
'employer'] else None,
location=Location(
city=job.get("jobLocationCity"),
state=job.get("jobLocationState"),
country=self.scraper_input.country,
),
job_type=job_type,
compensation=self._get_compensation(job, job_detailed),
date_posted=date_posted,
job_url=job_url_client,
emails=extract_emails_from_text(description) if description else None,
num_urgent_words=count_urgent_words(description) if description else None,
is_remote=self._is_job_remote(job, job_detailed, description)
)
def _get_job_details(self, job_keys: list[str]) -> dict:
"""
Queries the GraphQL endpoint for detailed job information for the given job keys.
"""
job_keys_gql = '[' + ', '.join(f'"{key}"' for key in job_keys) + ']'
payload = dict(self.api_payload)
payload["query"] = self.api_payload["query"].format(job_keys_gql=job_keys_gql)
response = requests.post(self.api_url, headers=self.api_headers, json=payload, proxies=self.proxy)
if response.status_code == 200:
return response.json()['data']['jobData']['results']
else:
return {}
def _add_params(self, page: int) -> dict[str, str | Any]:
fromage = max(self.scraper_input.hours_old // 24, 1) if self.scraper_input.hours_old else None
params = {
"q": self.scraper_input.search_term,
"l": self.scraper_input.location if self.scraper_input.location else self.scraper_input.country.value[0].split(',')[-1],
"filter": 0,
"start": self.scraper_input.offset + page * 10,
"sort": "date",
"fromage": fromage,
}
if self.scraper_input.distance:
params["radius"] = self.scraper_input.distance
sc_values = []
if self.scraper_input.is_remote:
sc_values.append("attr(DSQF7)")
if self.scraper_input.job_type:
sc_values.append("jt({})".format(self.scraper_input.job_type.value[0]))
if sc_values:
params["sc"] = "0kf:" + "".join(sc_values) + ";"
if self.scraper_input.easy_apply:
params['iafilter'] = 1
return params
@staticmethod
def get_job_type(job: dict) -> list[JobType] | None:
def _get_job_type(job: dict) -> list[JobType] | None:
"""
Parses the job to get list of job types
:param job:
@ -204,7 +236,7 @@ class IndeedScraper(Scraper):
return job_types
@staticmethod
def get_compensation(job: dict, job_detailed: dict) -> Compensation:
def _get_compensation(job: dict, job_detailed: dict) -> Compensation:
"""
Parses the job to get
:param job:
@ -213,7 +245,7 @@ class IndeedScraper(Scraper):
"""
comp = job_detailed['compensation']['baseSalary']
if comp:
interval = IndeedScraper.get_correct_interval(comp['unitOfWork'])
interval = IndeedScraper._get_correct_interval(comp['unitOfWork'])
if interval:
return Compensation(
interval=interval,
@ -242,18 +274,13 @@ class IndeedScraper(Scraper):
return compensation
@staticmethod
def parse_jobs(soup: BeautifulSoup) -> dict:
def _parse_jobs(soup: BeautifulSoup) -> dict:
"""
Parses the jobs from the soup object
:param soup:
:return: jobs
"""
def find_mosaic_script() -> Tag | None:
"""
Finds jobcards script tag
:return: script_tag
"""
script_tags = soup.find_all("script")
for tag in script_tags:
@ -266,7 +293,6 @@ class IndeedScraper(Scraper):
return None
script_tag = find_mosaic_script()
if script_tag:
script_str = script_tag.string
pattern = r'window.mosaic.providerData\["mosaic-provider-jobcards"\]\s*=\s*({.*?});'
@ -283,49 +309,7 @@ class IndeedScraper(Scraper):
)
@staticmethod
def get_headers():
return {
'Host': 'www.indeed.com',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'sec-fetch-site': 'same-origin',
'sec-fetch-dest': 'document',
'accept-language': 'en-US,en;q=0.9',
'sec-fetch-mode': 'navigate',
'user-agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148 Indeed App 192.0',
'referer': 'https://www.indeed.com/m/jobs?q=software%20intern&l=Dallas%2C%20TX&from=serpso&rq=1&rsIdx=3',
}
@staticmethod
def add_params(scraper_input: ScraperInput, page: int) -> dict[str, str | Any]:
# `fromage` is the posting time filter in days
fromage = max(scraper_input.hours_old // 24, 1) if scraper_input.hours_old else None
params = {
"q": scraper_input.search_term,
"l": scraper_input.location if scraper_input.location else scraper_input.country.value[0].split(',')[-1],
"filter": 0,
"start": scraper_input.offset + page * 10,
"sort": "date",
"fromage": fromage,
}
if scraper_input.distance:
params["radius"] = scraper_input.distance
sc_values = []
if scraper_input.is_remote:
sc_values.append("attr(DSQF7)")
if scraper_input.job_type:
sc_values.append("jt({})".format(scraper_input.job_type.value[0]))
if sc_values:
params["sc"] = "0kf:" + "".join(sc_values) + ";"
if scraper_input.easy_apply:
params['iafilter'] = 1
return params
@staticmethod
def is_job_remote(job: dict, job_detailed: dict, description: str) -> bool:
def _is_job_remote(job: dict, job_detailed: dict, description: str) -> bool:
remote_keywords = ['remote', 'work from home', 'wfh']
is_remote_in_attributes = any(
any(keyword in attr['label'].lower() for keyword in remote_keywords)
@ -342,86 +326,8 @@ class IndeedScraper(Scraper):
)
return is_remote_in_attributes or is_remote_in_description or is_remote_in_location or is_remote_in_taxonomy
def get_job_details(self, job_keys: list[str]) -> dict:
"""
Queries the GraphQL endpoint for detailed job information for the given job keys.
"""
url = "https://apis.indeed.com/graphql"
headers = {
'Host': 'apis.indeed.com',
'content-type': 'application/json',
'indeed-api-key': '161092c2017b5bbab13edb12461a62d5a833871e7cad6d9d475304573de67ac8',
'accept': 'application/json',
'indeed-locale': 'en-US',
'accept-language': 'en-US,en;q=0.9',
'user-agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148 Indeed App 193.1',
'indeed-app-info': 'appv=193.1; appid=com.indeed.jobsearch; osv=16.6.1; os=ios; dtype=phone',
'indeed-co': 'US',
}
job_keys_gql = '[' + ', '.join(f'"{key}"' for key in job_keys) + ']'
payload = {
"query": f"""
query GetJobData {{
jobData(input: {{
jobKeys: {job_keys_gql}
}}) {{
results {{
job {{
key
title
description {{
html
}}
location {{
countryName
countryCode
city
postalCode
streetAddress
formatted {{
short
long
}}
}}
compensation {{
baseSalary {{
unitOfWork
range {{
... on Range {{
min
max
}}
}}
}}
currencyCode
}}
attributes {{
label
}}
employer {{
relativeCompanyPageUrl
}}
recruit {{
viewJobUrl
detailedSalary
workSchedule
}}
}}
}}
}}
}}
"""
}
response = requests.post(url, headers=headers, json=payload, proxies=self.proxy)
if response.status_code == 200:
return response.json()['data']['jobData']['results']
else:
return {}
@staticmethod
def get_correct_interval(interval: str) -> CompensationInterval:
def _get_correct_interval(interval: str) -> CompensationInterval:
interval_mapping = {
"DAY": "DAILY",
"YEAR": "YEARLY",
@ -434,3 +340,78 @@ class IndeedScraper(Scraper):
return CompensationInterval[mapped_interval]
else:
raise ValueError(f"Unsupported interval: {interval}")
headers = {
'Host': 'www.indeed.com',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'sec-fetch-site': 'same-origin',
'sec-fetch-dest': 'document',
'accept-language': 'en-US,en;q=0.9',
'sec-fetch-mode': 'navigate',
'user-agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148 Indeed App 192.0',
'referer': 'https://www.indeed.com/m/jobs?q=software%20intern&l=Dallas%2C%20TX&from=serpso&rq=1&rsIdx=3',
}
api_headers = {
'Host': 'apis.indeed.com',
'content-type': 'application/json',
'indeed-api-key': '161092c2017b5bbab13edb12461a62d5a833871e7cad6d9d475304573de67ac8',
'accept': 'application/json',
'indeed-locale': 'en-US',
'accept-language': 'en-US,en;q=0.9',
'user-agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148 Indeed App 193.1',
'indeed-app-info': 'appv=193.1; appid=com.indeed.jobsearch; osv=16.6.1; os=ios; dtype=phone',
'indeed-co': 'US',
}
api_payload = {
"query": """
query GetJobData {{
jobData(input: {{
jobKeys: {job_keys_gql}
}}) {{
results {{
job {{
key
title
description {{
html
}}
location {{
countryName
countryCode
city
postalCode
streetAddress
formatted {{
short
long
}}
}}
compensation {{
baseSalary {{
unitOfWork
range {{
... on Range {{
min
max
}}
}}
}}
currencyCode
}}
attributes {{
label
}}
employer {{
relativeCompanyPageUrl
}}
recruit {{
viewJobUrl
detailedSalary
workSchedule
}}
}}
}}
}}
}}
"""
}

View File

@ -25,26 +25,30 @@ from ...jobs import (
JobResponse,
JobType,
Country,
Compensation
Compensation,
DescriptionFormat
)
from ..utils import (
logger,
count_urgent_words,
extract_emails_from_text,
get_enum_from_job_type,
currency_parser
currency_parser,
markdown_converter
)
class LinkedInScraper(Scraper):
DELAY = 3
base_url = "https://www.linkedin.com"
delay = 3
def __init__(self, proxy: Optional[str] = None):
"""
Initializes LinkedInScraper with the LinkedIn job search url
"""
self.scraper_input = None
site = Site(Site.LINKEDIN)
self.country = "worldwide"
self.url = "https://www.linkedin.com"
super().__init__(site, proxy=proxy)
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
@ -53,28 +57,16 @@ class LinkedInScraper(Scraper):
:param scraper_input:
:return: job_response
"""
self.scraper_input = scraper_input
job_list: list[JobPost] = []
seen_urls = set()
url_lock = Lock()
page = scraper_input.offset // 25 + 25 if scraper_input.offset else 0
seconds_old = (
scraper_input.hours_old * 3600
if scraper_input.hours_old
else None
)
def job_type_code(job_type_enum):
mapping = {
JobType.FULL_TIME: "F",
JobType.PART_TIME: "P",
JobType.INTERNSHIP: "I",
JobType.CONTRACT: "C",
JobType.TEMPORARY: "T",
}
return mapping.get(job_type_enum, "")
continue_search = lambda: len(job_list) < scraper_input.results_wanted and page < 1000
while continue_search():
@ -84,7 +76,7 @@ class LinkedInScraper(Scraper):
"location": scraper_input.location,
"distance": scraper_input.distance,
"f_WT": 2 if scraper_input.is_remote else None,
"f_JT": job_type_code(scraper_input.job_type)
"f_JT": self.job_type_code(scraper_input.job_type)
if scraper_input.job_type
else None,
"pageNum": 0,
@ -97,23 +89,25 @@ class LinkedInScraper(Scraper):
params = {k: v for k, v in params.items() if v is not None}
try:
response = session.get(
f"{self.url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
f"{self.base_url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
params=params,
allow_redirects=True,
proxies=self.proxy,
headers=self.headers(),
headers=self.headers,
timeout=10,
)
response.raise_for_status()
except requests.HTTPError as e:
raise LinkedInException(
f"bad response status code: {e.response.status_code}"
)
except ProxyError as e:
raise LinkedInException("bad proxy")
if response.status_code not in range(200, 400):
if response.status_code == 429:
logger.error(f'429 Response - Blocked by LinkedIn for too many requests')
else:
logger.error(f'LinkedIn response status code {response.status_code}')
return JobResponse(job_list=job_list)
except Exception as e:
raise LinkedInException(str(e))
if "Proxy responded with" in str(e):
logger.error(f'Indeed: Bad proxy')
else:
logger.error(f'Indeed: {str(e)}')
return JobResponse(job_list=job_list)
soup = BeautifulSoup(response.text, "html.parser")
job_cards = soup.find_all("div", class_="base-search-card")
@ -126,29 +120,29 @@ class LinkedInScraper(Scraper):
if href_tag and "href" in href_tag.attrs:
href = href_tag.attrs["href"].split("?")[0]
job_id = href.split("-")[-1]
job_url = f"{self.url}/jobs/view/{job_id}"
job_url = f"{self.base_url}/jobs/view/{job_id}"
with url_lock:
if job_url in seen_urls:
continue
seen_urls.add(job_url)
# Call process_job directly without threading
try:
job_post = self.process_job(job_card, job_url, scraper_input.full_description)
job_post = self._process_job(job_card, job_url, scraper_input.linkedin_fetch_description)
if job_post:
job_list.append(job_post)
if not continue_search():
break
except Exception as e:
raise LinkedInException("Exception occurred while processing jobs")
raise LinkedInException(str(e))
if continue_search():
time.sleep(random.uniform(LinkedInScraper.DELAY, LinkedInScraper.DELAY + 2))
time.sleep(random.uniform(self.delay, self.delay + 2))
page += 25
job_list = job_list[: scraper_input.results_wanted]
return JobResponse(jobs=job_list)
def process_job(self, job_card: Tag, job_url: str, full_descr: bool) -> Optional[JobPost]:
def _process_job(self, job_card: Tag, job_url: str, full_descr: bool) -> Optional[JobPost]:
salary_tag = job_card.find('span', class_='job-search-card__salary-info')
compensation = None
@ -178,7 +172,7 @@ class LinkedInScraper(Scraper):
company = company_a_tag.get_text(strip=True) if company_a_tag else "N/A"
metadata_card = job_card.find("div", class_="base-search-card__metadata")
location = self.get_location(metadata_card)
location = self._get_location(metadata_card)
datetime_tag = (
metadata_card.find("time", class_="job-search-card__listdate")
@ -190,12 +184,12 @@ class LinkedInScraper(Scraper):
datetime_str = datetime_tag["datetime"]
try:
date_posted = datetime.strptime(datetime_str, "%Y-%m-%d")
except Exception as e:
except:
date_posted = None
benefits_tag = job_card.find("span", class_="result-benefits__text")
benefits = " ".join(benefits_tag.get_text().split()) if benefits_tag else None
if full_descr:
description, job_type = self.get_job_description(job_url)
description, job_type = self._get_job_description(job_url)
return JobPost(
title=title,
@ -212,7 +206,7 @@ class LinkedInScraper(Scraper):
num_urgent_words=count_urgent_words(description) if description else None,
)
def get_job_description(
def _get_job_description(
self, job_page_url: str
) -> tuple[None, None] | tuple[str | None, tuple[str | None, JobType | None]]:
"""
@ -222,11 +216,9 @@ class LinkedInScraper(Scraper):
"""
try:
session = create_session(is_tls=False, has_retry=True)
response = session.get(job_page_url, timeout=5, proxies=self.proxy)
response = session.get(job_page_url, headers=self.headers, timeout=5, proxies=self.proxy)
response.raise_for_status()
except requests.HTTPError as e:
return None, None
except Exception as e:
except:
return None, None
if response.url == "https://www.linkedin.com/signup":
return None, None
@ -241,40 +233,13 @@ class LinkedInScraper(Scraper):
for attr in list(tag.attrs):
del tag[attr]
return tag
div_content = remove_attributes(div_content)
description = div_content.prettify(formatter="html")
if self.scraper_input.description_format == DescriptionFormat.MARKDOWN:
description = markdown_converter(description)
return description, self._parse_job_type(soup)
def get_job_type(
soup_job_type: BeautifulSoup,
) -> list[JobType] | None:
"""
Gets the job type from job page
:param soup_job_type:
:return: JobType
"""
h3_tag = soup_job_type.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Employment type" in text,
)
employment_type = None
if h3_tag:
employment_type_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if employment_type_span:
employment_type = employment_type_span.get_text(strip=True)
employment_type = employment_type.lower()
employment_type = employment_type.replace("-", "")
return [get_enum_from_job_type(employment_type)] if employment_type else []
return description, get_job_type(soup)
def get_location(self, metadata_card: Optional[Tag]) -> Location:
def _get_location(self, metadata_card: Optional[Tag]) -> Location:
"""
Extracts the location data from the job metadata card.
:param metadata_card
@ -299,25 +264,50 @@ class LinkedInScraper(Scraper):
location = Location(
city=city,
state=state,
country=Country.from_string(country),
country=Country.from_string(country)
)
return location
@staticmethod
def headers() -> dict:
def _parse_job_type(soup_job_type: BeautifulSoup) -> list[JobType] | None:
"""
Gets the job type from job page
:param soup_job_type:
:return: JobType
"""
h3_tag = soup_job_type.find(
"h3",
class_="description__job-criteria-subheader",
string=lambda text: "Employment type" in text,
)
employment_type = None
if h3_tag:
employment_type_span = h3_tag.find_next_sibling(
"span",
class_="description__job-criteria-text description__job-criteria-text--criteria",
)
if employment_type_span:
employment_type = employment_type_span.get_text(strip=True)
employment_type = employment_type.lower()
employment_type = employment_type.replace("-", "")
return [get_enum_from_job_type(employment_type)] if employment_type else []
@staticmethod
def job_type_code(job_type_enum: JobType) -> str:
return {
"authority": "www.linkedin.com",
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
"accept-language": "en-US,en;q=0.9",
"cache-control": "max-age=0",
"sec-ch-ua": '"Not_A Brand";v="8", "Chromium";v="120", "Google Chrome";v="120"',
# 'sec-ch-ua-mobile': '?0',
# 'sec-ch-ua-platform': '"macOS"',
# 'sec-fetch-dest': 'document',
# 'sec-fetch-mode': 'navigate',
# 'sec-fetch-site': 'none',
# 'sec-fetch-user': '?1',
"upgrade-insecure-requests": "1",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
}
JobType.FULL_TIME: "F",
JobType.PART_TIME: "P",
JobType.INTERNSHIP: "I",
JobType.CONTRACT: "C",
JobType.TEMPORARY: "T",
}.get(job_type_enum, "")
headers = {
"authority": "www.linkedin.com",
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
"accept-language": "en-US,en;q=0.9",
"cache-control": "max-age=0",
"upgrade-insecure-requests": "1",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
}

View File

@ -2,13 +2,16 @@ import re
import logging
import numpy as np
import html2text
import tls_client
import requests
from requests.adapters import HTTPAdapter, Retry
from ..jobs import JobType
text_maker = html2text.HTML2Text()
logger = logging.getLogger("JobSpy")
logger.propagate = False
if not logger.handlers:
logger.setLevel(logging.ERROR)
console_handler = logging.StreamHandler()
@ -32,6 +35,17 @@ def count_urgent_words(description: str) -> int:
return count
def markdown_converter(description_html: str):
if description_html is None:
return ""
text_maker.ignore_links = False
try:
markdown = text_maker.handle(description_html)
return markdown.strip()
except AssertionError as e:
return ""
def extract_emails_from_text(text: str) -> list[str] | None:
if not text:
return None
@ -42,14 +56,10 @@ def extract_emails_from_text(text: str) -> list[str] | None:
def create_session(proxy: dict | None = None, is_tls: bool = True, has_retry: bool = False, delay: int = 1) -> requests.Session:
"""
Creates a requests session with optional tls, proxy, and retry settings.
:return: A session object
"""
if is_tls:
session = tls_client.Session(
client_identifier="chrome112",
random_tls_extension_order=True,
)
session = tls_client.Session(random_tls_extension_order=True)
session.proxies = proxy
else:
session = requests.Session()
@ -66,7 +76,6 @@ def create_session(proxy: dict | None = None, is_tls: bool = True, has_retry: bo
session.mount('http://', adapter)
session.mount('https://', adapter)
return session

View File

@ -6,33 +6,76 @@ This module contains routines to scrape ZipRecruiter.
"""
import math
import time
from datetime import datetime, timezone
from datetime import datetime
from typing import Optional, Tuple, Any
from concurrent.futures import ThreadPoolExecutor
from .. import Scraper, ScraperInput, Site
from ..exceptions import ZipRecruiterException
from ...jobs import JobPost, Compensation, Location, JobResponse, JobType, Country
from ..utils import count_urgent_words, extract_emails_from_text, create_session
from ..utils import (
logger,
count_urgent_words,
extract_emails_from_text,
create_session,
markdown_converter
)
from ...jobs import (
JobPost,
Compensation,
Location,
JobResponse,
JobType,
Country,
DescriptionFormat
)
class ZipRecruiterScraper(Scraper):
base_url = "https://www.ziprecruiter.com"
api_url = "https://api.ziprecruiter.com"
def __init__(self, proxy: Optional[str] = None):
"""
Initializes ZipRecruiterScraper with the ZipRecruiter job search url
"""
site = Site(Site.ZIP_RECRUITER)
self.url = "https://www.ziprecruiter.com"
self.scraper_input = None
self.session = create_session(proxy)
self.get_cookies()
super().__init__(site, proxy=proxy)
self._get_cookies()
super().__init__(Site.ZIP_RECRUITER, proxy=proxy)
self.delay = 5
self.jobs_per_page = 20
self.seen_urls = set()
self.delay = 5
def find_jobs_in_page(
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
"""
Scrapes ZipRecruiter for jobs with scraper_input criteria.
:param scraper_input: Information about job search criteria.
:return: JobResponse containing a list of jobs.
"""
self.scraper_input = scraper_input
job_list: list[JobPost] = []
continue_token = None
max_pages = math.ceil(scraper_input.results_wanted / self.jobs_per_page)
for page in range(1, max_pages + 1):
if len(job_list) >= scraper_input.results_wanted:
break
if page > 1:
time.sleep(self.delay)
jobs_on_page, continue_token = self._find_jobs_in_page(
scraper_input, continue_token
)
if jobs_on_page:
job_list.extend(jobs_on_page)
else:
break
if not continue_token:
break
return JobResponse(jobs=job_list[: scraper_input.results_wanted])
def _find_jobs_in_page(
self, scraper_input: ScraperInput, continue_token: str | None = None
) -> Tuple[list[JobPost], Optional[str]]:
"""
@ -41,73 +84,51 @@ class ZipRecruiterScraper(Scraper):
:param continue_token:
:return: jobs found on page
"""
params = self.add_params(scraper_input)
jobs_list = []
params = self._add_params(scraper_input)
if continue_token:
params["continue_from"] = continue_token
try:
response = self.session.get(
f"https://api.ziprecruiter.com/jobs-app/jobs",
headers=self.headers(),
res= self.session.get(
f"{self.api_url}/jobs-app/jobs",
headers=self.headers,
params=params
)
if response.status_code != 200:
raise ZipRecruiterException(
f"bad response status code: {response.status_code}"
)
if res.status_code not in range(200, 400):
if res.status_code == 429:
logger.error(f'429 Response - Blocked by ZipRecruiter for too many requests')
else:
logger.error(f'ZipRecruiter response status code {res.status_code}')
return jobs_list, ""
except Exception as e:
if "Proxy responded with non 200 code" in str(e):
raise ZipRecruiterException("bad proxy")
raise ZipRecruiterException(str(e))
if "Proxy responded with" in str(e):
logger.error(f'Indeed: Bad proxy')
else:
logger.error(f'Indeed: {str(e)}')
return jobs_list, ""
response_data = response.json()
jobs_list = response_data.get("jobs", [])
next_continue_token = response_data.get("continue", None)
res_data = res.json()
jobs_list = res_data.get("jobs", [])
next_continue_token = res_data.get("continue", None)
with ThreadPoolExecutor(max_workers=self.jobs_per_page) as executor:
job_results = [executor.submit(self.process_job, job) for job in jobs_list]
job_results = [executor.submit(self._process_job, job) for job in jobs_list]
job_list = list(filter(None, (result.result() for result in job_results)))
return job_list, next_continue_token
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
def _process_job(self, job: dict) -> JobPost | None:
"""
Scrapes ZipRecruiter for jobs with scraper_input criteria.
:param scraper_input: Information about job search criteria.
:return: JobResponse containing a list of jobs.
Processes an individual job dict from the response
"""
job_list: list[JobPost] = []
continue_token = None
max_pages = math.ceil(scraper_input.results_wanted / self.jobs_per_page)
for page in range(1, max_pages + 1):
if len(job_list) >= scraper_input.results_wanted:
break
if page > 1:
time.sleep(self.delay)
jobs_on_page, continue_token = self.find_jobs_in_page(
scraper_input, continue_token
)
if jobs_on_page:
job_list.extend(jobs_on_page)
if not continue_token:
break
return JobResponse(jobs=job_list[: scraper_input.results_wanted])
def process_job(self, job: dict) -> JobPost | None:
"""Processes an individual job dict from the response"""
title = job.get("name")
job_url = f"https://www.ziprecruiter.com/jobs//j?lvk={job['listing_key']}"
job_url = f"{self.base_url}/jobs//j?lvk={job['listing_key']}"
if job_url in self.seen_urls:
return
self.seen_urls.add(job_url)
description = job.get("job_description", "").strip()
description = markdown_converter(description) if self.scraper_input.description_format == DescriptionFormat.MARKDOWN else description
company = job.get("hiring_company", {}).get("name")
country_value = "usa" if job.get("job_country") == "US" else "canada"
country_enum = Country.from_string(country_value)
@ -115,11 +136,10 @@ class ZipRecruiterScraper(Scraper):
location = Location(
city=job.get("job_city"), state=job.get("job_state"), country=country_enum
)
job_type = ZipRecruiterScraper.get_job_type_enum(
job_type = self._get_job_type_enum(
job.get("employment_type", "").replace("_", "").lower()
)
date_posted = datetime.fromisoformat(job['posted_time'].rstrip("Z")).date()
return JobPost(
title=title,
company_name=company,
@ -144,20 +164,19 @@ class ZipRecruiterScraper(Scraper):
num_urgent_words=count_urgent_words(description) if description else None,
)
def get_cookies(self):
url="https://api.ziprecruiter.com/jobs-app/event"
def _get_cookies(self):
data="event_type=session&logged_in=false&number_of_retry=1&property=model%3AiPhone&property=os%3AiOS&property=locale%3Aen_us&property=app_build_number%3A4734&property=app_version%3A91.0&property=manufacturer%3AApple&property=timestamp%3A2024-01-12T12%3A04%3A42-06%3A00&property=screen_height%3A852&property=os_version%3A16.6.1&property=source%3Ainstall&property=screen_width%3A393&property=device_model%3AiPhone%2014%20Pro&property=brand%3AApple"
self.session.post(url, data=data, headers=ZipRecruiterScraper.headers())
self.session.post(f"{self.api_url}/jobs-app/event", data=data, headers=self.headers)
@staticmethod
def get_job_type_enum(job_type_str: str) -> list[JobType] | None:
def _get_job_type_enum(job_type_str: str) -> list[JobType] | None:
for job_type in JobType:
if job_type_str in job_type.value:
return [job_type]
return None
@staticmethod
def add_params(scraper_input) -> dict[str, str | Any]:
def _add_params(scraper_input) -> dict[str, str | Any]:
params = {
"search": scraper_input.search_term,
"location": scraper_input.location,
@ -177,24 +196,15 @@ class ZipRecruiterScraper(Scraper):
params["remote"] = 1
if scraper_input.distance:
params["radius"] = scraper_input.distance
return {k: v for k, v in params.items() if v is not None}
params = {k: v for k, v in params.items() if v is not None}
return params
@staticmethod
def headers() -> dict:
"""
Returns headers needed for requests
:return: dict - Dictionary containing headers
"""
return {
"Host": "api.ziprecruiter.com",
"accept": "*/*",
"x-zr-zva-override": "100000000;vid:ZT1huzm_EQlDTVEc",
"x-pushnotificationid": "0ff4983d38d7fc5b3370297f2bcffcf4b3321c418f5c22dd152a0264707602a0",
"x-deviceid": "D77B3A92-E589-46A4-8A39-6EF6F1D86006",
"user-agent": "Job Search/87.0 (iPhone; CPU iOS 16_6_1 like Mac OS X)",
"authorization": "Basic YTBlZjMyZDYtN2I0Yy00MWVkLWEyODMtYTI1NDAzMzI0YTcyOg==",
"accept-language": "en-US,en;q=0.9",
}
headers = {
"Host": "api.ziprecruiter.com",
"accept": "*/*",
"x-zr-zva-override": "100000000;vid:ZT1huzm_EQlDTVEc",
"x-pushnotificationid": "0ff4983d38d7fc5b3370297f2bcffcf4b3321c418f5c22dd152a0264707602a0",
"x-deviceid": "D77B3A92-E589-46A4-8A39-6EF6F1D86006",
"user-agent": "Job Search/87.0 (iPhone; CPU iOS 16_6_1 like Mac OS X)",
"authorization": "Basic YTBlZjMyZDYtN2I0Yy00MWVkLWEyODMtYTI1NDAzMzI0YTcyOg==",
"accept-language": "en-US,en;q=0.9",
}