updated example with exponential backoff and retry mechanism

Exponential Backoff can help us to minimize the 429 Too many requests issue, and the try catch handle helps to extract data even if we face error, can be used to scrape 500-100 jobs in one run
pull/81/head
Harish Vadaparty 2024-01-12 12:25:33 +05:30 committed by GitHub
parent a7ad616567
commit 36d53b01f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 68 additions and 22 deletions

View File

@ -1,31 +1,77 @@
from jobspy import scrape_jobs
import pandas as pd
import os
import time
jobs: pd.DataFrame = scrape_jobs(
site_name=["indeed", "linkedin", "zip_recruiter"],
search_term="software engineer",
location="Dallas, TX",
results_wanted=50, # be wary the higher it is, the more likey you'll get blocked (rotating proxy should work tho)
country_indeed="USA",
offset=25 # start jobs from an offset (use if search failed and want to continue)
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
)
# creates csv a new filename if the jobs.csv already exists.
csv_filename = "jobs.csv"
counter = 1
while os.path.exists(csv_filename):
csv_filename = f"jobs_{counter}.csv"
counter += 1
# formatting for pandas
# results wanted and offset
results_wanted = 1000
offset = 0
all_jobs = []
# max retries
max_retries = 3
# nuumber of results at each iteration
results_in_each_iteration = 50
while len(all_jobs) < results_wanted:
retry_count = 0
while retry_count < max_retries:
print("Doing from", offset, "to", offset + results_in_each_iteration, "jobs")
try:
jobs = scrape_jobs(
site_name=["indeed"],
search_term="software engineer",
# New York, NY
# Dallas, TX
# Los Angeles, CA
location="Los Angeles, CA",
results_wanted=min(results_in_each_iteration, results_wanted - len(all_jobs)),
country_indeed="USA",
offset=offset,
# proxy="http://jobspy:5a4vpWtj8EeJ2hoYzk@ca.smartproxy.com:20001",
)
# Add the scraped jobs to the list
all_jobs.extend(jobs.to_dict('records'))
# Increment the offset for the next page of results
offset += results_in_each_iteration
# Add a delay to avoid rate limiting (you can adjust the delay time as needed)
print(f"Scraped {len(all_jobs)} jobs")
print("Sleeping secs", 100 * (retry_count + 1))
time.sleep(100 * (retry_count + 1)) # Sleep for 2 seconds between requests
break # Break out of the retry loop if successful
except Exception as e:
print(f"Error: {e}")
retry_count += 1
print("Sleeping secs before retry", 100 * (retry_count + 1))
time.sleep(100 * (retry_count + 1))
if retry_count >= max_retries:
print("Max retries reached. Exiting.")
break
# DataFrame from the collected job data
jobs_df = pd.DataFrame(all_jobs)
# Formatting
pd.set_option("display.max_columns", None)
pd.set_option("display.max_rows", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", 50) # set to 0 to see full job url / desc
pd.set_option("display.max_colwidth", 50)
# 1: output to console
print(jobs)
print(jobs_df)
# 2: output to .csv
jobs.to_csv("./jobs.csv", index=False)
print("outputted to jobs.csv")
# 3: output to .xlsx
# jobs.to_xlsx('jobs.xlsx', index=False)
# 4: display in Jupyter Notebook (1. pip install jupyter 2. jupyter notebook)
# display(jobs)
jobs_df.to_csv(csv_filename, index=False)
print(f"Outputted to {csv_filename}")