from __future__ import annotations import pandas as pd from datetime import datetime from .core.scrapers.models import Property, ListingType, Advertisers from .exceptions import InvalidListingType, InvalidDate ordered_properties = [ "property_url", "property_id", "listing_id", "mls", "mls_id", "status", "text", "style", "full_street_line", "street", "unit", "city", "state", "zip_code", "beds", "full_baths", "half_baths", "sqft", "year_built", "days_on_mls", "list_price", "list_price_min", "list_price_max", "list_date", "sold_price", "last_sold_date", "assessed_value", "estimated_value", "tax", "tax_history", "new_construction", "lot_sqft", "price_per_sqft", "latitude", "longitude", "neighborhoods", "county", "fips_code", "stories", "hoa_fee", "parking_garage", "agent_id", "agent_name", "agent_email", "agent_phones", "agent_mls_set", "agent_nrds_id", "broker_id", "broker_name", "builder_id", "builder_name", "office_id", "office_mls_set", "office_name", "office_email", "office_phones", "nearby_schools", "primary_photo", "alt_photos", ] def process_result(result: Property) -> pd.DataFrame: prop_data = {prop: None for prop in ordered_properties} prop_data.update(result.__dict__) if "address" in prop_data: address_data = prop_data["address"] prop_data["full_street_line"] = address_data.full_line prop_data["street"] = address_data.street prop_data["unit"] = address_data.unit prop_data["city"] = address_data.city prop_data["state"] = address_data.state prop_data["zip_code"] = address_data.zip if "advertisers" in prop_data and prop_data.get("advertisers"): advertiser_data: Advertisers | None = prop_data["advertisers"] if advertiser_data.agent: agent_data = advertiser_data.agent prop_data["agent_id"] = agent_data.uuid prop_data["agent_name"] = agent_data.name prop_data["agent_email"] = agent_data.email prop_data["agent_phones"] = agent_data.phones prop_data["agent_mls_set"] = agent_data.mls_set prop_data["agent_nrds_id"] = agent_data.nrds_id if advertiser_data.broker: broker_data = advertiser_data.broker prop_data["broker_id"] = broker_data.uuid prop_data["broker_name"] = broker_data.name if advertiser_data.builder: builder_data = advertiser_data.builder prop_data["builder_id"] = builder_data.uuid prop_data["builder_name"] = builder_data.name if advertiser_data.office: office_data = advertiser_data.office prop_data["office_id"] = office_data.uuid prop_data["office_name"] = office_data.name prop_data["office_email"] = office_data.email prop_data["office_phones"] = office_data.phones prop_data["office_mls_set"] = office_data.mls_set prop_data["price_per_sqft"] = prop_data["prc_sqft"] prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None prop_data["nearby_schools"] = ", ".join(set(prop_data["nearby_schools"])) if prop_data["nearby_schools"] else None description = result.description if description: prop_data["primary_photo"] = description.primary_photo prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None prop_data["style"] = ( description.style if isinstance(description.style, str) else description.style.value if description.style else None ) prop_data["beds"] = description.beds prop_data["full_baths"] = description.baths_full prop_data["half_baths"] = description.baths_half prop_data["sqft"] = description.sqft prop_data["lot_sqft"] = description.lot_sqft prop_data["sold_price"] = description.sold_price prop_data["year_built"] = description.year_built prop_data["parking_garage"] = description.garage prop_data["stories"] = description.stories prop_data["text"] = description.text properties_df = pd.DataFrame([prop_data]) properties_df = properties_df.reindex(columns=ordered_properties) return properties_df[ordered_properties] def validate_input(listing_type: str) -> None: if listing_type.upper() not in ListingType.__members__: raise InvalidListingType(f"Provided listing type, '{listing_type}', does not exist.") def validate_dates(date_from: str | None, date_to: str | None) -> None: if isinstance(date_from, str) != isinstance(date_to, str): raise InvalidDate("Both date_from and date_to must be provided.") if date_from and date_to: try: date_from_obj = datetime.strptime(date_from, "%Y-%m-%d") date_to_obj = datetime.strptime(date_to, "%Y-%m-%d") if date_to_obj < date_from_obj: raise InvalidDate("date_to must be after date_from.") except ValueError: raise InvalidDate(f"Invalid date format or range") def validate_limit(limit: int) -> None: #: 1 -> 10000 limit if limit is not None and (limit < 1 or limit > 10000): raise ValueError("Property limit must be between 1 and 10,000.")