mirror of https://github.com/Bunsly/JobSpy
parent
cd29f79796
commit
5cb7ffe5fd
16
README.md
16
README.md
|
@ -11,7 +11,7 @@ work with us.*
|
|||
|
||||
- Scrapes job postings from **LinkedIn**, **Indeed**, **Glassdoor**, & **ZipRecruiter** simultaneously
|
||||
- Aggregates the job postings in a Pandas DataFrame
|
||||
- Proxy support
|
||||
- Proxies support
|
||||
|
||||
[Video Guide for JobSpy](https://www.youtube.com/watch?v=RuP1HrAZnxs&pp=ygUgam9icyBzY3JhcGVyIGJvdCBsaW5rZWRpbiBpbmRlZWQ%3D) -
|
||||
Updated for release v1.1.3
|
||||
|
@ -39,7 +39,10 @@ jobs = scrape_jobs(
|
|||
results_wanted=20,
|
||||
hours_old=72, # (only Linkedin/Indeed is hour specific, others round up to days old)
|
||||
country_indeed='USA', # only needed for indeed / glassdoor
|
||||
|
||||
# linkedin_fetch_description=True # get full description and direct job url for linkedin (slower)
|
||||
# proxies=["Efb5EA8OIk0BQb:wifi;us;@proxy.soax.com:9000", "localhost"],
|
||||
|
||||
)
|
||||
print(f"Found {len(jobs)} jobs")
|
||||
print(jobs.head())
|
||||
|
@ -76,8 +79,9 @@ Optional
|
|||
├── job_type (str):
|
||||
| fulltime, parttime, internship, contract
|
||||
│
|
||||
├── proxy (str):
|
||||
| in format 'http://user:pass@host:port'
|
||||
├── proxies ():
|
||||
| in format ['user:pass@host:port', 'localhost']
|
||||
| each job board will round robin through the proxies
|
||||
│
|
||||
├── is_remote (bool)
|
||||
│
|
||||
|
@ -201,7 +205,7 @@ You can specify the following countries when searching on Indeed (use the exact
|
|||
## Notes
|
||||
* Indeed is the best scraper currently with no rate limiting.
|
||||
* All the job board endpoints are capped at around 1000 jobs on a given search.
|
||||
* LinkedIn is the most restrictive and usually rate limits around the 10th page.
|
||||
* LinkedIn is the most restrictive and usually rate limits around the 10th page with one ip. Proxies are a must basically.
|
||||
|
||||
## Frequently Asked Questions
|
||||
|
||||
|
@ -216,7 +220,7 @@ persist, [submit an issue](https://github.com/Bunsly/JobSpy/issues).
|
|||
**Q: Received a response code 429?**
|
||||
**A:** This indicates that you have been blocked by the job board site for sending too many requests. All of the job board sites are aggressive with blocking. We recommend:
|
||||
|
||||
- Waiting some time between scrapes (site-dependent).
|
||||
- Trying a VPN or proxy to change your IP address.
|
||||
- Wait some time between scrapes (site-dependent).
|
||||
- Try using the proxies param to change your IP address.
|
||||
|
||||
---
|
||||
|
|
|
@ -1,30 +0,0 @@
|
|||
from jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
|
||||
jobs: pd.DataFrame = scrape_jobs(
|
||||
site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor"],
|
||||
search_term="software engineer",
|
||||
location="Dallas, TX",
|
||||
results_wanted=25, # be wary the higher it is, the more likey you'll get blocked (rotating proxy can help tho)
|
||||
country_indeed="USA",
|
||||
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
)
|
||||
|
||||
# formatting for pandas
|
||||
pd.set_option("display.max_columns", None)
|
||||
pd.set_option("display.max_rows", None)
|
||||
pd.set_option("display.width", None)
|
||||
pd.set_option("display.max_colwidth", 50) # set to 0 to see full job url / desc
|
||||
|
||||
# 1: output to console
|
||||
print(jobs)
|
||||
|
||||
# 2: output to .csv
|
||||
jobs.to_csv("./jobs.csv", index=False)
|
||||
print("outputted to jobs.csv")
|
||||
|
||||
# 3: output to .xlsx
|
||||
# jobs.to_xlsx('jobs.xlsx', index=False)
|
||||
|
||||
# 4: display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
|
||||
# display(jobs)
|
|
@ -1,167 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "00a94b47-f47b-420f-ba7e-714ef219c006",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from jobspy import scrape_jobs\n",
|
||||
"import pandas as pd\n",
|
||||
"from IPython.display import display, HTML"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9f773e6c-d9fc-42cc-b0ef-63b739e78435",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.set_option('display.max_columns', None)\n",
|
||||
"pd.set_option('display.max_rows', None)\n",
|
||||
"pd.set_option('display.width', None)\n",
|
||||
"pd.set_option('display.max_colwidth', 50)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1253c1f8-9437-492e-9dd3-e7fe51099420",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# example 1 (no hyperlinks, USA)\n",
|
||||
"jobs = scrape_jobs(\n",
|
||||
" site_name=[\"linkedin\"],\n",
|
||||
" location='san francisco',\n",
|
||||
" search_term=\"engineer\",\n",
|
||||
" results_wanted=5,\n",
|
||||
"\n",
|
||||
" # use if you want to use a proxy\n",
|
||||
" # proxy=\"socks5://jobspy:5a4vpWtj4EeJ2hoYzk@us.smartproxy.com:10001\",\n",
|
||||
" proxy=\"http://jobspy:5a4vpWtj4EeJ2hoYzk@us.smartproxy.com:10001\",\n",
|
||||
" #proxy=\"https://jobspy:5a4vpWtj4EeJ2hoYzk@us.smartproxy.com:10001\",\n",
|
||||
")\n",
|
||||
"display(jobs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6a581b2d-f7da-4fac-868d-9efe143ee20a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# example 2 - remote USA & hyperlinks\n",
|
||||
"jobs = scrape_jobs(\n",
|
||||
" site_name=[\"linkedin\", \"zip_recruiter\", \"indeed\"],\n",
|
||||
" # location='san francisco',\n",
|
||||
" search_term=\"software engineer\",\n",
|
||||
" country_indeed=\"USA\",\n",
|
||||
" hyperlinks=True,\n",
|
||||
" is_remote=True,\n",
|
||||
" results_wanted=5, \n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fe8289bc-5b64-4202-9a64-7c117c83fd9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use if hyperlinks=True\n",
|
||||
"html = jobs.to_html(escape=False)\n",
|
||||
"# change max-width: 200px to show more or less of the content\n",
|
||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
||||
"display(HTML(truncate_width))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "951c2fe1-52ff-407d-8bb1-068049b36777",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# example 3 - with hyperlinks, international - linkedin (no zip_recruiter)\n",
|
||||
"jobs = scrape_jobs(\n",
|
||||
" site_name=[\"linkedin\"],\n",
|
||||
" location='berlin',\n",
|
||||
" search_term=\"engineer\",\n",
|
||||
" hyperlinks=True,\n",
|
||||
" results_wanted=5,\n",
|
||||
" easy_apply=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1e37a521-caef-441c-8fc2-2eb5b2e7da62",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use if hyperlinks=True\n",
|
||||
"html = jobs.to_html(escape=False)\n",
|
||||
"# change max-width: 200px to show more or less of the content\n",
|
||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
||||
"display(HTML(truncate_width))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0650e608-0b58-4bf5-ae86-68348035b16a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# example 4 - international indeed (no zip_recruiter)\n",
|
||||
"jobs = scrape_jobs(\n",
|
||||
" site_name=[\"indeed\"],\n",
|
||||
" search_term=\"engineer\",\n",
|
||||
" country_indeed = \"China\",\n",
|
||||
" hyperlinks=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "40913ac8-3f8a-4d7e-ac47-afb88316432b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use if hyperlinks=True\n",
|
||||
"html = jobs.to_html(escape=False)\n",
|
||||
"# change max-width: 200px to show more or less of the content\n",
|
||||
"truncate_width = f'<style>.dataframe td {{ max-width: 200px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; }}</style>{html}'\n",
|
||||
"display(HTML(truncate_width))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -1,78 +0,0 @@
|
|||
from jobspy import scrape_jobs
|
||||
import pandas as pd
|
||||
import os
|
||||
import time
|
||||
|
||||
# creates csv a new filename if the jobs.csv already exists.
|
||||
csv_filename = "jobs.csv"
|
||||
counter = 1
|
||||
while os.path.exists(csv_filename):
|
||||
csv_filename = f"jobs_{counter}.csv"
|
||||
counter += 1
|
||||
|
||||
# results wanted and offset
|
||||
results_wanted = 1000
|
||||
offset = 0
|
||||
|
||||
all_jobs = []
|
||||
|
||||
# max retries
|
||||
max_retries = 3
|
||||
|
||||
# nuumber of results at each iteration
|
||||
results_in_each_iteration = 30
|
||||
|
||||
while len(all_jobs) < results_wanted:
|
||||
retry_count = 0
|
||||
while retry_count < max_retries:
|
||||
print("Doing from", offset, "to", offset + results_in_each_iteration, "jobs")
|
||||
try:
|
||||
jobs = scrape_jobs(
|
||||
site_name=["indeed"],
|
||||
search_term="software engineer",
|
||||
# New York, NY
|
||||
# Dallas, TX
|
||||
# Los Angeles, CA
|
||||
location="Los Angeles, CA",
|
||||
results_wanted=min(
|
||||
results_in_each_iteration, results_wanted - len(all_jobs)
|
||||
),
|
||||
country_indeed="USA",
|
||||
offset=offset,
|
||||
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
|
||||
)
|
||||
|
||||
# Add the scraped jobs to the list
|
||||
all_jobs.extend(jobs.to_dict("records"))
|
||||
|
||||
# Increment the offset for the next page of results
|
||||
offset += results_in_each_iteration
|
||||
|
||||
# Add a delay to avoid rate limiting (you can adjust the delay time as needed)
|
||||
print(f"Scraped {len(all_jobs)} jobs")
|
||||
print("Sleeping secs", 100 * (retry_count + 1))
|
||||
time.sleep(100 * (retry_count + 1)) # Sleep for 2 seconds between requests
|
||||
|
||||
break # Break out of the retry loop if successful
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
retry_count += 1
|
||||
print("Sleeping secs before retry", 100 * (retry_count + 1))
|
||||
time.sleep(100 * (retry_count + 1))
|
||||
if retry_count >= max_retries:
|
||||
print("Max retries reached. Exiting.")
|
||||
break
|
||||
|
||||
# DataFrame from the collected job data
|
||||
jobs_df = pd.DataFrame(all_jobs)
|
||||
|
||||
# Formatting
|
||||
pd.set_option("display.max_columns", None)
|
||||
pd.set_option("display.max_rows", None)
|
||||
pd.set_option("display.width", None)
|
||||
pd.set_option("display.max_colwidth", 50)
|
||||
|
||||
print(jobs_df)
|
||||
|
||||
jobs_df.to_csv(csv_filename, index=False)
|
||||
print(f"Outputted to {csv_filename}")
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "python-jobspy"
|
||||
version = "1.1.53"
|
||||
version = "1.1.54"
|
||||
description = "Job scraper for LinkedIn, Indeed, Glassdoor & ZipRecruiter"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/JobSpy"
|
||||
|
|
|
@ -30,7 +30,7 @@ def scrape_jobs(
|
|||
results_wanted: int = 15,
|
||||
country_indeed: str = "usa",
|
||||
hyperlinks: bool = False,
|
||||
proxy: str | None = None,
|
||||
proxies: list[str] | str | None = None,
|
||||
description_format: str = "markdown",
|
||||
linkedin_fetch_description: bool | None = False,
|
||||
linkedin_company_ids: list[int] | None = None,
|
||||
|
@ -96,7 +96,7 @@ def scrape_jobs(
|
|||
|
||||
def scrape_site(site: Site) -> Tuple[str, JobResponse]:
|
||||
scraper_class = SCRAPER_MAPPING[site]
|
||||
scraper = scraper_class(proxy=proxy)
|
||||
scraper = scraper_class(proxies=proxies)
|
||||
scraped_data: JobResponse = scraper.scrape(scraper_input)
|
||||
cap_name = site.value.capitalize()
|
||||
site_name = "ZipRecruiter" if cap_name == "Zip_recruiter" else cap_name
|
||||
|
|
|
@ -39,9 +39,9 @@ class ScraperInput(BaseModel):
|
|||
|
||||
|
||||
class Scraper(ABC):
|
||||
def __init__(self, site: Site, proxy: list[str] | None = None):
|
||||
def __init__(self, site: Site, proxies: list[str] | None = None):
|
||||
self.proxies = proxies
|
||||
self.site = site
|
||||
self.proxy = (lambda p: {"http": p, "https": p} if p else None)(proxy)
|
||||
|
||||
@abstractmethod
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse: ...
|
||||
|
|
|
@ -34,12 +34,12 @@ from ...jobs import (
|
|||
|
||||
|
||||
class GlassdoorScraper(Scraper):
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
def __init__(self, proxies: list[str] | str | None = None):
|
||||
"""
|
||||
Initializes GlassdoorScraper with the Glassdoor job search url
|
||||
"""
|
||||
site = Site(Site.GLASSDOOR)
|
||||
super().__init__(site, proxy=proxy)
|
||||
super().__init__(site, proxies=proxies)
|
||||
|
||||
self.base_url = None
|
||||
self.country = None
|
||||
|
@ -59,7 +59,7 @@ class GlassdoorScraper(Scraper):
|
|||
self.scraper_input.results_wanted = min(900, scraper_input.results_wanted)
|
||||
self.base_url = self.scraper_input.country.get_glassdoor_url()
|
||||
|
||||
self.session = create_session(self.proxy, is_tls=True, has_retry=True)
|
||||
self.session = create_session(proxies=self.proxies, is_tls=True, has_retry=True)
|
||||
token = self._get_csrf_token()
|
||||
self.headers["gd-csrf-token"] = token if token else self.fallback_token
|
||||
|
||||
|
@ -245,7 +245,6 @@ class GlassdoorScraper(Scraper):
|
|||
if not location or is_remote:
|
||||
return "11047", "STATE" # remote options
|
||||
url = f"{self.base_url}/findPopularLocationAjax.htm?maxLocationsToReturn=10&term={location}"
|
||||
session = create_session(self.proxy, has_retry=True)
|
||||
res = self.session.get(url, headers=self.headers)
|
||||
if res.status_code != 200:
|
||||
if res.status_code == 429:
|
||||
|
|
|
@ -12,14 +12,13 @@ from typing import Tuple
|
|||
from datetime import datetime
|
||||
from concurrent.futures import ThreadPoolExecutor, Future
|
||||
|
||||
import requests
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..utils import (
|
||||
extract_emails_from_text,
|
||||
get_enum_from_job_type,
|
||||
markdown_converter,
|
||||
logger,
|
||||
create_session,
|
||||
)
|
||||
from ...jobs import (
|
||||
JobPost,
|
||||
|
@ -33,10 +32,13 @@ from ...jobs import (
|
|||
|
||||
|
||||
class IndeedScraper(Scraper):
|
||||
def __init__(self, proxy: str | None = None):
|
||||
def __init__(self, proxies: list[str] | str | None = None):
|
||||
"""
|
||||
Initializes IndeedScraper with the Indeed API url
|
||||
"""
|
||||
super().__init__(Site.INDEED, proxies=proxies)
|
||||
|
||||
self.session = create_session(proxies=self.proxies, is_tls=False)
|
||||
self.scraper_input = None
|
||||
self.jobs_per_page = 100
|
||||
self.num_workers = 10
|
||||
|
@ -45,8 +47,6 @@ class IndeedScraper(Scraper):
|
|||
self.api_country_code = None
|
||||
self.base_url = None
|
||||
self.api_url = "https://apis.indeed.com/graphql"
|
||||
site = Site(Site.INDEED)
|
||||
super().__init__(site, proxy=proxy)
|
||||
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
|
||||
"""
|
||||
|
@ -90,13 +90,13 @@ class IndeedScraper(Scraper):
|
|||
jobs = []
|
||||
new_cursor = None
|
||||
filters = self._build_filters()
|
||||
search_term = self.scraper_input.search_term.replace('"', '\\"') if self.scraper_input.search_term else ""
|
||||
query = self.job_search_query.format(
|
||||
what=(
|
||||
f'what: "{search_term}"'
|
||||
if search_term
|
||||
search_term = (
|
||||
self.scraper_input.search_term.replace('"', '\\"')
|
||||
if self.scraper_input.search_term
|
||||
else ""
|
||||
),
|
||||
)
|
||||
query = self.job_search_query.format(
|
||||
what=(f'what: "{search_term}"' if search_term else ""),
|
||||
location=(
|
||||
f'location: {{where: "{self.scraper_input.location}", radius: {self.scraper_input.distance}, radiusUnit: MILES}}'
|
||||
if self.scraper_input.location
|
||||
|
@ -111,11 +111,10 @@ class IndeedScraper(Scraper):
|
|||
}
|
||||
api_headers = self.api_headers.copy()
|
||||
api_headers["indeed-co"] = self.api_country_code
|
||||
response = requests.post(
|
||||
response = self.session.post(
|
||||
self.api_url,
|
||||
headers=api_headers,
|
||||
json=payload,
|
||||
proxies=self.proxy,
|
||||
timeout=10,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
|
|
|
@ -10,14 +10,13 @@ from __future__ import annotations
|
|||
import time
|
||||
import random
|
||||
import regex as re
|
||||
import urllib.parse
|
||||
from typing import Optional
|
||||
from datetime import datetime
|
||||
|
||||
from threading import Lock
|
||||
from bs4.element import Tag
|
||||
from bs4 import BeautifulSoup
|
||||
from urllib.parse import urlparse, urlunparse
|
||||
from urllib.parse import urlparse, urlunparse, unquote
|
||||
|
||||
from .. import Scraper, ScraperInput, Site
|
||||
from ..exceptions import LinkedInException
|
||||
|
@ -46,11 +45,19 @@ class LinkedInScraper(Scraper):
|
|||
band_delay = 4
|
||||
jobs_per_page = 25
|
||||
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
def __init__(self, proxies: list[str] | str | None = None):
|
||||
"""
|
||||
Initializes LinkedInScraper with the LinkedIn job search url
|
||||
"""
|
||||
super().__init__(Site(Site.LINKEDIN), proxy=proxy)
|
||||
super().__init__(Site.LINKEDIN, proxies=proxies)
|
||||
self.session = create_session(
|
||||
proxies=self.proxies,
|
||||
is_tls=False,
|
||||
has_retry=True,
|
||||
delay=5,
|
||||
clear_cookies=True,
|
||||
)
|
||||
self.session.headers.update(self.headers)
|
||||
self.scraper_input = None
|
||||
self.country = "worldwide"
|
||||
self.job_url_direct_regex = re.compile(r'(?<=\?url=)[^"]+')
|
||||
|
@ -74,7 +81,6 @@ class LinkedInScraper(Scraper):
|
|||
)
|
||||
while continue_search():
|
||||
logger.info(f"LinkedIn search page: {page // 25 + 1}")
|
||||
session = create_session(is_tls=False, has_retry=True, delay=5)
|
||||
params = {
|
||||
"keywords": scraper_input.search_term,
|
||||
"location": scraper_input.location,
|
||||
|
@ -99,12 +105,9 @@ class LinkedInScraper(Scraper):
|
|||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
try:
|
||||
response = session.get(
|
||||
response = self.session.get(
|
||||
f"{self.base_url}/jobs-guest/jobs/api/seeMoreJobPostings/search?",
|
||||
params=params,
|
||||
allow_redirects=True,
|
||||
proxies=self.proxy,
|
||||
headers=self.headers,
|
||||
timeout=10,
|
||||
)
|
||||
if response.status_code not in range(200, 400):
|
||||
|
@ -241,10 +244,7 @@ class LinkedInScraper(Scraper):
|
|||
:return: dict
|
||||
"""
|
||||
try:
|
||||
session = create_session(is_tls=False, has_retry=True)
|
||||
response = session.get(
|
||||
job_page_url, headers=self.headers, timeout=5, proxies=self.proxy
|
||||
)
|
||||
response = self.session.get(job_page_url, timeout=5)
|
||||
response.raise_for_status()
|
||||
except:
|
||||
return {}
|
||||
|
@ -340,7 +340,7 @@ class LinkedInScraper(Scraper):
|
|||
job_url_direct_content.decode_contents().strip()
|
||||
)
|
||||
if job_url_direct_match:
|
||||
job_url_direct = urllib.parse.unquote(job_url_direct_match.group())
|
||||
job_url_direct = unquote(job_url_direct_match.group())
|
||||
|
||||
return job_url_direct
|
||||
|
||||
|
|
|
@ -2,6 +2,8 @@ from __future__ import annotations
|
|||
|
||||
import re
|
||||
import logging
|
||||
from itertools import cycle
|
||||
|
||||
import requests
|
||||
import tls_client
|
||||
import numpy as np
|
||||
|
@ -21,6 +23,104 @@ if not logger.handlers:
|
|||
logger.addHandler(console_handler)
|
||||
|
||||
|
||||
class RotatingProxySession:
|
||||
def __init__(self, proxies=None):
|
||||
if isinstance(proxies, str):
|
||||
self.proxy_cycle = cycle([self.format_proxy(proxies)])
|
||||
elif isinstance(proxies, list):
|
||||
self.proxy_cycle = (
|
||||
cycle([self.format_proxy(proxy) for proxy in proxies])
|
||||
if proxies
|
||||
else None
|
||||
)
|
||||
else:
|
||||
self.proxy_cycle = None
|
||||
|
||||
@staticmethod
|
||||
def format_proxy(proxy):
|
||||
"""Utility method to format a proxy string into a dictionary."""
|
||||
if proxy.startswith("http://") or proxy.startswith("https://"):
|
||||
return {"http": proxy, "https": proxy}
|
||||
return {"http": f"http://{proxy}", "https": f"http://{proxy}"}
|
||||
|
||||
|
||||
class RequestsRotating(RotatingProxySession, requests.Session):
|
||||
|
||||
def __init__(self, proxies=None, has_retry=False, delay=1, clear_cookies=False):
|
||||
RotatingProxySession.__init__(self, proxies=proxies)
|
||||
requests.Session.__init__(self)
|
||||
self.clear_cookies = clear_cookies
|
||||
self.allow_redirects = True
|
||||
self.setup_session(has_retry, delay)
|
||||
|
||||
def setup_session(self, has_retry, delay):
|
||||
if has_retry:
|
||||
retries = Retry(
|
||||
total=3,
|
||||
connect=3,
|
||||
status=3,
|
||||
status_forcelist=[500, 502, 503, 504, 429],
|
||||
backoff_factor=delay,
|
||||
)
|
||||
adapter = HTTPAdapter(max_retries=retries)
|
||||
self.mount("http://", adapter)
|
||||
self.mount("https://", adapter)
|
||||
|
||||
def request(self, method, url, **kwargs):
|
||||
if self.clear_cookies:
|
||||
self.cookies.clear()
|
||||
|
||||
if self.proxy_cycle:
|
||||
next_proxy = next(self.proxy_cycle)
|
||||
if next_proxy["http"] != "http://localhost":
|
||||
self.proxies = next_proxy
|
||||
else:
|
||||
self.proxies = {}
|
||||
return requests.Session.request(self, method, url, **kwargs)
|
||||
|
||||
|
||||
class TLSRotating(RotatingProxySession, tls_client.Session):
|
||||
|
||||
def __init__(self, proxies=None):
|
||||
RotatingProxySession.__init__(self, proxies=proxies)
|
||||
tls_client.Session.__init__(self, random_tls_extension_order=True)
|
||||
|
||||
def execute_request(self, *args, **kwargs):
|
||||
if self.proxy_cycle:
|
||||
next_proxy = next(self.proxy_cycle)
|
||||
if next_proxy["http"] != "http://localhost":
|
||||
self.proxies = next_proxy
|
||||
else:
|
||||
self.proxies = {}
|
||||
response = tls_client.Session.execute_request(self, *args, **kwargs)
|
||||
return response
|
||||
|
||||
|
||||
def create_session(
|
||||
*,
|
||||
proxies: dict | str | None = None,
|
||||
is_tls: bool = True,
|
||||
has_retry: bool = False,
|
||||
delay: int = 1,
|
||||
clear_cookies: bool = False,
|
||||
) -> requests.Session:
|
||||
"""
|
||||
Creates a requests session with optional tls, proxy, and retry settings.
|
||||
:return: A session object
|
||||
"""
|
||||
if is_tls:
|
||||
session = TLSRotating(proxies=proxies)
|
||||
else:
|
||||
session = RequestsRotating(
|
||||
proxies=proxies,
|
||||
has_retry=has_retry,
|
||||
delay=delay,
|
||||
clear_cookies=clear_cookies,
|
||||
)
|
||||
|
||||
return session
|
||||
|
||||
|
||||
def set_logger_level(verbose: int = 2):
|
||||
"""
|
||||
Adjusts the logger's level. This function allows the logging level to be changed at runtime.
|
||||
|
@ -52,39 +152,6 @@ def extract_emails_from_text(text: str) -> list[str] | None:
|
|||
return email_regex.findall(text)
|
||||
|
||||
|
||||
def create_session(
|
||||
proxy: dict | None = None,
|
||||
is_tls: bool = True,
|
||||
has_retry: bool = False,
|
||||
delay: int = 1,
|
||||
) -> requests.Session:
|
||||
"""
|
||||
Creates a requests session with optional tls, proxy, and retry settings.
|
||||
:return: A session object
|
||||
"""
|
||||
if is_tls:
|
||||
session = tls_client.Session(random_tls_extension_order=True)
|
||||
session.proxies = proxy
|
||||
else:
|
||||
session = requests.Session()
|
||||
session.allow_redirects = True
|
||||
if proxy:
|
||||
session.proxies.update(proxy)
|
||||
if has_retry:
|
||||
retries = Retry(
|
||||
total=3,
|
||||
connect=3,
|
||||
status=3,
|
||||
status_forcelist=[500, 502, 503, 504, 429],
|
||||
backoff_factor=delay,
|
||||
)
|
||||
adapter = HTTPAdapter(max_retries=retries)
|
||||
|
||||
session.mount("http://", adapter)
|
||||
session.mount("https://", adapter)
|
||||
return session
|
||||
|
||||
|
||||
def get_enum_from_job_type(job_type_str: str) -> JobType | None:
|
||||
"""
|
||||
Given a string, returns the corresponding JobType enum member if a match is found.
|
||||
|
|
|
@ -36,14 +36,15 @@ class ZipRecruiterScraper(Scraper):
|
|||
base_url = "https://www.ziprecruiter.com"
|
||||
api_url = "https://api.ziprecruiter.com"
|
||||
|
||||
def __init__(self, proxy: Optional[str] = None):
|
||||
def __init__(self, proxies: list[str] | str | None = None):
|
||||
"""
|
||||
Initializes ZipRecruiterScraper with the ZipRecruiter job search url
|
||||
"""
|
||||
super().__init__(Site.ZIP_RECRUITER, proxies=proxies)
|
||||
|
||||
self.scraper_input = None
|
||||
self.session = create_session(proxy)
|
||||
self.session = create_session(proxies=proxies)
|
||||
self._get_cookies()
|
||||
super().__init__(Site.ZIP_RECRUITER, proxy=proxy)
|
||||
|
||||
self.delay = 5
|
||||
self.jobs_per_page = 20
|
||||
|
@ -151,7 +152,7 @@ class ZipRecruiterScraper(Scraper):
|
|||
comp_max = int(job["compensation_max"]) if "compensation_max" in job else None
|
||||
comp_currency = job.get("compensation_currency")
|
||||
return JobPost(
|
||||
id=str(job['listing_key']),
|
||||
id=str(job["listing_key"]),
|
||||
title=title,
|
||||
company_name=company,
|
||||
location=location,
|
||||
|
|
Loading…
Reference in New Issue