HomeHarvest/homeharvest/__init__.py

72 lines
3.2 KiB
Python

import warnings
import pandas as pd
from .core.scrapers import ScraperInput
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
from .core.scrapers.realtor import RealtorScraper
from .core.scrapers.models import ListingType, SearchPropertyType
def scrape_property(
location: str,
listing_type: str = "for_sale",
property_type: list[str] | None = None,
radius: float = None,
mls_only: bool = False,
past_days: int = None,
proxy: str = None,
date_from: str = None, #: TODO: Switch to one parameter, Date, with date_from and date_to, pydantic validation
date_to: str = None,
foreclosure: bool = None,
extra_property_data: bool = True,
exclude_pending: bool = False,
limit: int = 10000,
) -> pd.DataFrame:
"""
Scrape properties from Realtor.com based on a given location and listing type.
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
:param mls_only: If set, fetches only listings with MLS IDs.
:param proxy: Proxy to use for scraping
:param past_days: Get properties sold or listed (dependent on your listing_type) in the last _ days.
:param date_from, date_to: Get properties sold or listed (dependent on your listing_type) between these dates. format: 2021-01-28
:param foreclosure: If set, fetches only foreclosure listings.
:param extra_property_data: Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
:param exclude_pending: If true, this excludes pending or contingent properties from the results, unless listing type is pending.
:param limit: Limit the number of results returned. Maximum is 10,000.
"""
validate_input(listing_type)
validate_dates(date_from, date_to)
validate_limit(limit)
scraper_input = ScraperInput(
location=location,
listing_type=ListingType[listing_type.upper()],
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
proxy=proxy,
radius=radius,
mls_only=mls_only,
last_x_days=past_days,
date_from=date_from,
date_to=date_to,
foreclosure=foreclosure,
extra_property_data=extra_property_data,
exclude_pending=exclude_pending,
limit=limit,
)
site = RealtorScraper(scraper_input)
results = site.search()
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
if not properties_dfs:
return pd.DataFrame()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
{"None": pd.NA, None: pd.NA, "": pd.NA}
)