mirror of https://github.com/Bunsly/JobSpy
add offset param & email extraction (#51)
* add offset param * [enh]: extract emailspull/54/head v1.1.8
parent
286b9e1256
commit
af07c1ecbd
|
@ -7,27 +7,27 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install poetry
|
||||
run: >-
|
||||
python3 -m
|
||||
pip install
|
||||
poetry
|
||||
--user
|
||||
- name: Install poetry
|
||||
run: >-
|
||||
python3 -m
|
||||
pip install
|
||||
poetry
|
||||
--user
|
||||
|
||||
- name: Build distribution 📦
|
||||
run: >-
|
||||
python3 -m
|
||||
poetry
|
||||
build
|
||||
- name: Build distribution 📦
|
||||
run: >-
|
||||
python3 -m
|
||||
poetry
|
||||
build
|
||||
|
||||
- name: Publish distribution 📦 to PyPI
|
||||
if: startsWith(github.ref, 'refs/tags')
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
- name: Publish distribution 📦 to PyPI
|
||||
if: startsWith(github.ref, 'refs/tags')
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
|
@ -1,10 +1,10 @@
|
|||
/.idea
|
||||
**/.DS_Store
|
||||
/venv/
|
||||
/ven/
|
||||
/.idea
|
||||
**/__pycache__/
|
||||
**/.pytest_cache/
|
||||
/.ipynb_checkpoints/
|
||||
**/output/
|
||||
**/.DS_Store
|
||||
*.pyc
|
||||
.env
|
||||
dist
|
||||
/.ipynb_checkpoints/
|
95
README.md
95
README.md
|
@ -4,26 +4,30 @@
|
|||
|
||||
**Not technical?** Try out the web scraping tool on our site at [usejobspy.com](https://usejobspy.com).
|
||||
|
||||
*Looking to build a data-focused software product?* **[Book a call](https://calendly.com/zachary-products/15min)** *to work with us.*
|
||||
*Looking to build a data-focused software product?* **[Book a call](https://calendly.com/zachary-products/15min)** *to
|
||||
work with us.*
|
||||
\
|
||||
Check out another project we wrote: ***[HomeHarvest](https://github.com/ZacharyHampton/HomeHarvest)** – a Python package for real estate scraping*
|
||||
## Features
|
||||
Check out another project we wrote: ***[HomeHarvest](https://github.com/ZacharyHampton/HomeHarvest)** – a Python package
|
||||
for real estate scraping*
|
||||
|
||||
## Features
|
||||
|
||||
- Scrapes job postings from **LinkedIn**, **Indeed** & **ZipRecruiter** simultaneously
|
||||
- Aggregates the job postings in a Pandas DataFrame
|
||||
- Proxy support (HTTP/S, SOCKS)
|
||||
|
||||
[Video Guide for JobSpy](https://www.youtube.com/watch?v=RuP1HrAZnxs&pp=ygUgam9icyBzY3JhcGVyIGJvdCBsaW5rZWRpbiBpbmRlZWQ%3D) - Updated for release v1.1.3
|
||||
[Video Guide for JobSpy](https://www.youtube.com/watch?v=RuP1HrAZnxs&pp=ygUgam9icyBzY3JhcGVyIGJvdCBsaW5rZWRpbiBpbmRlZWQ%3D) -
|
||||
Updated for release v1.1.3
|
||||
|
||||
![jobspy](https://github.com/cullenwatson/JobSpy/assets/78247585/ec7ef355-05f6-4fd3-8161-a817e31c5c57)
|
||||
|
||||
### Installation
|
||||
|
||||
```
|
||||
pip install --upgrade python-jobspy
|
||||
```
|
||||
|
||||
_Python version >= [3.10](https://www.python.org/downloads/release/python-3100/) required_
|
||||
_Python version >= [3.10](https://www.python.org/downloads/release/python-3100/) required_
|
||||
|
||||
### Usage
|
||||
|
||||
|
@ -37,12 +41,11 @@ jobs: pd.DataFrame = scrape_jobs(
|
|||
location="Dallas, TX",
|
||||
results_wanted=10,
|
||||
|
||||
country_indeed='USA' # only needed for indeed
|
||||
country_indeed='USA' # only needed for indeed
|
||||
|
||||
# use if you want to use a proxy (3 types)
|
||||
# proxy="socks5://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
# use if you want to use a proxy
|
||||
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
# proxy="https://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
# offset=25 # use if you want to start at a specific offset
|
||||
)
|
||||
|
||||
# formatting for pandas
|
||||
|
@ -51,17 +54,22 @@ pd.set_option('display.max_rows', None)
|
|||
pd.set_option('display.width', None)
|
||||
pd.set_option('display.max_colwidth', 50) # set to 0 to see full job url / desc
|
||||
|
||||
#1 display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
|
||||
display(jobs)
|
||||
# 1 output to console
|
||||
print(jobs)
|
||||
|
||||
#2 output to console
|
||||
#print(jobs)
|
||||
# 2 display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
|
||||
# display(jobs)
|
||||
|
||||
# 3 output to .csv
|
||||
# jobs.to_csv('jobs.csv', index=False)
|
||||
|
||||
# 4 output to .xlsx
|
||||
# jobs.to_xlsx('jobs.xlsx', index=False)
|
||||
|
||||
#3 output to .csv
|
||||
#jobs.to_csv('jobs.csv', index=False)
|
||||
```
|
||||
|
||||
### Output
|
||||
|
||||
```
|
||||
SITE TITLE COMPANY_NAME CITY STATE JOB_TYPE INTERVAL MIN_AMOUNT MAX_AMOUNT JOB_URL DESCRIPTION
|
||||
indeed Software Engineer AMERICAN SYSTEMS Arlington VA None yearly 200000 150000 https://www.indeed.com/viewjob?jk=5e409e577046... THIS POSITION COMES WITH A 10K SIGNING BONUS!...
|
||||
|
@ -71,7 +79,9 @@ linkedin Full-Stack Software Engineer Rain New York
|
|||
zip_recruiter Software Engineer - New Grad ZipRecruiter Santa Monica CA fulltime yearly 130000 150000 https://www.ziprecruiter.com/jobs/ziprecruiter... We offer a hybrid work environment. Most US-ba...
|
||||
zip_recruiter Software Developer TEKsystems Phoenix AZ fulltime hourly 65 75 https://www.ziprecruiter.com/jobs/teksystems-0... Top Skills' Details• 6 years of Java developme...
|
||||
```
|
||||
|
||||
### Parameters for `scrape_jobs()`
|
||||
|
||||
```plaintext
|
||||
Required
|
||||
├── site_type (List[enum]): linkedin, zip_recruiter, indeed
|
||||
|
@ -85,10 +95,11 @@ Optional
|
|||
├── results_wanted (int): number of job results to retrieve for each site specified in 'site_type'
|
||||
├── easy_apply (bool): filters for jobs that are hosted on LinkedIn
|
||||
├── country_indeed (enum): filters the country on Indeed (see below for correct spelling)
|
||||
├── offset (enum): starts the search from an offset (e.g. 25 will start the search from the 25th result)
|
||||
```
|
||||
|
||||
|
||||
### JobPost Schema
|
||||
|
||||
```plaintext
|
||||
JobPost
|
||||
├── title (str)
|
||||
|
@ -109,14 +120,15 @@ JobPost
|
|||
```
|
||||
|
||||
### Exceptions
|
||||
|
||||
The following exceptions may be raised when using JobSpy:
|
||||
|
||||
* `LinkedInException`
|
||||
* `IndeedException`
|
||||
* `ZipRecruiterException`
|
||||
|
||||
## Supported Countries for Job Searching
|
||||
|
||||
|
||||
### **LinkedIn**
|
||||
|
||||
LinkedIn searches globally & uses only the `location` parameter.
|
||||
|
@ -125,43 +137,45 @@ LinkedIn searches globally & uses only the `location` parameter.
|
|||
|
||||
ZipRecruiter searches for jobs in **US/Canada** & uses only the `location` parameter.
|
||||
|
||||
|
||||
### **Indeed**
|
||||
Indeed supports most countries, but the `country_indeed` parameter is required. Additionally, use the `location` parameter to narrow down the location, e.g. city & state if necessary.
|
||||
|
||||
Indeed supports most countries, but the `country_indeed` parameter is required. Additionally, use the `location`
|
||||
parameter to narrow down the location, e.g. city & state if necessary.
|
||||
|
||||
You can specify the following countries when searching on Indeed (use the exact name):
|
||||
|
||||
|
||||
| | | | |
|
||||
|------|------|------|------|
|
||||
| Argentina | Australia | Austria | Bahrain |
|
||||
| Belgium | Brazil | Canada | Chile |
|
||||
| China | Colombia | Costa Rica | Czech Republic |
|
||||
| Denmark | Ecuador | Egypt | Finland |
|
||||
| France | Germany | Greece | Hong Kong |
|
||||
| Hungary | India | Indonesia | Ireland |
|
||||
| Israel | Italy | Japan | Kuwait |
|
||||
| Luxembourg | Malaysia | Mexico | Morocco |
|
||||
| Netherlands | New Zealand | Nigeria | Norway |
|
||||
| Oman | Pakistan | Panama | Peru |
|
||||
| Philippines | Poland | Portugal | Qatar |
|
||||
| Romania | Saudi Arabia | Singapore | South Africa |
|
||||
| South Korea | Spain | Sweden | Switzerland |
|
||||
| Taiwan | Thailand | Turkey | Ukraine |
|
||||
| United Arab Emirates | UK | USA | Uruguay |
|
||||
| Venezuela | Vietnam | | |
|
||||
| | | | |
|
||||
|----------------------|--------------|------------|----------------|
|
||||
| Argentina | Australia | Austria | Bahrain |
|
||||
| Belgium | Brazil | Canada | Chile |
|
||||
| China | Colombia | Costa Rica | Czech Republic |
|
||||
| Denmark | Ecuador | Egypt | Finland |
|
||||
| France | Germany | Greece | Hong Kong |
|
||||
| Hungary | India | Indonesia | Ireland |
|
||||
| Israel | Italy | Japan | Kuwait |
|
||||
| Luxembourg | Malaysia | Mexico | Morocco |
|
||||
| Netherlands | New Zealand | Nigeria | Norway |
|
||||
| Oman | Pakistan | Panama | Peru |
|
||||
| Philippines | Poland | Portugal | Qatar |
|
||||
| Romania | Saudi Arabia | Singapore | South Africa |
|
||||
| South Korea | Spain | Sweden | Switzerland |
|
||||
| Taiwan | Thailand | Turkey | Ukraine |
|
||||
| United Arab Emirates | UK | USA | Uruguay |
|
||||
| Venezuela | Vietnam | | |
|
||||
|
||||
## Frequently Asked Questions
|
||||
|
||||
---
|
||||
|
||||
**Q: Encountering issues with your queries?**
|
||||
**A:** Try reducing the number of `results_wanted` and/or broadening the filters. If problems persist, [submit an issue](https://github.com/cullenwatson/JobSpy/issues).
|
||||
**A:** Try reducing the number of `results_wanted` and/or broadening the filters. If problems
|
||||
persist, [submit an issue](https://github.com/cullenwatson/JobSpy/issues).
|
||||
|
||||
---
|
||||
|
||||
**Q: Received a response code 429?**
|
||||
**A:** This indicates that you have been blocked by the job board site for sending too many requests. Currently, **LinkedIn** is particularly aggressive with blocking. We recommend:
|
||||
**A:** This indicates that you have been blocked by the job board site for sending too many requests. Currently, *
|
||||
*LinkedIn** is particularly aggressive with blocking. We recommend:
|
||||
|
||||
- Waiting a few seconds between requests.
|
||||
- Trying a VPN or proxy to change your IP address.
|
||||
|
@ -170,6 +184,7 @@ You can specify the following countries when searching on Indeed (use the exact
|
|||
|
||||
**Q: Experiencing a "Segmentation fault: 11" on macOS Catalina?**
|
||||
**A:** This is due to `tls_client` dependency not supporting your architecture. Solutions and workarounds include:
|
||||
|
||||
- Upgrade to a newer version of MacOS
|
||||
- Reach out to the maintainers of [tls_client](https://github.com/bogdanfinn/tls-client) for fixes
|
||||
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
from jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
jobs: pd.DataFrame = scrape_jobs(
|
||||
site_name=["indeed", "linkedin", "zip_recruiter"],
|
||||
search_term="software engineer",
|
||||
location="Dallas, TX",
|
||||
results_wanted=50, # be wary the higher it is, the more likey you'll get blocked (rotating proxy should work tho)
|
||||
country_indeed='USA',
|
||||
offset=25 # start jobs from an offset (use if search failed and want to continue)
|
||||
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
)
|
||||
|
||||
# formatting for pandas
|
||||
pd.set_option('display.max_columns', None)
|
||||
pd.set_option('display.max_rows', None)
|
||||
pd.set_option('display.width', None)
|
||||
pd.set_option('display.max_colwidth', 50) # set to 0 to see full job url / desc
|
||||
|
||||
# 1: output to console
|
||||
print(jobs)
|
||||
|
||||
# 2: output to .csv
|
||||
jobs.to_csv('./jobs.csv', index=False)
|
||||
print('outputted to jobs.csv')
|
||||
|
||||
# 3: output to .xlsx
|
||||
# jobs.to_xlsx('jobs.xlsx', index=False)
|
||||
|
||||
# 4: display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
|
||||
# display(jobs)
|
File diff suppressed because it is too large
Load Diff
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "python-jobspy"
|
||||
version = "1.1.7"
|
||||
version = "1.1.8"
|
||||
description = "Job scraper for LinkedIn, Indeed & ZipRecruiter"
|
||||
authors = ["Zachary Hampton <zachary@zacharysproducts.com>", "Cullen Watson <cullen@cullen.ai>"]
|
||||
homepage = "https://github.com/cullenwatson/JobSpy"
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import pandas as pd
|
||||
import concurrent.futures
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import List, Tuple, NamedTuple, Dict, Optional
|
||||
import traceback
|
||||
from typing import List, Tuple, Optional
|
||||
|
||||
from .jobs import JobType, Location
|
||||
from .scrapers.indeed import IndeedScraper
|
||||
|
@ -27,17 +26,18 @@ def _map_str_to_site(site_name: str) -> Site:
|
|||
|
||||
|
||||
def scrape_jobs(
|
||||
site_name: str | List[str] | Site | List[Site],
|
||||
search_term: str,
|
||||
location: str = "",
|
||||
distance: int = None,
|
||||
is_remote: bool = False,
|
||||
job_type: str = None,
|
||||
easy_apply: bool = False, # linkedin
|
||||
results_wanted: int = 15,
|
||||
country_indeed: str = "usa",
|
||||
hyperlinks: bool = False,
|
||||
proxy: Optional[str] = None,
|
||||
site_name: str | List[str] | Site | List[Site],
|
||||
search_term: str,
|
||||
location: str = "",
|
||||
distance: int = None,
|
||||
is_remote: bool = False,
|
||||
job_type: str = None,
|
||||
easy_apply: bool = False, # linkedin
|
||||
results_wanted: int = 15,
|
||||
country_indeed: str = "usa",
|
||||
hyperlinks: bool = False,
|
||||
proxy: Optional[str] = None,
|
||||
offset: Optional[int] = 0
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Simultaneously scrapes job data from multiple job sites.
|
||||
|
@ -49,8 +49,8 @@ def scrape_jobs(
|
|||
if value_str in job_type.value:
|
||||
return job_type
|
||||
raise Exception(f"Invalid job type: {value_str}")
|
||||
job_type = get_enum_from_value(job_type) if job_type else None
|
||||
|
||||
job_type = get_enum_from_value(job_type) if job_type else None
|
||||
|
||||
if type(site_name) == str:
|
||||
site_type = [_map_str_to_site(site_name)]
|
||||
|
@ -72,6 +72,7 @@ def scrape_jobs(
|
|||
job_type=job_type,
|
||||
easy_apply=easy_apply,
|
||||
results_wanted=results_wanted,
|
||||
offset=offset
|
||||
)
|
||||
|
||||
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
|
||||
|
@ -149,17 +150,19 @@ def scrape_jobs(
|
|||
if jobs_dfs:
|
||||
jobs_df = pd.concat(jobs_dfs, ignore_index=True)
|
||||
desired_order: List[str] = [
|
||||
"job_url_hyper" if hyperlinks else "job_url",
|
||||
"site",
|
||||
"title",
|
||||
"company",
|
||||
"location",
|
||||
"date_posted",
|
||||
"job_type",
|
||||
"date_posted",
|
||||
"interval",
|
||||
"benefits",
|
||||
"min_amount",
|
||||
"max_amount",
|
||||
"currency",
|
||||
"job_url_hyper" if hyperlinks else "job_url",
|
||||
"emails",
|
||||
"description",
|
||||
]
|
||||
jobs_formatted_df = jobs_df[desired_order]
|
||||
|
|
|
@ -170,7 +170,7 @@ class CompensationInterval(Enum):
|
|||
|
||||
|
||||
class Compensation(BaseModel):
|
||||
interval: CompensationInterval
|
||||
interval: Optional[CompensationInterval] = None
|
||||
min_amount: int = None
|
||||
max_amount: int = None
|
||||
currency: Optional[str] = "USD"
|
||||
|
@ -186,6 +186,8 @@ class JobPost(BaseModel):
|
|||
job_type: Optional[JobType] = None
|
||||
compensation: Optional[Compensation] = None
|
||||
date_posted: Optional[date] = None
|
||||
benefits: Optional[str] = None
|
||||
emails: Optional[list[str]] = None
|
||||
|
||||
|
||||
class JobResponse(BaseModel):
|
||||
|
|
|
@ -18,6 +18,7 @@ class ScraperInput(BaseModel):
|
|||
is_remote: bool = False
|
||||
job_type: Optional[JobType] = None
|
||||
easy_apply: bool = None # linkedin
|
||||
offset: int = 0
|
||||
|
||||
results_wanted: int = 15
|
||||
|
||||
|
|
|
@ -8,7 +8,6 @@ import re
|
|||
import math
|
||||
import io
|
||||
import json
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
|
@ -27,7 +26,8 @@ from ...jobs import (
|
|||
JobResponse,
|
||||
JobType,
|
||||
)
|
||||
from .. import Scraper, ScraperInput, Site, Country
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ...utils import extract_emails_from_text
|
||||
|
||||
|
||||
class IndeedScraper(Scraper):
|
||||
|
@ -35,6 +35,8 @@ class IndeedScraper(Scraper):
|
|||
"""
|
||||
Initializes IndeedScraper with the Indeed job search url
|
||||
"""
|
||||
self.url = None
|
||||
self.country = None
|
||||
site = Site(Site.INDEED)
|
||||
super().__init__(site, proxy=proxy)
|
||||
|
||||
|
@ -42,7 +44,7 @@ class IndeedScraper(Scraper):
|
|||
self.seen_urls = set()
|
||||
|
||||
def scrape_page(
|
||||
self, scraper_input: ScraperInput, page: int, session: tls_client.Session
|
||||
self, scraper_input: ScraperInput, page: int, session: tls_client.Session
|
||||
) -> tuple[list[JobPost], int]:
|
||||
"""
|
||||
Scrapes a page of Indeed for jobs with scraper_input criteria
|
||||
|
@ -61,7 +63,7 @@ class IndeedScraper(Scraper):
|
|||
"q": scraper_input.search_term,
|
||||
"l": scraper_input.location,
|
||||
"filter": 0,
|
||||
"start": 0 + page * 10,
|
||||
"start": scraper_input.offset + page * 10,
|
||||
}
|
||||
if scraper_input.distance:
|
||||
params["radius"] = scraper_input.distance
|
||||
|
@ -76,7 +78,7 @@ class IndeedScraper(Scraper):
|
|||
params["sc"] = "0kf:" + "".join(sc_values) + ";"
|
||||
try:
|
||||
response = session.get(
|
||||
self.url + "/jobs",
|
||||
f"{self.url}/jobs",
|
||||
params=params,
|
||||
allow_redirects=True,
|
||||
proxy=self.proxy,
|
||||
|
@ -101,9 +103,9 @@ class IndeedScraper(Scraper):
|
|||
total_num_jobs = IndeedScraper.total_jobs(soup)
|
||||
|
||||
if (
|
||||
not jobs.get("metaData", {})
|
||||
.get("mosaicProviderJobCardsModel", {})
|
||||
.get("results")
|
||||
not jobs.get("metaData", {})
|
||||
.get("mosaicProviderJobCardsModel", {})
|
||||
.get("results")
|
||||
):
|
||||
raise IndeedException("No jobs found.")
|
||||
|
||||
|
@ -137,9 +139,10 @@ class IndeedScraper(Scraper):
|
|||
date_posted = date_posted.strftime("%Y-%m-%d")
|
||||
|
||||
description = self.get_description(job_url, session)
|
||||
emails = extract_emails_from_text(description)
|
||||
with io.StringIO(job["snippet"]) as f:
|
||||
soup = BeautifulSoup(f, "html.parser")
|
||||
li_elements = soup.find_all("li")
|
||||
soup_io = BeautifulSoup(f, "html.parser")
|
||||
li_elements = soup_io.find_all("li")
|
||||
if description is None and li_elements:
|
||||
description = " ".join(li.text for li in li_elements)
|
||||
|
||||
|
@ -152,6 +155,7 @@ class IndeedScraper(Scraper):
|
|||
state=job.get("jobLocationState"),
|
||||
country=self.country,
|
||||
),
|
||||
emails=extract_emails_from_text(description),
|
||||
job_type=job_type,
|
||||
compensation=compensation,
|
||||
date_posted=date_posted,
|
||||
|
@ -180,7 +184,7 @@ class IndeedScraper(Scraper):
|
|||
)
|
||||
|
||||
pages_to_process = (
|
||||
math.ceil(scraper_input.results_wanted / self.jobs_per_page) - 1
|
||||
math.ceil(scraper_input.results_wanted / self.jobs_per_page) - 1
|
||||
)
|
||||
|
||||
#: get first page to initialize session
|
||||
|
@ -206,7 +210,7 @@ class IndeedScraper(Scraper):
|
|||
)
|
||||
return job_response
|
||||
|
||||
def get_description(self, job_page_url: str, session: tls_client.Session) -> str:
|
||||
def get_description(self, job_page_url: str, session: tls_client.Session) -> Optional[str]:
|
||||
"""
|
||||
Retrieves job description by going to the job page url
|
||||
:param job_page_url:
|
||||
|
@ -249,13 +253,17 @@ class IndeedScraper(Scraper):
|
|||
label = taxonomy["attributes"][0].get("label")
|
||||
if label:
|
||||
job_type_str = label.replace("-", "").replace(" ", "").lower()
|
||||
return IndeedScraper.get_enum_from_value(job_type_str)
|
||||
return IndeedScraper.get_enum_from_job_type(job_type_str)
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def get_enum_from_value(value_str):
|
||||
def get_enum_from_job_type(job_type_str):
|
||||
"""
|
||||
Given a string, returns the corresponding JobType enum member if a match is found.
|
||||
for job_type in JobType:
|
||||
if value_str in job_type.value:
|
||||
"""
|
||||
for job_type in JobType:
|
||||
if job_type_str in job_type.value:
|
||||
return job_type
|
||||
return None
|
||||
|
||||
|
@ -276,9 +284,9 @@ class IndeedScraper(Scraper):
|
|||
|
||||
for tag in script_tags:
|
||||
if (
|
||||
tag.string
|
||||
and "mosaic.providerData" in tag.string
|
||||
and "mosaic-provider-jobcards" in tag.string
|
||||
tag.string
|
||||
and "mosaic.providerData" in tag.string
|
||||
and "mosaic-provider-jobcards" in tag.string
|
||||
):
|
||||
return tag
|
||||
return None
|
||||
|
|
|
@ -4,14 +4,16 @@ jobspy.scrapers.linkedin
|
|||
|
||||
This module contains routines to scrape LinkedIn.
|
||||
"""
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional
|
||||
from datetime import datetime
|
||||
import traceback
|
||||
|
||||
import requests
|
||||
from requests.exceptions import Timeout, ProxyError
|
||||
import time
|
||||
from requests.exceptions import ProxyError
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from bs4 import BeautifulSoup
|
||||
from bs4.element import Tag
|
||||
from threading import Lock
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..exceptions import LinkedInException
|
||||
|
@ -20,17 +22,20 @@ from ...jobs import (
|
|||
Location,
|
||||
JobResponse,
|
||||
JobType,
|
||||
Compensation,
|
||||
CompensationInterval,
|
||||
)
|
||||
from ...utils import extract_emails_from_text
|
||||
|
||||
|
||||
class LinkedInScraper(Scraper):
|
||||
MAX_RETRIES = 3
|
||||
DELAY = 10
|
||||
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
"""
|
||||
Initializes LinkedInScraper with the LinkedIn job search url
|
||||
"""
|
||||
site = Site(Site.LINKEDIN)
|
||||
self.country = "worldwide"
|
||||
self.url = "https://www.linkedin.com"
|
||||
super().__init__(site, proxy=proxy)
|
||||
|
||||
|
@ -40,12 +45,12 @@ class LinkedInScraper(Scraper):
|
|||
:param scraper_input:
|
||||
:return: job_response
|
||||
"""
|
||||
self.country = "worldwide"
|
||||
job_list: list[JobPost] = []
|
||||
seen_urls = set()
|
||||
page, processed_jobs, job_count = 0, 0, 0
|
||||
url_lock = Lock()
|
||||
page = scraper_input.offset // 25 + 25 if scraper_input.offset else 0
|
||||
|
||||
def job_type_code(job_type):
|
||||
def job_type_code(job_type_enum):
|
||||
mapping = {
|
||||
JobType.FULL_TIME: "F",
|
||||
JobType.PART_TIME: "P",
|
||||
|
@ -54,117 +59,125 @@ class LinkedInScraper(Scraper):
|
|||
JobType.TEMPORARY: "T",
|
||||
}
|
||||
|
||||
return mapping.get(job_type, "")
|
||||
return mapping.get(job_type_enum, "")
|
||||
|
||||
with requests.Session() as session:
|
||||
while len(job_list) < scraper_input.results_wanted:
|
||||
params = {
|
||||
"keywords": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
"distance": scraper_input.distance,
|
||||
"f_WT": 2 if scraper_input.is_remote else None,
|
||||
"f_JT": job_type_code(scraper_input.job_type)
|
||||
if scraper_input.job_type
|
||||
else None,
|
||||
"pageNum": page,
|
||||
"f_AL": "true" if scraper_input.easy_apply else None,
|
||||
}
|
||||
while len(job_list) < scraper_input.results_wanted and page < 1000:
|
||||
params = {
|
||||
"keywords": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
"distance": scraper_input.distance,
|
||||
"f_WT": 2 if scraper_input.is_remote else None,
|
||||
"f_JT": job_type_code(scraper_input.job_type)
|
||||
if scraper_input.job_type
|
||||
else None,
|
||||
"pageNum": 0,
|
||||
page: page + scraper_input.offset,
|
||||
"f_AL": "true" if scraper_input.easy_apply else None,
|
||||
}
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
retries = 0
|
||||
while retries < self.MAX_RETRIES:
|
||||
try:
|
||||
response = session.get(
|
||||
f"{self.url}/jobs/search",
|
||||
response = requests.get(
|
||||
f"{self.url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
|
||||
params=params,
|
||||
allow_redirects=True,
|
||||
proxies=self.proxy,
|
||||
timeout=10,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
break
|
||||
except requests.HTTPError as e:
|
||||
raise LinkedInException(
|
||||
f"bad response status code: {response.status_code}"
|
||||
)
|
||||
if hasattr(e, 'response') and e.response is not None:
|
||||
if e.response.status_code == 429:
|
||||
time.sleep(self.DELAY)
|
||||
retries += 1
|
||||
continue
|
||||
else:
|
||||
raise LinkedInException(f"bad response status code: {e.response.status_code}")
|
||||
else:
|
||||
raise
|
||||
except ProxyError as e:
|
||||
raise LinkedInException("bad proxy")
|
||||
except (ProxyError, Exception) as e:
|
||||
except Exception as e:
|
||||
raise LinkedInException(str(e))
|
||||
else:
|
||||
# Raise an exception if the maximum number of retries is reached
|
||||
raise LinkedInException("Max retries reached, failed to get a valid response")
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
if page == 0:
|
||||
job_count_text = soup.find(
|
||||
"span", class_="results-context-header__job-count"
|
||||
).text
|
||||
job_count = int("".join(filter(str.isdigit, job_count_text)))
|
||||
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||
futures = []
|
||||
for job_card in soup.find_all("div", class_="base-search-card"):
|
||||
job_url = None
|
||||
href_tag = job_card.find("a", class_="base-card__full-link")
|
||||
if href_tag and "href" in href_tag.attrs:
|
||||
href = href_tag.attrs["href"].split("?")[0]
|
||||
job_id = href.split("-")[-1]
|
||||
job_url = f"{self.url}/jobs/view/{job_id}"
|
||||
|
||||
for job_card in soup.find_all(
|
||||
"div",
|
||||
class_="base-card relative w-full hover:no-underline focus:no-underline base-card--link base-search-card base-search-card--link job-search-card",
|
||||
):
|
||||
processed_jobs += 1
|
||||
data_entity_urn = job_card.get("data-entity-urn", "")
|
||||
job_id = (
|
||||
data_entity_urn.split(":")[-1] if data_entity_urn else "N/A"
|
||||
)
|
||||
job_url = f"{self.url}/jobs/view/{job_id}"
|
||||
if job_url in seen_urls:
|
||||
continue
|
||||
seen_urls.add(job_url)
|
||||
job_info = job_card.find("div", class_="base-search-card__info")
|
||||
if job_info is None:
|
||||
continue
|
||||
title_tag = job_info.find("h3", class_="base-search-card__title")
|
||||
title = title_tag.text.strip() if title_tag else "N/A"
|
||||
with url_lock:
|
||||
if job_url in seen_urls:
|
||||
continue
|
||||
seen_urls.add(job_url)
|
||||
|
||||
company_tag = job_info.find("a", class_="hidden-nested-link")
|
||||
company = company_tag.text.strip() if company_tag else "N/A"
|
||||
futures.append(executor.submit(self.process_job, job_card, job_url))
|
||||
|
||||
metadata_card = job_info.find(
|
||||
"div", class_="base-search-card__metadata"
|
||||
)
|
||||
location: Location = self.get_location(metadata_card)
|
||||
|
||||
datetime_tag = metadata_card.find(
|
||||
"time", class_="job-search-card__listdate"
|
||||
)
|
||||
description, job_type = self.get_description(job_url)
|
||||
if datetime_tag:
|
||||
datetime_str = datetime_tag["datetime"]
|
||||
try:
|
||||
date_posted = datetime.strptime(datetime_str, "%Y-%m-%d")
|
||||
except Exception as e:
|
||||
date_posted = None
|
||||
else:
|
||||
date_posted = None
|
||||
|
||||
job_post = JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
location=location,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
job_type=job_type,
|
||||
compensation=Compensation(
|
||||
interval=CompensationInterval.YEARLY, currency=None
|
||||
),
|
||||
)
|
||||
job_list.append(job_post)
|
||||
if processed_jobs >= job_count:
|
||||
break
|
||||
if len(job_list) >= scraper_input.results_wanted:
|
||||
break
|
||||
if processed_jobs >= job_count:
|
||||
break
|
||||
if len(job_list) >= scraper_input.results_wanted:
|
||||
break
|
||||
|
||||
page += 1
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
job_post = future.result()
|
||||
if job_post:
|
||||
job_list.append(job_post)
|
||||
except Exception as e:
|
||||
raise LinkedInException("Exception occurred while processing jobs")
|
||||
page += 25
|
||||
|
||||
job_list = job_list[: scraper_input.results_wanted]
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
def get_description(self, job_page_url: str) -> Optional[str]:
|
||||
def process_job(self, job_card: Tag, job_url: str) -> Optional[JobPost]:
|
||||
title_tag = job_card.find("span", class_="sr-only")
|
||||
title = title_tag.get_text(strip=True) if title_tag else "N/A"
|
||||
|
||||
company_tag = job_card.find("h4", class_="base-search-card__subtitle")
|
||||
company_a_tag = company_tag.find("a") if company_tag else None
|
||||
company = company_a_tag.get_text(strip=True) if company_a_tag else "N/A"
|
||||
|
||||
metadata_card = job_card.find("div", class_="base-search-card__metadata")
|
||||
location = self.get_location(metadata_card)
|
||||
|
||||
datetime_tag = metadata_card.find("time", class_="job-search-card__listdate") if metadata_card else None
|
||||
date_posted = None
|
||||
if datetime_tag and "datetime" in datetime_tag.attrs:
|
||||
datetime_str = datetime_tag["datetime"]
|
||||
try:
|
||||
date_posted = datetime.strptime(datetime_str, "%Y-%m-%d")
|
||||
except Exception as e:
|
||||
date_posted = None
|
||||
benefits_tag = job_card.find("span", class_="result-benefits__text")
|
||||
benefits = " ".join(benefits_tag.get_text().split()) if benefits_tag else None
|
||||
|
||||
description, job_type = self.get_job_description(job_url)
|
||||
|
||||
return JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
location=location,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
job_type=job_type,
|
||||
benefits=benefits,
|
||||
emails=extract_emails_from_text(description)
|
||||
)
|
||||
|
||||
def get_job_description(self, job_page_url: str) -> tuple[None, None] | tuple[
|
||||
str | None, tuple[str | None, JobType | None]]:
|
||||
"""
|
||||
Retrieves job description by going to the job page url
|
||||
:param job_page_url:
|
||||
|
@ -181,19 +194,19 @@ class LinkedInScraper(Scraper):
|
|||
"div", class_=lambda x: x and "show-more-less-html__markup" in x
|
||||
)
|
||||
|
||||
text_content = None
|
||||
description = None
|
||||
if div_content:
|
||||
text_content = " ".join(div_content.get_text().split()).strip()
|
||||
description = " ".join(div_content.get_text().split()).strip()
|
||||
|
||||
def get_job_type(
|
||||
soup: BeautifulSoup,
|
||||
) -> Tuple[Optional[str], Optional[JobType]]:
|
||||
soup_job_type: BeautifulSoup,
|
||||
) -> JobType | None:
|
||||
"""
|
||||
Gets the job type from job page
|
||||
:param soup:
|
||||
:param soup_job_type:
|
||||
:return: JobType
|
||||
"""
|
||||
h3_tag = soup.find(
|
||||
h3_tag = soup_job_type.find(
|
||||
"h3",
|
||||
class_="description__job-criteria-subheader",
|
||||
string=lambda text: "Employment type" in text,
|
||||
|
@ -212,7 +225,7 @@ class LinkedInScraper(Scraper):
|
|||
|
||||
return LinkedInScraper.get_enum_from_value(employment_type)
|
||||
|
||||
return text_content, get_job_type(soup)
|
||||
return description, get_job_type(soup)
|
||||
|
||||
@staticmethod
|
||||
def get_enum_from_value(value_str):
|
||||
|
|
|
@ -7,10 +7,9 @@ This module contains routines to scrape ZipRecruiter.
|
|||
import math
|
||||
import json
|
||||
import re
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
from typing import Optional, Tuple
|
||||
from urllib.parse import urlparse, parse_qs
|
||||
from datetime import datetime, date
|
||||
from typing import Optional, Tuple, Any
|
||||
from urllib.parse import urlparse, parse_qs, urlunparse
|
||||
|
||||
import tls_client
|
||||
import requests
|
||||
|
@ -29,6 +28,7 @@ from ...jobs import (
|
|||
JobType,
|
||||
Country,
|
||||
)
|
||||
from ...utils import extract_emails_from_text
|
||||
|
||||
|
||||
class ZipRecruiterScraper(Scraper):
|
||||
|
@ -47,19 +47,18 @@ class ZipRecruiterScraper(Scraper):
|
|||
)
|
||||
|
||||
def find_jobs_in_page(
|
||||
self, scraper_input: ScraperInput, page: int
|
||||
) -> tuple[list[JobPost], int | None]:
|
||||
self, scraper_input: ScraperInput, page: int
|
||||
) -> list[JobPost]:
|
||||
"""
|
||||
Scrapes a page of ZipRecruiter for jobs with scraper_input criteria
|
||||
:param scraper_input:
|
||||
:param page:
|
||||
:param session:
|
||||
:return: jobs found on page, total number of jobs found for search
|
||||
:return: jobs found on page
|
||||
"""
|
||||
job_list: list[JobPost] = []
|
||||
try:
|
||||
response = self.session.get(
|
||||
self.url + "/jobs-search",
|
||||
f"{self.url}/jobs-search",
|
||||
headers=ZipRecruiterScraper.headers(),
|
||||
params=ZipRecruiterScraper.add_params(scraper_input, page),
|
||||
allow_redirects=True,
|
||||
|
@ -92,8 +91,6 @@ class ZipRecruiterScraper(Scraper):
|
|||
page_variant = "html_1"
|
||||
jobs_list = soup.find_all("li", {"class": "job-listing"})
|
||||
# print('type 1 html', len(jobs_list))
|
||||
# with open("zip_method_8.html", "w") as f:
|
||||
# f.write(soup.prettify())
|
||||
|
||||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
if page_variant == "javascript":
|
||||
|
@ -119,8 +116,9 @@ class ZipRecruiterScraper(Scraper):
|
|||
:param scraper_input:
|
||||
:return: job_response
|
||||
"""
|
||||
start_page = (scraper_input.offset // self.jobs_per_page) + 1 if scraper_input.offset else 1
|
||||
#: get first page to initialize session
|
||||
job_list: list[JobPost] = self.find_jobs_in_page(scraper_input, 1)
|
||||
job_list: list[JobPost] = self.find_jobs_in_page(scraper_input, start_page)
|
||||
pages_to_process = max(
|
||||
3, math.ceil(scraper_input.results_wanted / self.jobs_per_page)
|
||||
)
|
||||
|
@ -128,7 +126,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures: list[Future] = [
|
||||
executor.submit(self.find_jobs_in_page, scraper_input, page)
|
||||
for page in range(2, pages_to_process + 1)
|
||||
for page in range(start_page + 1, start_page + pages_to_process + 2)
|
||||
]
|
||||
|
||||
for future in futures:
|
||||
|
@ -144,8 +142,9 @@ class ZipRecruiterScraper(Scraper):
|
|||
Parses a job from the job content tag
|
||||
:param job: BeautifulSoup Tag for one job post
|
||||
:return JobPost
|
||||
TODO this method isnt finished due to not encountering this type of html often
|
||||
"""
|
||||
job_url = job.find("a", {"class": "job_link"})["href"]
|
||||
job_url = self.cleanurl(job.find("a", {"class": "job_link"})["href"])
|
||||
if job_url in self.seen_urls:
|
||||
return None
|
||||
|
||||
|
@ -153,7 +152,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
company = job.find("a", {"class": "company_name"}).text.strip()
|
||||
|
||||
description, updated_job_url = self.get_description(job_url)
|
||||
job_url = updated_job_url if updated_job_url else job_url
|
||||
# job_url = updated_job_url if updated_job_url else job_url
|
||||
if description is None:
|
||||
description = job.find("p", {"class": "job_snippet"}).text.strip()
|
||||
|
||||
|
@ -176,6 +175,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
compensation=ZipRecruiterScraper.get_compensation(job),
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
emails=extract_emails_from_text(description),
|
||||
)
|
||||
return job_post
|
||||
|
||||
|
@ -185,12 +185,12 @@ class ZipRecruiterScraper(Scraper):
|
|||
:param job: BeautifulSoup Tag for one job post
|
||||
:return JobPost
|
||||
"""
|
||||
job_url = job.find("a", class_="job_link")["href"]
|
||||
job_url = self.cleanurl(job.find("a", class_="job_link")["href"])
|
||||
title = job.find("h2", class_="title").text
|
||||
company = job.find("a", class_="company_name").text.strip()
|
||||
|
||||
description, updated_job_url = self.get_description(job_url)
|
||||
job_url = updated_job_url if updated_job_url else job_url
|
||||
# job_url = updated_job_url if updated_job_url else job_url
|
||||
if description is None:
|
||||
description = job.find("p", class_="job_snippet").get_text().strip()
|
||||
|
||||
|
@ -221,10 +221,10 @@ class ZipRecruiterScraper(Scraper):
|
|||
|
||||
def process_job_javascript(self, job: dict) -> JobPost:
|
||||
title = job.get("Title")
|
||||
job_url = job.get("JobURL")
|
||||
job_url = self.cleanurl(job.get("JobURL"))
|
||||
|
||||
description, updated_job_url = self.get_description(job_url)
|
||||
job_url = updated_job_url if updated_job_url else job_url
|
||||
# job_url = updated_job_url if updated_job_url else job_url
|
||||
if description is None:
|
||||
description = BeautifulSoup(
|
||||
job.get("Snippet", "").strip(), "html.parser"
|
||||
|
@ -272,7 +272,6 @@ class ZipRecruiterScraper(Scraper):
|
|||
date_posted = date_posted_obj.date()
|
||||
else:
|
||||
date_posted = date.today()
|
||||
job_url = job.get("JobURL")
|
||||
|
||||
return JobPost(
|
||||
title=title,
|
||||
|
@ -323,7 +322,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
return None, response.url
|
||||
|
||||
@staticmethod
|
||||
def add_params(scraper_input, page) -> Optional[str]:
|
||||
def add_params(scraper_input, page) -> dict[str, str | Any]:
|
||||
params = {
|
||||
"search": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
|
@ -368,7 +367,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
return CompensationInterval(interval_str)
|
||||
|
||||
@staticmethod
|
||||
def get_date_posted(job: BeautifulSoup) -> Optional[datetime.date]:
|
||||
def get_date_posted(job: Tag) -> Optional[datetime.date]:
|
||||
"""
|
||||
Extracts the date a job was posted
|
||||
:param job
|
||||
|
@ -394,7 +393,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
return None
|
||||
|
||||
@staticmethod
|
||||
def get_compensation(job: BeautifulSoup) -> Optional[Compensation]:
|
||||
def get_compensation(job: Tag) -> Optional[Compensation]:
|
||||
"""
|
||||
Parses the compensation tag from the job BeautifulSoup object
|
||||
:param job
|
||||
|
@ -435,7 +434,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
return create_compensation_object(pay)
|
||||
|
||||
@staticmethod
|
||||
def get_location(job: BeautifulSoup) -> Location:
|
||||
def get_location(job: Tag) -> Location:
|
||||
"""
|
||||
Extracts the job location from BeatifulSoup object
|
||||
:param job:
|
||||
|
@ -462,3 +461,9 @@ class ZipRecruiterScraper(Scraper):
|
|||
return {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.97 Safari/537.36"
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def cleanurl(url):
|
||||
parsed_url = urlparse(url)
|
||||
|
||||
return urlunparse((parsed_url.scheme, parsed_url.netloc, parsed_url.path, parsed_url.params, '', ''))
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_all():
|
||||
|
@ -7,4 +8,5 @@ def test_all():
|
|||
search_term="software engineer",
|
||||
results_wanted=5,
|
||||
)
|
||||
assert result is not None and result.errors.empty is True
|
||||
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_indeed():
|
||||
|
@ -6,4 +7,4 @@ def test_indeed():
|
|||
site_name="indeed",
|
||||
search_term="software engineer",
|
||||
)
|
||||
assert result is not None and result.errors.empty is True
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_linkedin():
|
||||
|
@ -6,4 +7,4 @@ def test_linkedin():
|
|||
site_name="linkedin",
|
||||
search_term="software engineer",
|
||||
)
|
||||
assert result is not None and result.errors.empty is True
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_ziprecruiter():
|
||||
|
@ -7,4 +8,4 @@ def test_ziprecruiter():
|
|||
search_term="software engineer",
|
||||
)
|
||||
|
||||
assert result is not None and result.errors.empty is True
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
||||
|
|
Loading…
Reference in New Issue