mirror of https://github.com/Bunsly/JobSpy
only keep indeed and add location.json
parent
4ae48d83c4
commit
6d2cdcf813
|
@ -1,17 +1,16 @@
|
|||
import json
|
||||
import os
|
||||
|
||||
from jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
jobs: pd.DataFrame = scrape_jobs(
|
||||
# site_name=["indeed", "linkedin", "zip_recruiter"],
|
||||
site_name=["indeed"],
|
||||
search_term="software engineer",
|
||||
location="Dallas, TX",
|
||||
results_wanted=20, # be wary the higher it is, the more likey you'll get blocked (rotating proxy should work tho)
|
||||
country_indeed='USA',
|
||||
# offset=25 # start jobs from an offset (use if search failed and want to continue)
|
||||
# proxy="http://34.120.172.140:8123",
|
||||
proxy="http://crawler-gost-proxy.jobright-internal.com:8080",
|
||||
)
|
||||
|
||||
# load location list
|
||||
def read_location_list(location_file):
|
||||
with open(location_file) as f:
|
||||
location_list = [location['name'] for location in json.load(f)]
|
||||
return location_list
|
||||
|
||||
|
||||
# formatting for pandas
|
||||
pd.set_option('display.max_columns', None)
|
||||
|
@ -19,15 +18,23 @@ pd.set_option('display.max_rows', None)
|
|||
pd.set_option('display.width', None)
|
||||
pd.set_option('display.max_colwidth', 50) # set to 0 to see full job url / desc
|
||||
|
||||
# 1: output to console
|
||||
print(jobs)
|
||||
# fetch jobs for each location
|
||||
locations = read_location_list('location.json')
|
||||
for location in locations:
|
||||
jobs: pd.DataFrame = scrape_jobs(
|
||||
# site_name=["indeed", "linkedin", "zip_recruiter"],
|
||||
site_name=["indeed"],
|
||||
search_term="software engineer",
|
||||
location=location,
|
||||
results_wanted=30,
|
||||
# be wary the higher it is, the more likey you'll get blocked (rotating proxy should work tho)
|
||||
country_indeed='USA',
|
||||
# offset=25 # start jobs from an offset (use if search failed and want to continue)
|
||||
proxy="http://34.120.172.140:8123",
|
||||
# proxy="http://crawler-gost-proxy.jobright-internal.com:8080",
|
||||
)
|
||||
|
||||
# 2: output to .csv
|
||||
jobs.to_csv('./jobs.csv', index=False)
|
||||
print('outputted to jobs.csv')
|
||||
|
||||
# 3: output to .xlsx
|
||||
# jobs.to_xlsx('jobs.xlsx', index=False)
|
||||
|
||||
# 4: display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
|
||||
# display(jobs)
|
||||
if os.path.isfile('./jobs.csv'):
|
||||
jobs.to_csv('./jobs.csv', index=False, mode='a', header=False)
|
||||
else:
|
||||
jobs.to_csv('./jobs.csv', index=False, mode='a', header=True)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -5,19 +5,11 @@ from typing import List, Tuple, Optional
|
|||
|
||||
from .jobs import JobType, Location
|
||||
from .scrapers.indeed import IndeedScraper
|
||||
from .scrapers.ziprecruiter import ZipRecruiterScraper
|
||||
from .scrapers.linkedin import LinkedInScraper
|
||||
from .scrapers import ScraperInput, Site, JobResponse, Country
|
||||
from .scrapers.exceptions import (
|
||||
LinkedInException,
|
||||
IndeedException,
|
||||
ZipRecruiterException,
|
||||
)
|
||||
from .scrapers.exceptions import IndeedException
|
||||
|
||||
SCRAPER_MAPPING = {
|
||||
Site.LINKEDIN: LinkedInScraper,
|
||||
Site.INDEED: IndeedScraper,
|
||||
Site.ZIP_RECRUITER: ZipRecruiterScraper,
|
||||
}
|
||||
|
||||
|
||||
|
@ -81,16 +73,12 @@ def scrape_jobs(
|
|||
|
||||
try:
|
||||
scraped_data: JobResponse = scraper.scrape(scraper_input)
|
||||
except (LinkedInException, IndeedException, ZipRecruiterException) as lie:
|
||||
except IndeedException as lie:
|
||||
raise lie
|
||||
except Exception as e:
|
||||
# unhandled exceptions
|
||||
if site == Site.LINKEDIN:
|
||||
raise LinkedInException()
|
||||
if site == Site.INDEED:
|
||||
raise IndeedException()
|
||||
if site == Site.ZIP_RECRUITER:
|
||||
raise ZipRecruiterException()
|
||||
else:
|
||||
raise e
|
||||
return site.value, scraped_data
|
||||
|
|
|
@ -6,13 +6,5 @@ This module contains the set of Scrapers' exceptions.
|
|||
"""
|
||||
|
||||
|
||||
class LinkedInException(Exception):
|
||||
"""Failed to scrape LinkedIn"""
|
||||
|
||||
|
||||
class IndeedException(Exception):
|
||||
"""Failed to scrape Indeed"""
|
||||
|
||||
|
||||
class ZipRecruiterException(Exception):
|
||||
"""Failed to scrape ZipRecruiter"""
|
||||
|
|
|
@ -1,271 +0,0 @@
|
|||
"""
|
||||
jobspy.scrapers.linkedin
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This module contains routines to scrape LinkedIn.
|
||||
"""
|
||||
from typing import Optional
|
||||
from datetime import datetime
|
||||
|
||||
import requests
|
||||
import time
|
||||
import re
|
||||
from requests.exceptions import ProxyError
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from bs4 import BeautifulSoup
|
||||
from bs4.element import Tag
|
||||
from threading import Lock
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..exceptions import LinkedInException
|
||||
from ...jobs import (
|
||||
JobPost,
|
||||
Location,
|
||||
JobResponse,
|
||||
JobType,
|
||||
)
|
||||
|
||||
|
||||
def extract_emails_from_text(text: str) -> Optional[list[str]]:
|
||||
if not text:
|
||||
return None
|
||||
email_regex = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
|
||||
return email_regex.findall(text)
|
||||
|
||||
|
||||
class LinkedInScraper(Scraper):
|
||||
MAX_RETRIES = 3
|
||||
DELAY = 10
|
||||
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
"""
|
||||
Initializes LinkedInScraper with the LinkedIn job search url
|
||||
"""
|
||||
site = Site(Site.LINKEDIN)
|
||||
self.country = "worldwide"
|
||||
self.url = "https://www.linkedin.com"
|
||||
super().__init__(site, proxy=proxy)
|
||||
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
|
||||
"""
|
||||
Scrapes LinkedIn for jobs with scraper_input criteria
|
||||
:param scraper_input:
|
||||
:return: job_response
|
||||
"""
|
||||
job_list: list[JobPost] = []
|
||||
seen_urls = set()
|
||||
url_lock = Lock()
|
||||
page = scraper_input.offset // 25 + 25 if scraper_input.offset else 0
|
||||
|
||||
def job_type_code(job_type_enum):
|
||||
mapping = {
|
||||
JobType.FULL_TIME: "F",
|
||||
JobType.PART_TIME: "P",
|
||||
JobType.INTERNSHIP: "I",
|
||||
JobType.CONTRACT: "C",
|
||||
JobType.TEMPORARY: "T",
|
||||
}
|
||||
|
||||
return mapping.get(job_type_enum, "")
|
||||
|
||||
while len(job_list) < scraper_input.results_wanted and page < 1000:
|
||||
params = {
|
||||
"keywords": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
"distance": scraper_input.distance,
|
||||
"f_WT": 2 if scraper_input.is_remote else None,
|
||||
"f_JT": job_type_code(scraper_input.job_type)
|
||||
if scraper_input.job_type
|
||||
else None,
|
||||
"pageNum": 0,
|
||||
page: page + scraper_input.offset,
|
||||
"f_AL": "true" if scraper_input.easy_apply else None,
|
||||
}
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
retries = 0
|
||||
while retries < self.MAX_RETRIES:
|
||||
try:
|
||||
response = requests.get(
|
||||
f"{self.url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
|
||||
params=params,
|
||||
allow_redirects=True,
|
||||
proxies=self.proxy,
|
||||
timeout=10,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
break
|
||||
except requests.HTTPError as e:
|
||||
if hasattr(e, 'response') and e.response is not None:
|
||||
if e.response.status_code == 429:
|
||||
time.sleep(self.DELAY)
|
||||
retries += 1
|
||||
continue
|
||||
else:
|
||||
raise LinkedInException(f"bad response status code: {e.response.status_code}")
|
||||
else:
|
||||
raise
|
||||
except ProxyError as e:
|
||||
raise LinkedInException("bad proxy")
|
||||
except Exception as e:
|
||||
raise LinkedInException(str(e))
|
||||
else:
|
||||
# Raise an exception if the maximum number of retries is reached
|
||||
raise LinkedInException("Max retries reached, failed to get a valid response")
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||
futures = []
|
||||
for job_card in soup.find_all("div", class_="base-search-card"):
|
||||
job_url = None
|
||||
href_tag = job_card.find("a", class_="base-card__full-link")
|
||||
if href_tag and "href" in href_tag.attrs:
|
||||
href = href_tag.attrs["href"].split("?")[0]
|
||||
job_id = href.split("-")[-1]
|
||||
job_url = f"{self.url}/jobs/view/{job_id}"
|
||||
|
||||
with url_lock:
|
||||
if job_url in seen_urls:
|
||||
continue
|
||||
seen_urls.add(job_url)
|
||||
|
||||
futures.append(executor.submit(self.process_job, job_card, job_url))
|
||||
|
||||
for future in as_completed(futures):
|
||||
try:
|
||||
job_post = future.result()
|
||||
if job_post:
|
||||
job_list.append(job_post)
|
||||
except Exception as e:
|
||||
raise LinkedInException("Exception occurred while processing jobs")
|
||||
page += 25
|
||||
|
||||
job_list = job_list[: scraper_input.results_wanted]
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
def process_job(self, job_card: Tag, job_url: str) -> Optional[JobPost]:
|
||||
title_tag = job_card.find("span", class_="sr-only")
|
||||
title = title_tag.get_text(strip=True) if title_tag else "N/A"
|
||||
|
||||
company_tag = job_card.find("h4", class_="base-search-card__subtitle")
|
||||
company_a_tag = company_tag.find("a") if company_tag else None
|
||||
company = company_a_tag.get_text(strip=True) if company_a_tag else "N/A"
|
||||
|
||||
metadata_card = job_card.find("div", class_="base-search-card__metadata")
|
||||
location = self.get_location(metadata_card)
|
||||
|
||||
datetime_tag = metadata_card.find("time", class_="job-search-card__listdate") if metadata_card else None
|
||||
date_posted = None
|
||||
if datetime_tag and "datetime" in datetime_tag.attrs:
|
||||
datetime_str = datetime_tag["datetime"]
|
||||
try:
|
||||
date_posted = datetime.strptime(datetime_str, "%Y-%m-%d")
|
||||
except Exception as e:
|
||||
date_posted = None
|
||||
benefits_tag = job_card.find("span", class_="result-benefits__text")
|
||||
benefits = " ".join(benefits_tag.get_text().split()) if benefits_tag else None
|
||||
|
||||
description, job_type = self.get_job_description(job_url)
|
||||
|
||||
return JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
location=location,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
job_type=job_type,
|
||||
benefits=benefits,
|
||||
emails=extract_emails_from_text(description)
|
||||
)
|
||||
|
||||
def get_job_description(self, job_page_url: str) -> tuple[None, None] | tuple[
|
||||
str | None, tuple[str | None, JobType | None]]:
|
||||
"""
|
||||
Retrieves job description by going to the job page url
|
||||
:param job_page_url:
|
||||
:return: description or None
|
||||
"""
|
||||
try:
|
||||
response = requests.get(job_page_url, timeout=5, proxies=self.proxy)
|
||||
response.raise_for_status()
|
||||
except Exception as e:
|
||||
return None, None
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
div_content = soup.find(
|
||||
"div", class_=lambda x: x and "show-more-less-html__markup" in x
|
||||
)
|
||||
|
||||
description = None
|
||||
if div_content:
|
||||
description = " ".join(div_content.get_text().split()).strip()
|
||||
|
||||
def get_job_type(
|
||||
soup_job_type: BeautifulSoup,
|
||||
) -> JobType | None:
|
||||
"""
|
||||
Gets the job type from job page
|
||||
:param soup_job_type:
|
||||
:return: JobType
|
||||
"""
|
||||
h3_tag = soup_job_type.find(
|
||||
"h3",
|
||||
class_="description__job-criteria-subheader",
|
||||
string=lambda text: "Employment type" in text,
|
||||
)
|
||||
|
||||
employment_type = None
|
||||
if h3_tag:
|
||||
employment_type_span = h3_tag.find_next_sibling(
|
||||
"span",
|
||||
class_="description__job-criteria-text description__job-criteria-text--criteria",
|
||||
)
|
||||
if employment_type_span:
|
||||
employment_type = employment_type_span.get_text(strip=True)
|
||||
employment_type = employment_type.lower()
|
||||
employment_type = employment_type.replace("-", "")
|
||||
|
||||
return LinkedInScraper.get_enum_from_value(employment_type)
|
||||
|
||||
return description, get_job_type(soup)
|
||||
|
||||
@staticmethod
|
||||
def get_enum_from_value(value_str):
|
||||
for job_type in JobType:
|
||||
if value_str in job_type.value:
|
||||
return job_type
|
||||
return None
|
||||
|
||||
def get_location(self, metadata_card: Optional[Tag]) -> Location:
|
||||
"""
|
||||
Extracts the location data from the job metadata card.
|
||||
:param metadata_card
|
||||
:return: location
|
||||
"""
|
||||
location = Location(country=self.country)
|
||||
if metadata_card is not None:
|
||||
location_tag = metadata_card.find(
|
||||
"span", class_="job-search-card__location"
|
||||
)
|
||||
location_string = location_tag.text.strip() if location_tag else "N/A"
|
||||
parts = location_string.split(", ")
|
||||
if len(parts) == 2:
|
||||
city, state = parts
|
||||
location = Location(
|
||||
city=city,
|
||||
state=state,
|
||||
country=self.country,
|
||||
)
|
||||
|
||||
return location
|
||||
|
||||
def extract_emails_from_text(text: str) -> Optional[list[str]]:
|
||||
if not text:
|
||||
return None
|
||||
email_regex = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
|
||||
return email_regex.findall(text)
|
|
@ -1,474 +0,0 @@
|
|||
"""
|
||||
jobspy.scrapers.ziprecruiter
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This module contains routines to scrape ZipRecruiter.
|
||||
"""
|
||||
import math
|
||||
import json
|
||||
import re
|
||||
from datetime import datetime, date
|
||||
from typing import Optional, Tuple, Any
|
||||
from urllib.parse import urlparse, parse_qs, urlunparse
|
||||
|
||||
import tls_client
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from bs4.element import Tag
|
||||
from concurrent.futures import ThreadPoolExecutor, Future
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..exceptions import ZipRecruiterException
|
||||
from ...jobs import (
|
||||
JobPost,
|
||||
Compensation,
|
||||
CompensationInterval,
|
||||
Location,
|
||||
JobResponse,
|
||||
JobType,
|
||||
Country,
|
||||
)
|
||||
|
||||
def extract_emails_from_text(text: str) -> Optional[list[str]]:
|
||||
if not text:
|
||||
return None
|
||||
email_regex = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
|
||||
return email_regex.findall(text)
|
||||
|
||||
|
||||
class ZipRecruiterScraper(Scraper):
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
"""
|
||||
Initializes LinkedInScraper with the ZipRecruiter job search url
|
||||
"""
|
||||
site = Site(Site.ZIP_RECRUITER)
|
||||
self.url = "https://www.ziprecruiter.com"
|
||||
super().__init__(site, proxy=proxy)
|
||||
|
||||
self.jobs_per_page = 20
|
||||
self.seen_urls = set()
|
||||
self.session = tls_client.Session(
|
||||
client_identifier="chrome112", random_tls_extension_order=True
|
||||
)
|
||||
|
||||
def find_jobs_in_page(
|
||||
self, scraper_input: ScraperInput, page: int
|
||||
) -> list[JobPost]:
|
||||
"""
|
||||
Scrapes a page of ZipRecruiter for jobs with scraper_input criteria
|
||||
:param scraper_input:
|
||||
:param page:
|
||||
:return: jobs found on page
|
||||
"""
|
||||
job_list: list[JobPost] = []
|
||||
try:
|
||||
response = self.session.get(
|
||||
f"{self.url}/jobs-search",
|
||||
headers=ZipRecruiterScraper.headers(),
|
||||
params=ZipRecruiterScraper.add_params(scraper_input, page),
|
||||
allow_redirects=True,
|
||||
proxy=self.proxy,
|
||||
timeout_seconds=10,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise ZipRecruiterException(
|
||||
f"bad response status code: {response.status_code}"
|
||||
)
|
||||
except Exception as e:
|
||||
if "Proxy responded with non 200 code" in str(e):
|
||||
raise ZipRecruiterException("bad proxy")
|
||||
raise ZipRecruiterException(str(e))
|
||||
else:
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
js_tag = soup.find("script", {"id": "js_variables"})
|
||||
|
||||
if js_tag:
|
||||
page_json = json.loads(js_tag.string)
|
||||
jobs_list = page_json.get("jobList")
|
||||
if jobs_list:
|
||||
page_variant = "javascript"
|
||||
# print('type javascript', len(jobs_list))
|
||||
else:
|
||||
page_variant = "html_2"
|
||||
jobs_list = soup.find_all("div", {"class": "job_content"})
|
||||
# print('type 2 html', len(jobs_list))
|
||||
else:
|
||||
page_variant = "html_1"
|
||||
jobs_list = soup.find_all("li", {"class": "job-listing"})
|
||||
# print('type 1 html', len(jobs_list))
|
||||
|
||||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
if page_variant == "javascript":
|
||||
job_results = [
|
||||
executor.submit(self.process_job_javascript, job)
|
||||
for job in jobs_list
|
||||
]
|
||||
elif page_variant == "html_1":
|
||||
job_results = [
|
||||
executor.submit(self.process_job_html_1, job) for job in jobs_list
|
||||
]
|
||||
elif page_variant == "html_2":
|
||||
job_results = [
|
||||
executor.submit(self.process_job_html_2, job) for job in jobs_list
|
||||
]
|
||||
|
||||
job_list = [result.result() for result in job_results if result.result()]
|
||||
return job_list
|
||||
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
|
||||
"""
|
||||
Scrapes ZipRecruiter for jobs with scraper_input criteria
|
||||
:param scraper_input:
|
||||
:return: job_response
|
||||
"""
|
||||
start_page = (scraper_input.offset // self.jobs_per_page) + 1 if scraper_input.offset else 1
|
||||
#: get first page to initialize session
|
||||
job_list: list[JobPost] = self.find_jobs_in_page(scraper_input, start_page)
|
||||
pages_to_process = max(
|
||||
3, math.ceil(scraper_input.results_wanted / self.jobs_per_page)
|
||||
)
|
||||
|
||||
with ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures: list[Future] = [
|
||||
executor.submit(self.find_jobs_in_page, scraper_input, page)
|
||||
for page in range(start_page + 1, start_page + pages_to_process + 2)
|
||||
]
|
||||
|
||||
for future in futures:
|
||||
jobs = future.result()
|
||||
|
||||
job_list += jobs
|
||||
|
||||
job_list = job_list[: scraper_input.results_wanted]
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
def process_job_html_1(self, job: Tag) -> Optional[JobPost]:
|
||||
"""
|
||||
Parses a job from the job content tag
|
||||
:param job: BeautifulSoup Tag for one job post
|
||||
:return JobPost
|
||||
TODO this method isnt finished due to not encountering this type of html often
|
||||
"""
|
||||
job_url = self.cleanurl(job.find("a", {"class": "job_link"})["href"])
|
||||
if job_url in self.seen_urls:
|
||||
return None
|
||||
|
||||
title = job.find("h2", {"class": "title"}).text
|
||||
company = job.find("a", {"class": "company_name"}).text.strip()
|
||||
|
||||
description, updated_job_url = self.get_description(job_url)
|
||||
# job_url = updated_job_url if updated_job_url else job_url
|
||||
if description is None:
|
||||
description = job.find("p", {"class": "job_snippet"}).text.strip()
|
||||
|
||||
job_type_element = job.find("li", {"class": "perk_item perk_type"})
|
||||
job_type = None
|
||||
if job_type_element:
|
||||
job_type_text = (
|
||||
job_type_element.text.strip().lower().replace("_", "").replace(" ", "")
|
||||
)
|
||||
job_type = ZipRecruiterScraper.get_job_type_enum(job_type_text)
|
||||
|
||||
date_posted = ZipRecruiterScraper.get_date_posted(job)
|
||||
|
||||
job_post = JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
location=ZipRecruiterScraper.get_location(job),
|
||||
job_type=job_type,
|
||||
compensation=ZipRecruiterScraper.get_compensation(job),
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
emails=extract_emails_from_text(description),
|
||||
)
|
||||
return job_post
|
||||
|
||||
def process_job_html_2(self, job: Tag) -> Optional[JobPost]:
|
||||
"""
|
||||
Parses a job from the job content tag for a second variat of HTML that ZR uses
|
||||
:param job: BeautifulSoup Tag for one job post
|
||||
:return JobPost
|
||||
"""
|
||||
job_url = self.cleanurl(job.find("a", class_="job_link")["href"])
|
||||
title = job.find("h2", class_="title").text
|
||||
company = job.find("a", class_="company_name").text.strip()
|
||||
|
||||
description, updated_job_url = self.get_description(job_url)
|
||||
# job_url = updated_job_url if updated_job_url else job_url
|
||||
if description is None:
|
||||
description = job.find("p", class_="job_snippet").get_text().strip()
|
||||
|
||||
job_type_text = job.find("li", class_="perk_item perk_type")
|
||||
job_type = None
|
||||
if job_type_text:
|
||||
job_type_text = (
|
||||
job_type_text.get_text()
|
||||
.strip()
|
||||
.lower()
|
||||
.replace("-", "")
|
||||
.replace(" ", "")
|
||||
)
|
||||
job_type = ZipRecruiterScraper.get_job_type_enum(job_type_text)
|
||||
date_posted = ZipRecruiterScraper.get_date_posted(job)
|
||||
|
||||
job_post = JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
location=ZipRecruiterScraper.get_location(job),
|
||||
job_type=job_type,
|
||||
compensation=ZipRecruiterScraper.get_compensation(job),
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
)
|
||||
return job_post
|
||||
|
||||
def process_job_javascript(self, job: dict) -> JobPost:
|
||||
title = job.get("Title")
|
||||
job_url = self.cleanurl(job.get("JobURL"))
|
||||
|
||||
description, updated_job_url = self.get_description(job_url)
|
||||
# job_url = updated_job_url if updated_job_url else job_url
|
||||
if description is None:
|
||||
description = BeautifulSoup(
|
||||
job.get("Snippet", "").strip(), "html.parser"
|
||||
).get_text()
|
||||
|
||||
company = job.get("OrgName")
|
||||
location = Location(
|
||||
city=job.get("City"), state=job.get("State"), country=Country.US_CANADA
|
||||
)
|
||||
job_type = ZipRecruiterScraper.get_job_type_enum(
|
||||
job.get("EmploymentType", "").replace("-", "").lower()
|
||||
)
|
||||
|
||||
formatted_salary = job.get("FormattedSalaryShort", "")
|
||||
salary_parts = formatted_salary.split(" ")
|
||||
|
||||
min_salary_str = salary_parts[0][1:].replace(",", "")
|
||||
if "." in min_salary_str:
|
||||
min_amount = int(float(min_salary_str) * 1000)
|
||||
else:
|
||||
min_amount = int(min_salary_str.replace("K", "000"))
|
||||
|
||||
if len(salary_parts) >= 3 and salary_parts[2].startswith("$"):
|
||||
max_salary_str = salary_parts[2][1:].replace(",", "")
|
||||
if "." in max_salary_str:
|
||||
max_amount = int(float(max_salary_str) * 1000)
|
||||
else:
|
||||
max_amount = int(max_salary_str.replace("K", "000"))
|
||||
else:
|
||||
max_amount = 0
|
||||
|
||||
compensation = Compensation(
|
||||
interval=CompensationInterval.YEARLY,
|
||||
min_amount=min_amount,
|
||||
max_amount=max_amount,
|
||||
currency="USD/CAD",
|
||||
)
|
||||
save_job_url = job.get("SaveJobURL", "")
|
||||
posted_time_match = re.search(
|
||||
r"posted_time=(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}Z)", save_job_url
|
||||
)
|
||||
if posted_time_match:
|
||||
date_time_str = posted_time_match.group(1)
|
||||
date_posted_obj = datetime.strptime(date_time_str, "%Y-%m-%dT%H:%M:%SZ")
|
||||
date_posted = date_posted_obj.date()
|
||||
else:
|
||||
date_posted = date.today()
|
||||
|
||||
return JobPost(
|
||||
title=title,
|
||||
description=description,
|
||||
company_name=company,
|
||||
location=location,
|
||||
job_type=job_type,
|
||||
compensation=compensation,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
)
|
||||
return job_post
|
||||
|
||||
@staticmethod
|
||||
def get_job_type_enum(job_type_str: str) -> Optional[JobType]:
|
||||
for job_type in JobType:
|
||||
if job_type_str in job_type.value:
|
||||
a = True
|
||||
return job_type
|
||||
return None
|
||||
|
||||
def get_description(self, job_page_url: str) -> Tuple[Optional[str], Optional[str]]:
|
||||
"""
|
||||
Retrieves job description by going to the job page url
|
||||
:param job_page_url:
|
||||
:param session:
|
||||
:return: description or None, response url
|
||||
"""
|
||||
try:
|
||||
response = requests.get(
|
||||
job_page_url,
|
||||
headers=ZipRecruiterScraper.headers(),
|
||||
allow_redirects=True,
|
||||
timeout=5,
|
||||
proxies=self.proxy,
|
||||
)
|
||||
if response.status_code not in range(200, 400):
|
||||
return None, None
|
||||
except Exception as e:
|
||||
return None, None
|
||||
|
||||
html_string = response.content
|
||||
soup_job = BeautifulSoup(html_string, "html.parser")
|
||||
|
||||
job_description_div = soup_job.find("div", {"class": "job_description"})
|
||||
if job_description_div:
|
||||
return job_description_div.text.strip(), response.url
|
||||
return None, response.url
|
||||
|
||||
@staticmethod
|
||||
def add_params(scraper_input, page) -> dict[str, str | Any]:
|
||||
params = {
|
||||
"search": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
"page": page,
|
||||
"form": "jobs-landing",
|
||||
}
|
||||
job_type_value = None
|
||||
if scraper_input.job_type:
|
||||
if scraper_input.job_type.value == "fulltime":
|
||||
job_type_value = "full_time"
|
||||
elif scraper_input.job_type.value == "parttime":
|
||||
job_type_value = "part_time"
|
||||
else:
|
||||
job_type_value = scraper_input.job_type.value
|
||||
|
||||
if job_type_value:
|
||||
params[
|
||||
"refine_by_employment"
|
||||
] = f"employment_type:employment_type:{job_type_value}"
|
||||
|
||||
if scraper_input.is_remote:
|
||||
params["refine_by_location_type"] = "only_remote"
|
||||
|
||||
if scraper_input.distance:
|
||||
params["radius"] = scraper_input.distance
|
||||
|
||||
return params
|
||||
|
||||
@staticmethod
|
||||
def get_interval(interval_str: str):
|
||||
"""
|
||||
Maps the interval alias to its appropriate CompensationInterval.
|
||||
:param interval_str
|
||||
:return: CompensationInterval
|
||||
"""
|
||||
interval_alias = {"annually": CompensationInterval.YEARLY}
|
||||
interval_str = interval_str.lower()
|
||||
|
||||
if interval_str in interval_alias:
|
||||
return interval_alias[interval_str]
|
||||
|
||||
return CompensationInterval(interval_str)
|
||||
|
||||
@staticmethod
|
||||
def get_date_posted(job: Tag) -> Optional[datetime.date]:
|
||||
"""
|
||||
Extracts the date a job was posted
|
||||
:param job
|
||||
:return: date the job was posted or None
|
||||
"""
|
||||
button = job.find(
|
||||
"button", {"class": "action_input save_job zrs_btn_secondary_200"}
|
||||
)
|
||||
if not button:
|
||||
return None
|
||||
|
||||
url_time = button.get("data-href", "")
|
||||
url_components = urlparse(url_time)
|
||||
params = parse_qs(url_components.query)
|
||||
posted_time_str = params.get("posted_time", [None])[0]
|
||||
|
||||
if posted_time_str:
|
||||
posted_date = datetime.strptime(
|
||||
posted_time_str, "%Y-%m-%dT%H:%M:%SZ"
|
||||
).date()
|
||||
return posted_date
|
||||
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def get_compensation(job: Tag) -> Optional[Compensation]:
|
||||
"""
|
||||
Parses the compensation tag from the job BeautifulSoup object
|
||||
:param job
|
||||
:return: Compensation object or None
|
||||
"""
|
||||
pay_element = job.find("li", {"class": "perk_item perk_pay"})
|
||||
if pay_element is None:
|
||||
return None
|
||||
pay = pay_element.find("div", {"class": "value"}).find("span").text.strip()
|
||||
|
||||
def create_compensation_object(pay_string: str) -> Compensation:
|
||||
"""
|
||||
Creates a Compensation object from a pay_string
|
||||
:param pay_string
|
||||
:return: compensation
|
||||
"""
|
||||
interval = ZipRecruiterScraper.get_interval(pay_string.split()[-1])
|
||||
|
||||
amounts = []
|
||||
for amount in pay_string.split("to"):
|
||||
amount = amount.replace(",", "").strip("$ ").split(" ")[0]
|
||||
if "K" in amount:
|
||||
amount = amount.replace("K", "")
|
||||
amount = int(float(amount)) * 1000
|
||||
else:
|
||||
amount = int(float(amount))
|
||||
amounts.append(amount)
|
||||
|
||||
compensation = Compensation(
|
||||
interval=interval,
|
||||
min_amount=min(amounts),
|
||||
max_amount=max(amounts),
|
||||
currency="USD/CAD",
|
||||
)
|
||||
|
||||
return compensation
|
||||
|
||||
return create_compensation_object(pay)
|
||||
|
||||
@staticmethod
|
||||
def get_location(job: Tag) -> Location:
|
||||
"""
|
||||
Extracts the job location from BeatifulSoup object
|
||||
:param job:
|
||||
:return: location
|
||||
"""
|
||||
location_link = job.find("a", {"class": "company_location"})
|
||||
if location_link is not None:
|
||||
location_string = location_link.text.strip()
|
||||
parts = location_string.split(", ")
|
||||
if len(parts) == 2:
|
||||
city, state = parts
|
||||
else:
|
||||
city, state = None, None
|
||||
else:
|
||||
city, state = None, None
|
||||
return Location(city=city, state=state, country=Country.US_CANADA)
|
||||
|
||||
@staticmethod
|
||||
def headers() -> dict:
|
||||
"""
|
||||
Returns headers needed for requests
|
||||
:return: dict - Dictionary containing headers
|
||||
"""
|
||||
return {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.97 Safari/537.36"
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def cleanurl(url):
|
||||
parsed_url = urlparse(url)
|
||||
|
||||
return urlunparse((parsed_url.scheme, parsed_url.netloc, parsed_url.path, parsed_url.params, '', ''))
|
|
@ -1,12 +0,0 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_all():
|
||||
result = scrape_jobs(
|
||||
site_name=["linkedin", "indeed", "zip_recruiter"],
|
||||
search_term="software engineer",
|
||||
results_wanted=5,
|
||||
)
|
||||
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
|
@ -1,10 +0,0 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_indeed():
|
||||
result = scrape_jobs(
|
||||
site_name="indeed",
|
||||
search_term="software engineer",
|
||||
)
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
|
@ -1,10 +0,0 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_linkedin():
|
||||
result = scrape_jobs(
|
||||
site_name="linkedin",
|
||||
search_term="software engineer",
|
||||
)
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
|
@ -1,11 +0,0 @@
|
|||
from ..jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_ziprecruiter():
|
||||
result = scrape_jobs(
|
||||
site_name="zip_recruiter",
|
||||
search_term="software engineer",
|
||||
)
|
||||
|
||||
assert isinstance(result, pd.DataFrame) and not result.empty, "Result should be a non-empty DataFrame"
|
Loading…
Reference in New Issue