mirror of https://github.com/Bunsly/JobSpy
Merge branch 'main' into main
commit
b2c025c6d5
|
@ -67,6 +67,7 @@ Optional
|
|||
├── job_type (enum): fulltime, parttime, internship, contract
|
||||
├── proxy (str): in format 'http://user:pass@host:port' or [https, socks]
|
||||
├── is_remote (bool)
|
||||
├── full_description (bool): fetches full description for Indeed / LinkedIn (much slower)
|
||||
├── results_wanted (int): number of job results to retrieve for each site specified in 'site_type'
|
||||
├── easy_apply (bool): filters for jobs that are hosted on LinkedIn
|
||||
├── country_indeed (enum): filters the country on Indeed (see below for correct spelling)
|
||||
|
|
|
@ -2,12 +2,11 @@ from jobspy import scrape_jobs
|
|||
import pandas as pd
|
||||
|
||||
jobs: pd.DataFrame = scrape_jobs(
|
||||
site_name=["indeed", "linkedin", "zip_recruiter"],
|
||||
site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor"],
|
||||
search_term="software engineer",
|
||||
location="Dallas, TX",
|
||||
results_wanted=50, # be wary the higher it is, the more likey you'll get blocked (rotating proxy should work tho)
|
||||
results_wanted=25, # be wary the higher it is, the more likey you'll get blocked (rotating proxy can help tho)
|
||||
country_indeed="USA",
|
||||
offset=25 # start jobs from an offset (use if search failed and want to continue)
|
||||
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
)
|
||||
|
||||
|
@ -28,4 +27,4 @@ print("outputted to jobs.csv")
|
|||
# jobs.to_xlsx('jobs.xlsx', index=False)
|
||||
|
||||
# 4: display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
|
||||
# display(jobs)
|
||||
# display(jobs)
|
|
@ -0,0 +1,77 @@
|
|||
from jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
import os
|
||||
import time
|
||||
|
||||
# creates csv a new filename if the jobs.csv already exists.
|
||||
csv_filename = "jobs.csv"
|
||||
counter = 1
|
||||
while os.path.exists(csv_filename):
|
||||
csv_filename = f"jobs_{counter}.csv"
|
||||
counter += 1
|
||||
|
||||
# results wanted and offset
|
||||
results_wanted = 1000
|
||||
offset = 0
|
||||
|
||||
all_jobs = []
|
||||
|
||||
# max retries
|
||||
max_retries = 3
|
||||
|
||||
# nuumber of results at each iteration
|
||||
results_in_each_iteration = 30
|
||||
|
||||
while len(all_jobs) < results_wanted:
|
||||
retry_count = 0
|
||||
while retry_count < max_retries:
|
||||
print("Doing from", offset, "to", offset + results_in_each_iteration, "jobs")
|
||||
try:
|
||||
jobs = scrape_jobs(
|
||||
site_name=["indeed"],
|
||||
search_term="software engineer",
|
||||
# New York, NY
|
||||
# Dallas, TX
|
||||
|
||||
# Los Angeles, CA
|
||||
location="Los Angeles, CA",
|
||||
results_wanted=min(results_in_each_iteration, results_wanted - len(all_jobs)),
|
||||
country_indeed="USA",
|
||||
offset=offset,
|
||||
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
)
|
||||
|
||||
# Add the scraped jobs to the list
|
||||
all_jobs.extend(jobs.to_dict('records'))
|
||||
|
||||
# Increment the offset for the next page of results
|
||||
offset += results_in_each_iteration
|
||||
|
||||
# Add a delay to avoid rate limiting (you can adjust the delay time as needed)
|
||||
print(f"Scraped {len(all_jobs)} jobs")
|
||||
print("Sleeping secs", 100 * (retry_count + 1))
|
||||
time.sleep(100 * (retry_count + 1)) # Sleep for 2 seconds between requests
|
||||
|
||||
break # Break out of the retry loop if successful
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
retry_count += 1
|
||||
print("Sleeping secs before retry", 100 * (retry_count + 1))
|
||||
time.sleep(100 * (retry_count + 1))
|
||||
if retry_count >= max_retries:
|
||||
print("Max retries reached. Exiting.")
|
||||
break
|
||||
|
||||
# DataFrame from the collected job data
|
||||
jobs_df = pd.DataFrame(all_jobs)
|
||||
|
||||
# Formatting
|
||||
pd.set_option("display.max_columns", None)
|
||||
pd.set_option("display.max_rows", None)
|
||||
pd.set_option("display.width", None)
|
||||
pd.set_option("display.max_colwidth", 50)
|
||||
|
||||
print(jobs_df)
|
||||
|
||||
jobs_df.to_csv(csv_filename, index=False)
|
||||
print(f"Outputted to {csv_filename}")
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "python-jobspy"
|
||||
version = "1.1.31"
|
||||
version = "1.1.36"
|
||||
description = "Job scraper for LinkedIn, Indeed, Glassdoor & ZipRecruiter"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/JobSpy"
|
||||
|
|
|
@ -40,6 +40,7 @@ def scrape_jobs(
|
|||
country_indeed: str = "usa",
|
||||
hyperlinks: bool = False,
|
||||
proxy: Optional[str] = None,
|
||||
full_description: Optional[bool] = False,
|
||||
offset: Optional[int] = 0,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
|
@ -74,6 +75,7 @@ def scrape_jobs(
|
|||
is_remote=is_remote,
|
||||
job_type=job_type,
|
||||
easy_apply=easy_apply,
|
||||
full_description=full_description,
|
||||
results_wanted=results_wanted,
|
||||
offset=offset,
|
||||
)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Union, Optional
|
||||
from typing import Optional
|
||||
from datetime import date
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel, validator
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class JobType(Enum):
|
||||
|
|
|
@ -19,6 +19,7 @@ class ScraperInput(BaseModel):
|
|||
is_remote: bool = False
|
||||
job_type: Optional[JobType] = None
|
||||
easy_apply: bool = None # linkedin
|
||||
full_description: bool = False
|
||||
offset: int = 0
|
||||
|
||||
results_wanted: int = 15
|
||||
|
|
|
@ -5,12 +5,16 @@ jobspy.scrapers.glassdoor
|
|||
This module contains routines to scrape Glassdoor.
|
||||
"""
|
||||
import json
|
||||
from typing import Optional, Any
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from typing import Optional
|
||||
from datetime import datetime, timedelta
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from ..utils import count_urgent_words, extract_emails_from_text
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..exceptions import GlassdoorException
|
||||
from ..utils import create_session
|
||||
from ..utils import create_session, modify_and_get_description
|
||||
from ...jobs import (
|
||||
JobPost,
|
||||
Compensation,
|
||||
|
@ -66,50 +70,70 @@ class GlassdoorScraper(Scraper):
|
|||
jobs_data = res_json["data"]["jobListings"]["jobListings"]
|
||||
|
||||
jobs = []
|
||||
for i, job in enumerate(jobs_data):
|
||||
job_url = res_json["data"]["jobListings"]["jobListingSeoLinks"][
|
||||
"linkItems"
|
||||
][i]["url"]
|
||||
if job_url in self.seen_urls:
|
||||
continue
|
||||
self.seen_urls.add(job_url)
|
||||
job = job["jobview"]
|
||||
title = job["job"]["jobTitleText"]
|
||||
company_name = job["header"]["employerNameFromSearch"]
|
||||
location_name = job["header"].get("locationName", "")
|
||||
location_type = job["header"].get("locationType", "")
|
||||
age_in_days = job["header"].get("ageInDays")
|
||||
is_remote, location = False, None
|
||||
date_posted = (datetime.now() - timedelta(days=age_in_days)).date() if age_in_days else None
|
||||
|
||||
if location_type == "S":
|
||||
is_remote = True
|
||||
else:
|
||||
location = self.parse_location(location_name)
|
||||
|
||||
compensation = self.parse_compensation(job["header"])
|
||||
|
||||
job = JobPost(
|
||||
title=title,
|
||||
company_name=company_name,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
location=location,
|
||||
compensation=compensation,
|
||||
is_remote=is_remote
|
||||
)
|
||||
jobs.append(job)
|
||||
with ThreadPoolExecutor(max_workers=self.jobs_per_page) as executor:
|
||||
future_to_job_data = {executor.submit(self.process_job, job): job for job in jobs_data}
|
||||
for future in as_completed(future_to_job_data):
|
||||
job_data = future_to_job_data[future]
|
||||
try:
|
||||
job_post = future.result()
|
||||
if job_post:
|
||||
jobs.append(job_post)
|
||||
except Exception as exc:
|
||||
raise GlassdoorException(f'Glassdoor generated an exception: {exc}')
|
||||
|
||||
return jobs, self.get_cursor_for_page(
|
||||
res_json["data"]["jobListings"]["paginationCursors"], page_num + 1
|
||||
)
|
||||
|
||||
def process_job(self, job_data):
|
||||
"""Processes a single job and fetches its description."""
|
||||
job_id = job_data["jobview"]["job"]["listingId"]
|
||||
job_url = f'{self.url}/job-listing/?jl={job_id}'
|
||||
if job_url in self.seen_urls:
|
||||
return None
|
||||
self.seen_urls.add(job_url)
|
||||
job = job_data["jobview"]
|
||||
title = job["job"]["jobTitleText"]
|
||||
company_name = job["header"]["employerNameFromSearch"]
|
||||
location_name = job["header"].get("locationName", "")
|
||||
location_type = job["header"].get("locationType", "")
|
||||
age_in_days = job["header"].get("ageInDays")
|
||||
is_remote, location = False, None
|
||||
date_posted = (datetime.now() - timedelta(days=age_in_days)).date() if age_in_days else None
|
||||
|
||||
if location_type == "S":
|
||||
is_remote = True
|
||||
else:
|
||||
location = self.parse_location(location_name)
|
||||
|
||||
compensation = self.parse_compensation(job["header"])
|
||||
|
||||
try:
|
||||
description = self.fetch_job_description(job_id)
|
||||
except Exception as e :
|
||||
description = None
|
||||
|
||||
job_post = JobPost(
|
||||
title=title,
|
||||
company_name=company_name,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
location=location,
|
||||
compensation=compensation,
|
||||
is_remote=is_remote,
|
||||
description=description,
|
||||
emails=extract_emails_from_text(description) if description else None,
|
||||
num_urgent_words=count_urgent_words(description) if description else None,
|
||||
)
|
||||
return job_post
|
||||
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
|
||||
"""
|
||||
Scrapes Glassdoor for jobs with scraper_input criteria.
|
||||
:param scraper_input: Information about job search criteria.
|
||||
:return: JobResponse containing a list of jobs.
|
||||
"""
|
||||
scraper_input.results_wanted = min(900, scraper_input.results_wanted)
|
||||
self.country = scraper_input.country
|
||||
self.url = self.country.get_url()
|
||||
|
||||
|
@ -143,6 +167,41 @@ class GlassdoorScraper(Scraper):
|
|||
|
||||
return JobResponse(jobs=all_jobs)
|
||||
|
||||
def fetch_job_description(self, job_id):
|
||||
"""Fetches the job description for a single job ID."""
|
||||
url = f"{self.url}/graph"
|
||||
body = [
|
||||
{
|
||||
"operationName": "JobDetailQuery",
|
||||
"variables": {
|
||||
"jl": job_id,
|
||||
"queryString": "q",
|
||||
"pageTypeEnum": "SERP"
|
||||
},
|
||||
"query": """
|
||||
query JobDetailQuery($jl: Long!, $queryString: String, $pageTypeEnum: PageTypeEnum) {
|
||||
jobview: jobView(
|
||||
listingId: $jl
|
||||
contextHolder: {queryString: $queryString, pageTypeEnum: $pageTypeEnum}
|
||||
) {
|
||||
job {
|
||||
description
|
||||
__typename
|
||||
}
|
||||
__typename
|
||||
}
|
||||
}
|
||||
"""
|
||||
}
|
||||
]
|
||||
response = requests.post(url, json=body, headers=GlassdoorScraper.headers())
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
data = response.json()[0]
|
||||
desc = data['data']['jobview']['job']['description']
|
||||
soup = BeautifulSoup(desc, 'html.parser')
|
||||
return modify_and_get_description(soup)
|
||||
|
||||
@staticmethod
|
||||
def parse_compensation(data: dict) -> Optional[Compensation]:
|
||||
pay_period = data.get("payPeriod")
|
||||
|
@ -231,12 +290,11 @@ class GlassdoorScraper(Scraper):
|
|||
for job_type in JobType:
|
||||
if job_type_str in job_type.value:
|
||||
return [job_type]
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def parse_location(location_name: str) -> Location:
|
||||
def parse_location(location_name: str) -> Location | None:
|
||||
if not location_name or location_name == "Remote":
|
||||
return None
|
||||
return
|
||||
city, _, state = location_name.partition(", ")
|
||||
return Location(city=city, state=state)
|
||||
|
||||
|
@ -245,7 +303,6 @@ class GlassdoorScraper(Scraper):
|
|||
for cursor_data in pagination_cursors:
|
||||
if cursor_data["pageNumber"] == page_num:
|
||||
return cursor_data["cursor"]
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def headers() -> dict:
|
||||
|
|
|
@ -22,6 +22,7 @@ from ..utils import (
|
|||
extract_emails_from_text,
|
||||
create_session,
|
||||
get_enum_from_job_type,
|
||||
modify_and_get_description
|
||||
)
|
||||
from ...jobs import (
|
||||
JobPost,
|
||||
|
@ -79,7 +80,7 @@ class IndeedScraper(Scraper):
|
|||
if sc_values:
|
||||
params["sc"] = "0kf:" + "".join(sc_values) + ";"
|
||||
try:
|
||||
session = create_session(self.proxy, is_tls=True)
|
||||
session = create_session(self.proxy)
|
||||
response = session.get(
|
||||
f"{self.url}/jobs",
|
||||
headers=self.get_headers(),
|
||||
|
@ -141,7 +142,8 @@ class IndeedScraper(Scraper):
|
|||
date_posted = datetime.fromtimestamp(timestamp_seconds)
|
||||
date_posted = date_posted.strftime("%Y-%m-%d")
|
||||
|
||||
description = self.get_description(job_url)
|
||||
description = self.get_description(job_url) if scraper_input.full_description else None
|
||||
|
||||
with io.StringIO(job["snippet"]) as f:
|
||||
soup_io = BeautifulSoup(f, "html.parser")
|
||||
li_elements = soup_io.find_all("li")
|
||||
|
@ -248,9 +250,7 @@ class IndeedScraper(Scraper):
|
|||
return None
|
||||
|
||||
soup = BeautifulSoup(job_description, "html.parser")
|
||||
text_content = " ".join(soup.get_text(separator=" ").split()).strip()
|
||||
|
||||
return text_content
|
||||
return modify_and_get_description(soup)
|
||||
|
||||
@staticmethod
|
||||
def get_job_type(job: dict) -> list[JobType] | None:
|
||||
|
|
|
@ -4,26 +4,40 @@ jobspy.scrapers.linkedin
|
|||
|
||||
This module contains routines to scrape LinkedIn.
|
||||
"""
|
||||
import time
|
||||
import random
|
||||
from typing import Optional
|
||||
from datetime import datetime
|
||||
|
||||
import requests
|
||||
import time
|
||||
from requests.exceptions import ProxyError
|
||||
from bs4 import BeautifulSoup
|
||||
from bs4.element import Tag
|
||||
from threading import Lock
|
||||
from bs4.element import Tag
|
||||
from bs4 import BeautifulSoup
|
||||
from urllib.parse import urlparse, urlunparse
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..utils import count_urgent_words, extract_emails_from_text, get_enum_from_job_type, currency_parser
|
||||
from ..exceptions import LinkedInException
|
||||
from ...jobs import JobPost, Location, JobResponse, JobType, Country, Compensation
|
||||
from ..utils import create_session
|
||||
from ...jobs import (
|
||||
JobPost,
|
||||
Location,
|
||||
JobResponse,
|
||||
JobType,
|
||||
Country,
|
||||
Compensation
|
||||
)
|
||||
from ..utils import (
|
||||
count_urgent_words,
|
||||
extract_emails_from_text,
|
||||
get_enum_from_job_type,
|
||||
currency_parser,
|
||||
modify_and_get_description
|
||||
)
|
||||
|
||||
|
||||
class LinkedInScraper(Scraper):
|
||||
MAX_RETRIES = 3
|
||||
DELAY = 10
|
||||
DELAY = 3
|
||||
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
"""
|
||||
|
@ -57,6 +71,7 @@ class LinkedInScraper(Scraper):
|
|||
return mapping.get(job_type_enum, "")
|
||||
|
||||
while len(job_list) < scraper_input.results_wanted and page < 1000:
|
||||
session = create_session(is_tls=False, has_retry=True, delay=5)
|
||||
params = {
|
||||
"keywords": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
|
@ -71,44 +86,30 @@ class LinkedInScraper(Scraper):
|
|||
}
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
retries = 0
|
||||
while retries < self.MAX_RETRIES:
|
||||
try:
|
||||
response = requests.get(
|
||||
f"{self.url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
|
||||
params=params,
|
||||
allow_redirects=True,
|
||||
proxies=self.proxy,
|
||||
timeout=10,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
break
|
||||
except requests.HTTPError as e:
|
||||
if hasattr(e, "response") and e.response is not None:
|
||||
if e.response.status_code in (429, 502):
|
||||
time.sleep(self.DELAY)
|
||||
retries += 1
|
||||
continue
|
||||
else:
|
||||
raise LinkedInException(
|
||||
f"bad response status code: {e.response.status_code}"
|
||||
)
|
||||
else:
|
||||
raise
|
||||
except ProxyError as e:
|
||||
raise LinkedInException("bad proxy")
|
||||
except Exception as e:
|
||||
raise LinkedInException(str(e))
|
||||
else:
|
||||
# Raise an exception if the maximum number of retries is reached
|
||||
raise LinkedInException(
|
||||
"Max retries reached, failed to get a valid response"
|
||||
try:
|
||||
response = session.get(
|
||||
f"{self.url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
|
||||
params=params,
|
||||
allow_redirects=True,
|
||||
proxies=self.proxy,
|
||||
headers=self.headers(),
|
||||
timeout=10,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
except requests.HTTPError as e:
|
||||
raise LinkedInException(f"bad response status code: {e.response.status_code}")
|
||||
except ProxyError as e:
|
||||
raise LinkedInException("bad proxy")
|
||||
except Exception as e:
|
||||
raise LinkedInException(str(e))
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
job_cards = soup.find_all("div", class_="base-search-card")
|
||||
if len(job_cards) == 0:
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
for job_card in soup.find_all("div", class_="base-search-card"):
|
||||
for job_card in job_cards:
|
||||
job_url = None
|
||||
href_tag = job_card.find("a", class_="base-card__full-link")
|
||||
if href_tag and "href" in href_tag.attrs:
|
||||
|
@ -123,18 +124,19 @@ class LinkedInScraper(Scraper):
|
|||
|
||||
# Call process_job directly without threading
|
||||
try:
|
||||
job_post = self.process_job(job_card, job_url)
|
||||
job_post = self.process_job(job_card, job_url, scraper_input.full_description)
|
||||
if job_post:
|
||||
job_list.append(job_post)
|
||||
except Exception as e:
|
||||
raise LinkedInException("Exception occurred while processing jobs")
|
||||
|
||||
page += 25
|
||||
time.sleep(random.uniform(LinkedInScraper.DELAY, LinkedInScraper.DELAY + 2))
|
||||
|
||||
job_list = job_list[: scraper_input.results_wanted]
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
def process_job(self, job_card: Tag, job_url: str) -> Optional[JobPost]:
|
||||
def process_job(self, job_card: Tag, job_url: str, full_descr: bool) -> Optional[JobPost]:
|
||||
salary_tag = job_card.find('span', class_='job-search-card__salary-info')
|
||||
|
||||
compensation = None
|
||||
|
@ -171,7 +173,7 @@ class LinkedInScraper(Scraper):
|
|||
if metadata_card
|
||||
else None
|
||||
)
|
||||
date_posted = None
|
||||
date_posted = description = job_type = None
|
||||
if datetime_tag and "datetime" in datetime_tag.attrs:
|
||||
datetime_str = datetime_tag["datetime"]
|
||||
try:
|
||||
|
@ -180,21 +182,20 @@ class LinkedInScraper(Scraper):
|
|||
date_posted = None
|
||||
benefits_tag = job_card.find("span", class_="result-benefits__text")
|
||||
benefits = " ".join(benefits_tag.get_text().split()) if benefits_tag else None
|
||||
|
||||
description, job_type = self.get_job_description(job_url)
|
||||
# description, job_type = None, []
|
||||
if full_descr:
|
||||
description, job_type = self.get_job_description(job_url)
|
||||
|
||||
return JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
company_url=company_url,
|
||||
location=location,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
job_type=job_type,
|
||||
compensation=compensation,
|
||||
benefits=benefits,
|
||||
job_type=job_type,
|
||||
description=description,
|
||||
emails=extract_emails_from_text(description) if description else None,
|
||||
num_urgent_words=count_urgent_words(description) if description else None,
|
||||
)
|
||||
|
@ -208,12 +209,10 @@ class LinkedInScraper(Scraper):
|
|||
:return: description or None
|
||||
"""
|
||||
try:
|
||||
response = requests.get(job_page_url, timeout=5, proxies=self.proxy)
|
||||
session = create_session(is_tls=False, has_retry=True)
|
||||
response = session.get(job_page_url, timeout=5, proxies=self.proxy)
|
||||
response.raise_for_status()
|
||||
except requests.HTTPError as e:
|
||||
if hasattr(e, "response") and e.response is not None:
|
||||
if e.response.status_code in (429, 502):
|
||||
time.sleep(self.DELAY)
|
||||
return None, None
|
||||
except Exception as e:
|
||||
return None, None
|
||||
|
@ -227,7 +226,7 @@ class LinkedInScraper(Scraper):
|
|||
|
||||
description = None
|
||||
if div_content:
|
||||
description = " ".join(div_content.get_text().split()).strip()
|
||||
description = modify_and_get_description(div_content)
|
||||
|
||||
def get_job_type(
|
||||
soup_job_type: BeautifulSoup,
|
||||
|
@ -292,3 +291,20 @@ class LinkedInScraper(Scraper):
|
|||
|
||||
return location
|
||||
|
||||
@staticmethod
|
||||
def headers() -> dict:
|
||||
return {
|
||||
'authority': 'www.linkedin.com',
|
||||
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
|
||||
'accept-language': 'en-US,en;q=0.9',
|
||||
'cache-control': 'max-age=0',
|
||||
'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "Google Chrome";v="120"',
|
||||
# 'sec-ch-ua-mobile': '?0',
|
||||
# 'sec-ch-ua-platform': '"macOS"',
|
||||
# 'sec-fetch-dest': 'document',
|
||||
# 'sec-fetch-mode': 'navigate',
|
||||
# 'sec-fetch-site': 'none',
|
||||
# 'sec-fetch-user': '?1',
|
||||
'upgrade-insecure-requests': '1',
|
||||
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
|
||||
}
|
||||
|
|
|
@ -8,6 +8,15 @@ from requests.adapters import HTTPAdapter, Retry
|
|||
from ..jobs import JobType
|
||||
|
||||
|
||||
def modify_and_get_description(soup):
|
||||
for li in soup.find_all('li'):
|
||||
li.string = "- " + li.get_text()
|
||||
|
||||
description = soup.get_text(separator='\n').strip()
|
||||
description = re.sub(r'\n+', '\n', description)
|
||||
return description
|
||||
|
||||
|
||||
def count_urgent_words(description: str) -> int:
|
||||
"""
|
||||
Count the number of urgent words or phrases in a job description.
|
||||
|
@ -29,7 +38,7 @@ def extract_emails_from_text(text: str) -> list[str] | None:
|
|||
return email_regex.findall(text)
|
||||
|
||||
|
||||
def create_session(proxy: dict | None = None, is_tls: bool = True, has_retry: bool = False):
|
||||
def create_session(proxy: dict | None = None, is_tls: bool = True, has_retry: bool = False, delay: int = 1) -> requests.Session:
|
||||
"""
|
||||
Creates a requests session with optional tls, proxy, and retry settings.
|
||||
|
||||
|
@ -51,7 +60,7 @@ def create_session(proxy: dict | None = None, is_tls: bool = True, has_retry: bo
|
|||
connect=3,
|
||||
status=3,
|
||||
status_forcelist=[500, 502, 503, 504, 429],
|
||||
backoff_factor=1)
|
||||
backoff_factor=delay)
|
||||
adapter = HTTPAdapter(max_retries=retries)
|
||||
|
||||
session.mount('http://', adapter)
|
||||
|
|
|
@ -15,8 +15,8 @@ from concurrent.futures import ThreadPoolExecutor
|
|||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..exceptions import ZipRecruiterException
|
||||
from ..utils import count_urgent_words, extract_emails_from_text, create_session
|
||||
from ...jobs import JobPost, Compensation, Location, JobResponse, JobType, Country
|
||||
from ..utils import count_urgent_words, extract_emails_from_text, create_session, modify_and_get_description
|
||||
|
||||
|
||||
class ZipRecruiterScraper(Scraper):
|
||||
|
@ -26,6 +26,8 @@ class ZipRecruiterScraper(Scraper):
|
|||
"""
|
||||
site = Site(Site.ZIP_RECRUITER)
|
||||
self.url = "https://www.ziprecruiter.com"
|
||||
self.session = create_session(proxy)
|
||||
self.get_cookies()
|
||||
super().__init__(site, proxy=proxy)
|
||||
|
||||
self.jobs_per_page = 20
|
||||
|
@ -44,12 +46,10 @@ class ZipRecruiterScraper(Scraper):
|
|||
if continue_token:
|
||||
params["continue"] = continue_token
|
||||
try:
|
||||
session = create_session(self.proxy, is_tls=True)
|
||||
response = session.get(
|
||||
response = self.session.get(
|
||||
f"https://api.ziprecruiter.com/jobs-app/jobs",
|
||||
headers=self.headers(),
|
||||
params=self.add_params(scraper_input),
|
||||
timeout_seconds=10,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise ZipRecruiterException(
|
||||
|
@ -106,9 +106,9 @@ class ZipRecruiterScraper(Scraper):
|
|||
title = job.get("name")
|
||||
job_url = job.get("job_url")
|
||||
|
||||
description = BeautifulSoup(
|
||||
job.get("job_description", "").strip(), "html.parser"
|
||||
).get_text()
|
||||
job_description_html = job.get("job_description", "").strip()
|
||||
description_soup = BeautifulSoup(job_description_html, "html.parser")
|
||||
description = modify_and_get_description(description_soup)
|
||||
|
||||
company = job["hiring_company"].get("name") if "hiring_company" in job else None
|
||||
country_value = "usa" if job.get("job_country") == "US" else "canada"
|
||||
|
@ -156,6 +156,11 @@ class ZipRecruiterScraper(Scraper):
|
|||
num_urgent_words=count_urgent_words(description) if description else None,
|
||||
)
|
||||
|
||||
def get_cookies(self):
|
||||
url="https://api.ziprecruiter.com/jobs-app/event"
|
||||
data="event_type=session&logged_in=false&number_of_retry=1&property=model%3AiPhone&property=os%3AiOS&property=locale%3Aen_us&property=app_build_number%3A4734&property=app_version%3A91.0&property=manufacturer%3AApple&property=timestamp%3A2024-01-12T12%3A04%3A42-06%3A00&property=screen_height%3A852&property=os_version%3A16.6.1&property=source%3Ainstall&property=screen_width%3A393&property=device_model%3AiPhone%2014%20Pro&property=brand%3AApple"
|
||||
self.session.post(url, data=data, headers=ZipRecruiterScraper.headers())
|
||||
|
||||
@staticmethod
|
||||
def get_job_type_enum(job_type_str: str) -> list[JobType] | None:
|
||||
for job_type in JobType:
|
||||
|
@ -195,12 +200,16 @@ class ZipRecruiterScraper(Scraper):
|
|||
@staticmethod
|
||||
def headers() -> dict:
|
||||
"""
|
||||
Returns headers needed for ZipRecruiter API requests
|
||||
Returns headers needed for requests
|
||||
:return: dict - Dictionary containing headers
|
||||
"""
|
||||
return {
|
||||
'Host': 'api.ziprecruiter.com',
|
||||
'accept': '*/*',
|
||||
'authorization': 'Basic YTBlZjMyZDYtN2I0Yy00MWVkLWEyODMtYTI1NDAzMzI0YTcyOg==',
|
||||
'Cookie': '__cf_bm=DZ7eJOw6lka.Bwy5jLeDqWanaZ8BJlVAwaXrmcbYnxM-1701505132-0-AfGaVIfTA2kJlmleK14o722vbVwpZ+4UxFznsWv+guvzXSpD9KVEy/+pNzvEZUx88yaEShJwGt3/EVjhHirX/ASustKxg47V/aXRd2XIO2QN; zglobalid=61f94830-1990-4130-b222-d9d0e09c7825.57da9ea9581c.656ae86b; ziprecruiter_browser=018188e0-045b-4ad7-aa50-627a6c3d43aa; ziprecruiter_session=5259b2219bf95b6d2299a1417424bc2edc9f4b38; zva=100000000%3Bvid%3AZWroa0x_F1KEeGeU'
|
||||
"Host": "api.ziprecruiter.com",
|
||||
"accept": "*/*",
|
||||
"x-zr-zva-override": "100000000;vid:ZT1huzm_EQlDTVEc",
|
||||
"x-pushnotificationid": "0ff4983d38d7fc5b3370297f2bcffcf4b3321c418f5c22dd152a0264707602a0",
|
||||
"x-deviceid": "D77B3A92-E589-46A4-8A39-6EF6F1D86006",
|
||||
"user-agent": "Job Search/87.0 (iPhone; CPU iOS 16_6_1 like Mac OS X)",
|
||||
"authorization": "Basic YTBlZjMyZDYtN2I0Yy00MWVkLWEyODMtYTI1NDAzMzI0YTcyOg==",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue