mirror of https://github.com/Bunsly/JobSpy
feat: add naukri.com support (#259)
parent
051981689f
commit
0946cb3373
13
README.md
13
README.md
|
@ -4,7 +4,7 @@
|
|||
|
||||
## Features
|
||||
|
||||
- Scrapes job postings from **LinkedIn**, **Indeed**, **Glassdoor**, **Google**, **ZipRecruiter**, & **Bayt** concurrently
|
||||
- Scrapes job postings from **LinkedIn**, **Indeed**, **Glassdoor**, **Google**, **ZipRecruiter**, **Bayt** & **Naukri** concurrently
|
||||
- Aggregates the job postings in a dataframe
|
||||
- Proxies support to bypass blocking
|
||||
|
||||
|
@ -25,7 +25,7 @@ import csv
|
|||
from jobspy import scrape_jobs
|
||||
|
||||
jobs = scrape_jobs(
|
||||
site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor", "google", "bayt"],
|
||||
site_name=["indeed", "linkedin", "zip_recruiter", "glassdoor", "google", "bayt", "naukri"],
|
||||
search_term="software engineer",
|
||||
google_search_term="software engineer jobs near San Francisco, CA since yesterday",
|
||||
location="San Francisco, CA",
|
||||
|
@ -51,6 +51,7 @@ linkedin Software Engineer - Early Career Lockheed Martin Sunnyvale
|
|||
linkedin Full-Stack Software Engineer Rain New York NY fulltime yearly None None https://www.linkedin.com/jobs/view/3696158877 Rain’s mission is to create the fastest and ea...
|
||||
zip_recruiter Software Engineer - New Grad ZipRecruiter Santa Monica CA fulltime yearly 130000 150000 https://www.ziprecruiter.com/jobs/ziprecruiter... We offer a hybrid work environment. Most US-ba...
|
||||
zip_recruiter Software Developer TEKsystems Phoenix AZ fulltime hourly 65 75 https://www.ziprecruiter.com/jobs/teksystems-0... Top Skills' Details• 6 years of Java developme...
|
||||
|
||||
```
|
||||
|
||||
### Parameters for `scrape_jobs()`
|
||||
|
@ -245,4 +246,12 @@ Indeed specific
|
|||
├── company_revenue_label
|
||||
├── company_description
|
||||
└── company_logo
|
||||
|
||||
Naukri specific
|
||||
├── skills
|
||||
├── experience_range
|
||||
├── company_rating
|
||||
├── company_reviews_count
|
||||
├── vacancy_count
|
||||
└── work_from_home_type
|
||||
```
|
||||
|
|
|
@ -10,6 +10,7 @@ from jobspy.glassdoor import Glassdoor
|
|||
from jobspy.google import Google
|
||||
from jobspy.indeed import Indeed
|
||||
from jobspy.linkedin import LinkedIn
|
||||
from jobspy.naukri import Naukri
|
||||
from jobspy.model import JobType, Location, JobResponse, Country
|
||||
from jobspy.model import SalarySource, ScraperInput, Site
|
||||
from jobspy.util import (
|
||||
|
@ -57,6 +58,7 @@ def scrape_jobs(
|
|||
Site.GLASSDOOR: Glassdoor,
|
||||
Site.GOOGLE: Google,
|
||||
Site.BAYT: BaytScraper,
|
||||
Site.NAUKRI: Naukri,
|
||||
}
|
||||
set_logger_level(verbose)
|
||||
job_type = get_enum_from_value(job_type) if job_type else None
|
||||
|
@ -139,6 +141,7 @@ def scrape_jobs(
|
|||
**job_data["location"]
|
||||
).display_location()
|
||||
|
||||
# Handle compensation
|
||||
compensation_obj = job_data.get("compensation")
|
||||
if compensation_obj and isinstance(compensation_obj, dict):
|
||||
job_data["interval"] = (
|
||||
|
@ -157,7 +160,6 @@ def scrape_jobs(
|
|||
and job_data["max_amount"]
|
||||
):
|
||||
convert_to_annual(job_data)
|
||||
|
||||
else:
|
||||
if country_enum == Country.USA:
|
||||
(
|
||||
|
@ -176,6 +178,17 @@ def scrape_jobs(
|
|||
if "min_amount" in job_data and job_data["min_amount"]
|
||||
else None
|
||||
)
|
||||
|
||||
#naukri-specific fields
|
||||
job_data["skills"] = (
|
||||
", ".join(job_data["skills"]) if job_data["skills"] else None
|
||||
)
|
||||
job_data["experience_range"] = job_data.get("experience_range")
|
||||
job_data["company_rating"] = job_data.get("company_rating")
|
||||
job_data["company_reviews_count"] = job_data.get("company_reviews_count")
|
||||
job_data["vacancy_count"] = job_data.get("vacancy_count")
|
||||
job_data["work_from_home_type"] = job_data.get("work_from_home_type")
|
||||
|
||||
job_df = pd.DataFrame([job_data])
|
||||
jobs_dfs.append(job_df)
|
||||
|
||||
|
@ -199,4 +212,4 @@ def scrape_jobs(
|
|||
by=["site", "date_posted"], ascending=[True, False]
|
||||
).reset_index(drop=True)
|
||||
else:
|
||||
return pd.DataFrame()
|
||||
return pd.DataFrame()
|
|
@ -34,3 +34,7 @@ class GoogleJobsException(Exception):
|
|||
class BaytException(Exception):
|
||||
def __init__(self, message=None):
|
||||
super().__init__(message or "An error occurred with Bayt")
|
||||
|
||||
class NaukriException(Exception):
|
||||
def __init__(self,message=None):
|
||||
super().__init__(message or "An error occurred with Naukri")
|
|
@ -254,13 +254,13 @@ class JobPost(BaseModel):
|
|||
is_remote: bool | None = None
|
||||
listing_type: str | None = None
|
||||
|
||||
# linkedin specific
|
||||
# LinkedIn specific
|
||||
job_level: str | None = None
|
||||
|
||||
# linkedin and indeed specific
|
||||
# LinkedIn and Indeed specific
|
||||
company_industry: str | None = None
|
||||
|
||||
# indeed specific
|
||||
# Indeed specific
|
||||
company_addresses: str | None = None
|
||||
company_num_employees: str | None = None
|
||||
company_revenue: str | None = None
|
||||
|
@ -268,9 +268,16 @@ class JobPost(BaseModel):
|
|||
company_logo: str | None = None
|
||||
banner_photo_url: str | None = None
|
||||
|
||||
# linkedin only atm
|
||||
# LinkedIn only atm
|
||||
job_function: str | None = None
|
||||
|
||||
# Naukri specific
|
||||
skills: list[str] | None = None #from tagsAndSkills
|
||||
experience_range: str | None = None #from experienceText
|
||||
company_rating: float | None = None #from ambitionBoxData.AggregateRating
|
||||
company_reviews_count: int | None = None #from ambitionBoxData.ReviewsCount
|
||||
vacancy_count: int | None = None #from vacancy
|
||||
work_from_home_type: str | None = None #from clusters.wfhType (e.g., "Hybrid", "Remote")
|
||||
|
||||
class JobResponse(BaseModel):
|
||||
jobs: list[JobPost] = []
|
||||
|
@ -283,6 +290,7 @@ class Site(Enum):
|
|||
GLASSDOOR = "glassdoor"
|
||||
GOOGLE = "google"
|
||||
BAYT = "bayt"
|
||||
NAUKRI = "naukri"
|
||||
|
||||
|
||||
class SalarySource(Enum):
|
||||
|
|
|
@ -0,0 +1,301 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import random
|
||||
import time
|
||||
from datetime import datetime, date
|
||||
from typing import Optional
|
||||
|
||||
import regex as re
|
||||
import requests
|
||||
|
||||
from jobspy.exception import NaukriException
|
||||
from jobspy.naukri.constant import headers as naukri_headers
|
||||
from jobspy.naukri.util import (
|
||||
is_job_remote,
|
||||
parse_job_type,
|
||||
parse_company_industry,
|
||||
)
|
||||
from jobspy.model import (
|
||||
JobPost,
|
||||
Location,
|
||||
JobResponse,
|
||||
Country,
|
||||
Compensation,
|
||||
DescriptionFormat,
|
||||
Scraper,
|
||||
ScraperInput,
|
||||
Site,
|
||||
)
|
||||
from jobspy.util import (
|
||||
extract_emails_from_text,
|
||||
currency_parser,
|
||||
markdown_converter,
|
||||
create_session,
|
||||
create_logger,
|
||||
)
|
||||
|
||||
log = create_logger("Naukri")
|
||||
|
||||
class Naukri(Scraper):
|
||||
base_url = "https://www.naukri.com/jobapi/v3/search"
|
||||
delay = 3
|
||||
band_delay = 4
|
||||
jobs_per_page = 20
|
||||
|
||||
def __init__(
|
||||
self, proxies: list[str] | str | None = None, ca_cert: str | None = None
|
||||
):
|
||||
"""
|
||||
Initializes NaukriScraper with the Naukri API URL
|
||||
"""
|
||||
super().__init__(Site.NAUKRI, proxies=proxies, ca_cert=ca_cert)
|
||||
self.session = create_session(
|
||||
proxies=self.proxies,
|
||||
ca_cert=ca_cert,
|
||||
is_tls=False,
|
||||
has_retry=True,
|
||||
delay=5,
|
||||
clear_cookies=True,
|
||||
)
|
||||
self.session.headers.update(naukri_headers)
|
||||
self.scraper_input = None
|
||||
self.country = "India" #naukri is india-focused by default
|
||||
log.info("Naukri scraper initialized")
|
||||
|
||||
def scrape(self, scraper_input: ScraperInput) -> JobResponse:
|
||||
"""
|
||||
Scrapes Naukri API for jobs with scraper_input criteria
|
||||
:param scraper_input:
|
||||
:return: job_response
|
||||
"""
|
||||
self.scraper_input = scraper_input
|
||||
job_list: list[JobPost] = []
|
||||
seen_ids = set()
|
||||
start = scraper_input.offset or 0
|
||||
page = (start // self.jobs_per_page) + 1
|
||||
request_count = 0
|
||||
seconds_old = (
|
||||
scraper_input.hours_old * 3600 if scraper_input.hours_old else None
|
||||
)
|
||||
continue_search = (
|
||||
lambda: len(job_list) < scraper_input.results_wanted and page <= 50 # Arbitrary limit
|
||||
)
|
||||
|
||||
while continue_search():
|
||||
request_count += 1
|
||||
log.info(
|
||||
f"Scraping page {request_count} / {math.ceil(scraper_input.results_wanted / self.jobs_per_page)} "
|
||||
f"for search term: {scraper_input.search_term}"
|
||||
)
|
||||
params = {
|
||||
"noOfResults": self.jobs_per_page,
|
||||
"urlType": "search_by_keyword",
|
||||
"searchType": "adv",
|
||||
"keyword": scraper_input.search_term,
|
||||
"pageNo": page,
|
||||
"k": scraper_input.search_term,
|
||||
"seoKey": f"{scraper_input.search_term.lower().replace(' ', '-')}-jobs",
|
||||
"src": "jobsearchDesk",
|
||||
"latLong": "",
|
||||
"location": scraper_input.location,
|
||||
"remote": "true" if scraper_input.is_remote else None,
|
||||
}
|
||||
if seconds_old:
|
||||
params["days"] = seconds_old // 86400 # Convert to days
|
||||
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
try:
|
||||
log.debug(f"Sending request to {self.base_url} with params: {params}")
|
||||
response = self.session.get(self.base_url, params=params, timeout=10)
|
||||
if response.status_code not in range(200, 400):
|
||||
err = f"Naukri API response status code {response.status_code} - {response.text}"
|
||||
log.error(err)
|
||||
return JobResponse(jobs=job_list)
|
||||
data = response.json()
|
||||
job_details = data.get("jobDetails", [])
|
||||
log.info(f"Received {len(job_details)} job entries from API")
|
||||
if not job_details:
|
||||
log.warning("No job details found in API response")
|
||||
break
|
||||
except Exception as e:
|
||||
log.error(f"Naukri API request failed: {str(e)}")
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
for job in job_details:
|
||||
job_id = job.get("jobId")
|
||||
if not job_id or job_id in seen_ids:
|
||||
continue
|
||||
seen_ids.add(job_id)
|
||||
log.debug(f"Processing job ID: {job_id}")
|
||||
|
||||
try:
|
||||
fetch_desc = scraper_input.linkedin_fetch_description
|
||||
job_post = self._process_job(job, job_id, fetch_desc)
|
||||
if job_post:
|
||||
job_list.append(job_post)
|
||||
log.info(f"Added job: {job_post.title} (ID: {job_id})")
|
||||
if not continue_search():
|
||||
break
|
||||
except Exception as e:
|
||||
log.error(f"Error processing job ID {job_id}: {str(e)}")
|
||||
raise NaukriException(str(e))
|
||||
|
||||
if continue_search():
|
||||
time.sleep(random.uniform(self.delay, self.delay + self.band_delay))
|
||||
page += 1
|
||||
|
||||
job_list = job_list[:scraper_input.results_wanted]
|
||||
log.info(f"Scraping completed. Total jobs collected: {len(job_list)}")
|
||||
return JobResponse(jobs=job_list)
|
||||
|
||||
def _process_job(
|
||||
self, job: dict, job_id: str, full_descr: bool
|
||||
) -> Optional[JobPost]:
|
||||
"""
|
||||
Processes a single job from API response into a JobPost object
|
||||
"""
|
||||
title = job.get("title", "N/A")
|
||||
company = job.get("companyName", "N/A")
|
||||
company_url = f"https://www.naukri.com/{job.get('staticUrl', '')}" if job.get("staticUrl") else None
|
||||
|
||||
location = self._get_location(job.get("placeholders", []))
|
||||
compensation = self._get_compensation(job.get("placeholders", []))
|
||||
date_posted = self._parse_date(job.get("footerPlaceholderLabel"), job.get("createdDate"))
|
||||
|
||||
job_url = f"https://www.naukri.com{job.get('jdURL', f'/job/{job_id}')}"
|
||||
description = job.get("jobDescription") if full_descr else None
|
||||
if description and self.scraper_input.description_format == DescriptionFormat.MARKDOWN:
|
||||
description = markdown_converter(description)
|
||||
|
||||
job_type = parse_job_type(description) if description else None
|
||||
company_industry = parse_company_industry(description) if description else None
|
||||
is_remote = is_job_remote(title, description or "", location)
|
||||
company_logo = job.get("logoPathV3") or job.get("logoPath")
|
||||
|
||||
# Naukri-specific fields
|
||||
skills = job.get("tagsAndSkills", "").split(",") if job.get("tagsAndSkills") else None
|
||||
experience_range = job.get("experienceText")
|
||||
ambition_box = job.get("ambitionBoxData", {})
|
||||
company_rating = float(ambition_box.get("AggregateRating")) if ambition_box.get("AggregateRating") else None
|
||||
company_reviews_count = ambition_box.get("ReviewsCount")
|
||||
vacancy_count = job.get("vacancy")
|
||||
work_from_home_type = self._infer_work_from_home_type(job.get("placeholders", []), title, description or "")
|
||||
|
||||
job_post = JobPost(
|
||||
id=f"nk-{job_id}",
|
||||
title=title,
|
||||
company_name=company,
|
||||
company_url=company_url,
|
||||
location=location,
|
||||
is_remote=is_remote,
|
||||
date_posted=date_posted,
|
||||
job_url=job_url,
|
||||
compensation=compensation,
|
||||
job_type=job_type,
|
||||
company_industry=company_industry,
|
||||
description=description,
|
||||
emails=extract_emails_from_text(description or ""),
|
||||
company_logo=company_logo,
|
||||
skills=skills,
|
||||
experience_range=experience_range,
|
||||
company_rating=company_rating,
|
||||
company_reviews_count=company_reviews_count,
|
||||
vacancy_count=vacancy_count,
|
||||
work_from_home_type=work_from_home_type,
|
||||
)
|
||||
log.debug(f"Processed job: {title} at {company}")
|
||||
return job_post
|
||||
|
||||
def _get_location(self, placeholders: list[dict]) -> Location:
|
||||
"""
|
||||
Extracts location data from placeholders
|
||||
"""
|
||||
location = Location(country=Country.INDIA)
|
||||
for placeholder in placeholders:
|
||||
if placeholder.get("type") == "location":
|
||||
location_str = placeholder.get("label", "")
|
||||
parts = location_str.split(", ")
|
||||
city = parts[0] if parts else None
|
||||
state = parts[1] if len(parts) > 1 else None
|
||||
location = Location(city=city, state=state, country=Country.INDIA)
|
||||
log.debug(f"Parsed location: {location.display_location()}")
|
||||
break
|
||||
return location
|
||||
|
||||
def _get_compensation(self, placeholders: list[dict]) -> Optional[Compensation]:
|
||||
"""
|
||||
Extracts compensation data from placeholders, handling Indian salary formats (Lakhs, Crores)
|
||||
"""
|
||||
for placeholder in placeholders:
|
||||
if placeholder.get("type") == "salary":
|
||||
salary_text = placeholder.get("label", "").strip()
|
||||
if salary_text == "Not disclosed":
|
||||
log.debug("Salary not disclosed")
|
||||
return None
|
||||
|
||||
# Handle Indian salary formats (e.g., "12-16 Lacs P.A.", "1-5 Cr")
|
||||
salary_match = re.match(r"(\d+(?:\.\d+)?)\s*-\s*(\d+(?:\.\d+)?)\s*(Lacs|Lakh|Cr)\s*(P\.A\.)?", salary_text, re.IGNORECASE)
|
||||
if salary_match:
|
||||
min_salary, max_salary, unit = salary_match.groups()[:3]
|
||||
min_salary, max_salary = float(min_salary), float(max_salary)
|
||||
currency = "INR"
|
||||
|
||||
# Convert to base units (INR)
|
||||
if unit.lower() in ("lacs", "lakh"):
|
||||
min_salary *= 100000 # 1 Lakh = 100,000 INR
|
||||
max_salary *= 100000
|
||||
elif unit.lower() == "cr":
|
||||
min_salary *= 10000000 # 1 Crore = 10,000,000 INR
|
||||
max_salary *= 10000000
|
||||
|
||||
log.debug(f"Parsed salary: {min_salary} - {max_salary} INR")
|
||||
return Compensation(
|
||||
min_amount=int(min_salary),
|
||||
max_amount=int(max_salary),
|
||||
currency=currency,
|
||||
)
|
||||
else:
|
||||
log.debug(f"Could not parse salary: {salary_text}")
|
||||
return None
|
||||
return None
|
||||
|
||||
def _parse_date(self, label: str, created_date: int) -> Optional[date]:
|
||||
"""
|
||||
Parses date from footerPlaceholderLabel or createdDate, returning a date object
|
||||
"""
|
||||
today = datetime.now()
|
||||
if not label:
|
||||
if created_date:
|
||||
return datetime.fromtimestamp(created_date / 1000).date() # Convert to date
|
||||
return None
|
||||
label = label.lower()
|
||||
if "today" in label or "just now" in label or "few hours" in label:
|
||||
log.debug("Date parsed as today")
|
||||
return today.date()
|
||||
elif "ago" in label:
|
||||
match = re.search(r"(\d+)\s*day", label)
|
||||
if match:
|
||||
days = int(match.group(1))
|
||||
parsed_date = today.replace(day=today.day - days).date()
|
||||
log.debug(f"Date parsed: {days} days ago -> {parsed_date}")
|
||||
return parsed_date
|
||||
elif created_date:
|
||||
parsed_date = datetime.fromtimestamp(created_date / 1000).date()
|
||||
log.debug(f"Date parsed from timestamp: {parsed_date}")
|
||||
return parsed_date
|
||||
log.debug("No date parsed")
|
||||
return None
|
||||
|
||||
def _infer_work_from_home_type(self, placeholders: list[dict], title: str, description: str) -> Optional[str]:
|
||||
"""
|
||||
Infers work-from-home type from job data (e.g., 'Hybrid', 'Remote', 'Work from office')
|
||||
"""
|
||||
location_str = next((p["label"] for p in placeholders if p["type"] == "location"), "").lower()
|
||||
if "hybrid" in location_str or "hybrid" in title.lower() or "hybrid" in description.lower():
|
||||
return "Hybrid"
|
||||
elif "remote" in location_str or "remote" in title.lower() or "remote" in description.lower():
|
||||
return "Remote"
|
||||
elif "work from office" in description.lower() or not ("remote" in description.lower() or "hybrid" in description.lower()):
|
||||
return "Work from office"
|
||||
return None
|
|
@ -0,0 +1,11 @@
|
|||
headers = {
|
||||
"authority": "www.naukri.com",
|
||||
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "max-age=0",
|
||||
"upgrade-insecure-requests": "1",
|
||||
"appid": "109",
|
||||
"systemid": "Naukri",
|
||||
"Nkparam": "Ppy0YK9uSHqPtG3bEejYc04RTpUN2CjJOrqA68tzQt0SKJHXZKzz9M8cZtKLVkoOuQmfe4cTb1r2CwfHaxW5Tg==",
|
||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
|
||||
}
|
|
@ -0,0 +1,34 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
from jobspy.model import JobType, Location
|
||||
from jobspy.util import get_enum_from_job_type
|
||||
|
||||
|
||||
def parse_job_type(soup: BeautifulSoup) -> list[JobType] | None:
|
||||
"""
|
||||
Gets the job type from the job page
|
||||
"""
|
||||
job_type_tag = soup.find("span", class_="job-type")
|
||||
if job_type_tag:
|
||||
job_type_str = job_type_tag.get_text(strip=True).lower().replace("-", "")
|
||||
return [get_enum_from_job_type(job_type_str)] if job_type_str else None
|
||||
return None
|
||||
|
||||
|
||||
def parse_company_industry(soup: BeautifulSoup) -> str | None:
|
||||
"""
|
||||
Gets the company industry from the job page
|
||||
"""
|
||||
industry_tag = soup.find("span", class_="industry")
|
||||
return industry_tag.get_text(strip=True) if industry_tag else None
|
||||
|
||||
|
||||
def is_job_remote(title: str, description: str, location: Location) -> bool:
|
||||
"""
|
||||
Searches the title, description, and location to check if the job is remote
|
||||
"""
|
||||
remote_keywords = ["remote", "work from home", "wfh"]
|
||||
location_str = location.display_location()
|
||||
full_string = f"{title} {description} {location_str}".lower()
|
||||
return any(keyword in full_string for keyword in remote_keywords)
|
|
@ -344,4 +344,11 @@ desired_order = [
|
|||
"company_num_employees",
|
||||
"company_revenue",
|
||||
"company_description",
|
||||
#naukri-specific fields
|
||||
"skills",
|
||||
"experience_range",
|
||||
"company_rating",
|
||||
"company_reviews_count",
|
||||
"vacancy_count",
|
||||
"work_from_home_type",
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue