removed commas in fields

pull/268/head
fakebranden 2025-03-12 00:03:02 +00:00
parent 341deba465
commit 25c084ca2c
3 changed files with 75 additions and 252 deletions

View File

@ -1,12 +1,26 @@
import csv
import datetime
import os
import datetime
from jobspy.google import Google
from jobspy.linkedin import LinkedIn
from jobspy.indeed import Indeed
from jobspy.ziprecruiter import ZipRecruiter
from jobspy.model import ScraperInput
def clean_text(text: str) -> str:
"""
Cleans text for CSV output by removing or replacing characters
that could break CSV formatting.
"""
if not text:
return ""
# Remove commas, newlines, carriage returns and double quotes.
cleaned = text.replace(",", " ") \
.replace("\n", " ") \
.replace("\r", " ") \
.replace('"', "'")
# Collapse multiple spaces into one.
return " ".join(cleaned.split())
# Define job sources
sources = {
"google": Google,
@ -17,7 +31,7 @@ sources = {
# Define search preferences
search_terms = ["Automation Engineer", "CRM Manager", "Implementation Specialist", "Automation", "CRM"]
results_wanted = 200 # Fetch more jobs
results_wanted = 100 # Fetch more jobs
max_days_old = 2 # Fetch jobs posted in last 48 hours
target_state = "NY" # Only keep jobs from New York
@ -50,22 +64,21 @@ def scrape_jobs(search_terms, results_wanted, max_days_old, target_state):
# Debug: Show all jobs being fetched
print(f"📍 Fetched Job: {job.title} - {location_city}, {location_state}, {location_country}")
# 🔥 Exclude jobs that dont explicitly match the search terms
# Exclude jobs that dont explicitly match the search terms
if not any(term.lower() in job.title.lower() for term in search_terms):
print(f"🚫 Excluding: {job.title} (Doesn't match {search_terms})")
continue # Skip this job
continue
# Ensure the job is recent
# Ensure the job is recent and in NY (or remote)
if job.date_posted and (today - job.date_posted).days <= max_days_old:
# Only accept jobs if they're in NY or Remote
if location_state == target_state or job.is_remote:
print(f"✅ MATCH: {job.title} - {location_city}, {location_state} (Posted {job.date_posted})")
all_jobs.append({
"Job ID": job.id,
"Job Title (Primary)": job.title,
"Company Name": job.company_name if job.company_name else "Unknown",
"Industry": job.company_industry if job.company_industry else "Not Provided",
"Experience Level": job.job_level if job.job_level else "Not Provided",
"Job Title (Primary)": clean_text(job.title),
"Company Name": clean_text(job.company_name) if job.company_name else "Unknown",
"Industry": clean_text(job.company_industry) if job.company_industry else "Not Provided",
"Experience Level": clean_text(job.job_level) if job.job_level else "Not Provided",
"Job Type": job.job_type[0].name if job.job_type else "Not Provided",
"Is Remote": job.is_remote,
"Currency": job.compensation.currency if job.compensation else "",
@ -76,7 +89,7 @@ def scrape_jobs(search_terms, results_wanted, max_days_old, target_state):
"Location State": location_state,
"Location Country": location_country,
"Job URL": job.job_url,
"Job Description": job.description.replace(",", "") if job.description else "No description available",
"Job Description": clean_text(job.description) if job.description else "No description available",
"Job Source": source_name
})
else:
@ -87,9 +100,8 @@ def scrape_jobs(search_terms, results_wanted, max_days_old, target_state):
print(f"\n{len(all_jobs)} jobs retrieved in NY")
return all_jobs
def save_jobs_to_csv(jobs, filename="jobspy_output.csv"):
"""Save job data to a CSV file."""
"""Save job data to a CSV file with a custom delimiter."""
if not jobs:
print("⚠️ No jobs found matching criteria.")
return
@ -106,14 +118,20 @@ def save_jobs_to_csv(jobs, filename="jobspy_output.csv"):
"Job Source"
]
with open(filename, mode="w", newline="", encoding="utf-8") as file:
writer = csv.DictWriter(file, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(jobs)
# Define your custom delimiter
delimiter = "|~|"
with open(filename, mode="w", encoding="utf-8") as file:
# Write header
file.write(delimiter.join(fieldnames) + "\n")
# Write each job record
for job in jobs:
# Convert all field values to string
row = [str(job.get(field, "")) for field in fieldnames]
file.write(delimiter.join(row) + "\n")
print(f"✅ Jobs saved to {filename} ({len(jobs)} entries)")
# Run the scraper with multiple job searches
job_data = scrape_jobs(
search_terms=search_terms,

View File

@ -9,10 +9,11 @@ from datetime import datetime
from bs4 import BeautifulSoup
import cloudscraper # NEW: Use cloudscraper to bypass Cloudflare
from jobspy.ziprecruiter.constant import headers, get_cookie_data
from jobspy.util import (
extract_emails_from_text,
create_session,
markdown_converter,
remove_attributes,
create_logger,
@ -41,15 +42,20 @@ class ZipRecruiter(Scraper):
self, proxies: list[str] | str | None = None, ca_cert: str | None = None
):
"""
Initializes ZipRecruiterScraper with the ZipRecruiter job search url
Initializes ZipRecruiterScraper with the ZipRecruiter job search url.
This version uses cloudscraper to bypass Cloudflare's anti-bot challenge.
"""
super().__init__(Site.ZIP_RECRUITER, proxies=proxies)
self.scraper_input = None
self.session = create_session(proxies=proxies, ca_cert=ca_cert)
# Use cloudscraper instead of the standard session to handle Cloudflare.
self.session = cloudscraper.create_scraper()
if proxies:
self.session.proxies = proxies
self.session.headers.update(headers)
self._get_cookies()
self.scraper_input = None
self.delay = 5
self.jobs_per_page = 20
self.seen_urls = set()
@ -86,10 +92,10 @@ class ZipRecruiter(Scraper):
self, scraper_input: ScraperInput, continue_token: str | None = None
) -> tuple[list[JobPost], str | None]:
"""
Scrapes a page of ZipRecruiter for jobs with scraper_input criteria
Scrapes a page of ZipRecruiter for jobs with scraper_input criteria.
:param scraper_input:
:param continue_token:
:return: jobs found on page
:return: jobs found on page.
"""
jobs_list = []
params = add_params(scraper_input)
@ -123,7 +129,7 @@ class ZipRecruiter(Scraper):
def _process_job(self, job: dict) -> JobPost | None:
"""
Processes an individual job dict from the response
Processes an individual job dict from the response.
"""
title = job.get("name")
job_url = f"{self.base_url}/jobs//j?lvk={job['listing_key']}"
@ -184,16 +190,16 @@ class ZipRecruiter(Scraper):
job_descr_div = soup.find("div", class_="job_description")
company_descr_section = soup.find("section", class_="company_description")
job_description_clean = (
remove_attributes(job_descr_div).prettify(formatter="html")
remove_attributes(job_descr_div).get_text(separator="\n", strip=True)
if job_descr_div
else ""
)
company_description_clean = (
remove_attributes(company_descr_section).prettify(formatter="html")
remove_attributes(company_descr_section).get_text(separator="\n", strip=True)
if company_descr_section
else ""
)
description_full = job_description_clean + company_description_clean
description_full = job_description_clean + "\n" + company_description_clean
try:
script_tag = soup.find("script", type="application/json")

File diff suppressed because one or more lines are too long