Compare commits
3 Commits
Author | SHA1 | Date |
---|---|---|
|
e378feeefe | |
|
8a5683fe79 | |
|
65f799a27d |
11
README.md
11
README.md
|
@ -2,10 +2,6 @@
|
||||||
|
|
||||||
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
|
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings.
|
||||||
|
|
||||||
**Not technical?** Try out the web scraping tool on our site at [tryhomeharvest.com](https://tryhomeharvest.com).
|
|
||||||
|
|
||||||
*Looking to build a data-focused software product?* **[Book a call](https://bunsly.com)** *to work with us.*
|
|
||||||
|
|
||||||
## HomeHarvest Features
|
## HomeHarvest Features
|
||||||
|
|
||||||
- **Source**: Fetches properties directly from **Realtor.com**.
|
- **Source**: Fetches properties directly from **Realtor.com**.
|
||||||
|
@ -87,7 +83,12 @@ Optional
|
||||||
- 'farm'
|
- 'farm'
|
||||||
- 'land'
|
- 'land'
|
||||||
- 'mobile'
|
- 'mobile'
|
||||||
|
│
|
||||||
|
├── return_type (option): Choose the return type.
|
||||||
|
│ - 'pandas' (default)
|
||||||
|
│ - 'pydantic'
|
||||||
|
│ - 'raw' (json)
|
||||||
|
│
|
||||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||||
│
|
│
|
||||||
|
|
|
@ -3,12 +3,13 @@ import pandas as pd
|
||||||
from .core.scrapers import ScraperInput
|
from .core.scrapers import ScraperInput
|
||||||
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
||||||
from .core.scrapers.realtor import RealtorScraper
|
from .core.scrapers.realtor import RealtorScraper
|
||||||
from .core.scrapers.models import ListingType, SearchPropertyType
|
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property
|
||||||
|
|
||||||
|
|
||||||
def scrape_property(
|
def scrape_property(
|
||||||
location: str,
|
location: str,
|
||||||
listing_type: str = "for_sale",
|
listing_type: str = "for_sale",
|
||||||
|
return_type: str = "pandas",
|
||||||
property_type: list[str] | None = None,
|
property_type: list[str] | None = None,
|
||||||
radius: float = None,
|
radius: float = None,
|
||||||
mls_only: bool = False,
|
mls_only: bool = False,
|
||||||
|
@ -19,12 +20,13 @@ def scrape_property(
|
||||||
foreclosure: bool = None,
|
foreclosure: bool = None,
|
||||||
extra_property_data: bool = True,
|
extra_property_data: bool = True,
|
||||||
exclude_pending: bool = False,
|
exclude_pending: bool = False,
|
||||||
limit: int = 10000,
|
limit: int = 10000
|
||||||
) -> pd.DataFrame:
|
) -> pd.DataFrame | list[dict] | list[Property]:
|
||||||
"""
|
"""
|
||||||
Scrape properties from Realtor.com based on a given location and listing type.
|
Scrape properties from Realtor.com based on a given location and listing type.
|
||||||
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
||||||
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
||||||
|
:param return_type: Return type (pandas, pydantic, raw)
|
||||||
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
||||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||||
|
@ -42,7 +44,8 @@ def scrape_property(
|
||||||
|
|
||||||
scraper_input = ScraperInput(
|
scraper_input = ScraperInput(
|
||||||
location=location,
|
location=location,
|
||||||
listing_type=ListingType[listing_type.upper()],
|
listing_type=ListingType(listing_type.upper()),
|
||||||
|
return_type=ReturnType(return_type.lower()),
|
||||||
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
||||||
proxy=proxy,
|
proxy=proxy,
|
||||||
radius=radius,
|
radius=radius,
|
||||||
|
@ -59,6 +62,9 @@ def scrape_property(
|
||||||
site = RealtorScraper(scraper_input)
|
site = RealtorScraper(scraper_input)
|
||||||
results = site.search()
|
results = site.search()
|
||||||
|
|
||||||
|
if scraper_input.return_type != ReturnType.pandas:
|
||||||
|
return results
|
||||||
|
|
||||||
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
|
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
|
||||||
if not properties_dfs:
|
if not properties_dfs:
|
||||||
return pd.DataFrame()
|
return pd.DataFrame()
|
||||||
|
|
|
@ -1,11 +1,13 @@
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
from requests.adapters import HTTPAdapter
|
from requests.adapters import HTTPAdapter
|
||||||
from urllib3.util.retry import Retry
|
from urllib3.util.retry import Retry
|
||||||
import uuid
|
import uuid
|
||||||
from ...exceptions import AuthenticationError
|
from ...exceptions import AuthenticationError
|
||||||
from .models import Property, ListingType, SiteName, SearchPropertyType
|
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
@ -24,6 +26,7 @@ class ScraperInput:
|
||||||
extra_property_data: bool | None = True
|
extra_property_data: bool | None = True
|
||||||
exclude_pending: bool | None = False
|
exclude_pending: bool | None = False
|
||||||
limit: int = 10000
|
limit: int = 10000
|
||||||
|
return_type: ReturnType = ReturnType.pandas
|
||||||
|
|
||||||
|
|
||||||
class Scraper:
|
class Scraper:
|
||||||
|
@ -81,8 +84,9 @@ class Scraper:
|
||||||
self.extra_property_data = scraper_input.extra_property_data
|
self.extra_property_data = scraper_input.extra_property_data
|
||||||
self.exclude_pending = scraper_input.exclude_pending
|
self.exclude_pending = scraper_input.exclude_pending
|
||||||
self.limit = scraper_input.limit
|
self.limit = scraper_input.limit
|
||||||
|
self.return_type = scraper_input.return_type
|
||||||
|
|
||||||
def search(self) -> list[Property]: ...
|
def search(self) -> list[Union[Property | dict]]: ...
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _parse_home(home) -> Property: ...
|
def _parse_home(home) -> Property: ...
|
||||||
|
|
|
@ -4,6 +4,12 @@ from enum import Enum
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
|
||||||
|
class ReturnType(Enum):
|
||||||
|
pydantic = "pydantic"
|
||||||
|
pandas = "pandas"
|
||||||
|
raw = "raw"
|
||||||
|
|
||||||
|
|
||||||
class SiteName(Enum):
|
class SiteName(Enum):
|
||||||
ZILLOW = "zillow"
|
ZILLOW = "zillow"
|
||||||
REDFIN = "redfin"
|
REDFIN = "redfin"
|
||||||
|
@ -19,6 +25,7 @@ class SiteName(Enum):
|
||||||
|
|
||||||
class SearchPropertyType(Enum):
|
class SearchPropertyType(Enum):
|
||||||
SINGLE_FAMILY = "single_family"
|
SINGLE_FAMILY = "single_family"
|
||||||
|
APARTMENT = "apartment"
|
||||||
CONDOS = "condos"
|
CONDOS = "condos"
|
||||||
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
|
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
|
||||||
CONDO_TOWNHOME = "condo_townhome"
|
CONDO_TOWNHOME = "condo_townhome"
|
||||||
|
@ -148,6 +155,9 @@ class Property:
|
||||||
property_url: str
|
property_url: str
|
||||||
|
|
||||||
property_id: str
|
property_id: str
|
||||||
|
#: allows_cats: bool
|
||||||
|
#: allows_dogs: bool
|
||||||
|
|
||||||
listing_id: str | None = None
|
listing_id: str | None = None
|
||||||
|
|
||||||
mls: str | None = None
|
mls: str | None = None
|
||||||
|
@ -167,6 +177,8 @@ class Property:
|
||||||
hoa_fee: int | None = None
|
hoa_fee: int | None = None
|
||||||
days_on_mls: int | None = None
|
days_on_mls: int | None = None
|
||||||
description: Description | None = None
|
description: Description | None = None
|
||||||
|
tags: list[str] | None = None
|
||||||
|
details: list[dict] | None = None
|
||||||
|
|
||||||
latitude: float | None = None
|
latitude: float | None = None
|
||||||
longitude: float | None = None
|
longitude: float | None = None
|
||||||
|
|
|
@ -32,8 +32,9 @@ from ..models import (
|
||||||
Builder,
|
Builder,
|
||||||
Advertisers,
|
Advertisers,
|
||||||
Office,
|
Office,
|
||||||
|
ReturnType
|
||||||
)
|
)
|
||||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
|
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
|
||||||
|
|
||||||
|
|
||||||
class RealtorScraper(Scraper):
|
class RealtorScraper(Scraper):
|
||||||
|
@ -120,7 +121,7 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
property_info = response_json["data"]["home"]
|
property_info = response_json["data"]["home"]
|
||||||
|
|
||||||
return [self.process_property(property_info, "home")]
|
return [self.process_property(property_info)]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
||||||
|
@ -168,7 +169,7 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
return processed_advertisers
|
return processed_advertisers
|
||||||
|
|
||||||
def process_property(self, result: dict, query_name: str) -> Property | None:
|
def process_property(self, result: dict) -> Property | None:
|
||||||
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
||||||
|
|
||||||
if not mls and self.mls_only:
|
if not mls and self.mls_only:
|
||||||
|
@ -188,9 +189,7 @@ class RealtorScraper(Scraper):
|
||||||
return
|
return
|
||||||
|
|
||||||
property_id = result["property_id"]
|
property_id = result["property_id"]
|
||||||
prop_details = self.get_prop_details(property_id) if self.extra_property_data and query_name != "home" else {}
|
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
|
||||||
if not prop_details:
|
|
||||||
prop_details = self.process_extra_property_details(result)
|
|
||||||
|
|
||||||
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
||||||
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
||||||
|
@ -233,7 +232,7 @@ class RealtorScraper(Scraper):
|
||||||
)
|
)
|
||||||
return realty_property
|
return realty_property
|
||||||
|
|
||||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, list[Property]]]:
|
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]:
|
||||||
"""
|
"""
|
||||||
Handles a location area & returns a list of properties
|
Handles a location area & returns a list of properties
|
||||||
"""
|
"""
|
||||||
|
@ -258,7 +257,7 @@ class RealtorScraper(Scraper):
|
||||||
sort_param = (
|
sort_param = (
|
||||||
"sort: [{ field: sold_date, direction: desc }]"
|
"sort: [{ field: sold_date, direction: desc }]"
|
||||||
if self.listing_type == ListingType.SOLD
|
if self.listing_type == ListingType.SOLD
|
||||||
else "sort: [{ field: list_date, direction: desc }]"
|
else "" #: "sort: [{ field: list_date, direction: desc }]" #: prioritize normal fractal sort from realtor
|
||||||
)
|
)
|
||||||
|
|
||||||
pending_or_contingent_param = (
|
pending_or_contingent_param = (
|
||||||
|
@ -306,24 +305,20 @@ class RealtorScraper(Scraper):
|
||||||
)
|
)
|
||||||
elif search_type == "area": #: general search, came from a general location
|
elif search_type == "area": #: general search, came from a general location
|
||||||
query = """query Home_search(
|
query = """query Home_search(
|
||||||
$city: String,
|
$location: String!,
|
||||||
$county: [String],
|
|
||||||
$state_code: String,
|
|
||||||
$postal_code: String
|
|
||||||
$offset: Int,
|
$offset: Int,
|
||||||
) {
|
) {
|
||||||
home_search(
|
home_search(
|
||||||
query: {
|
query: {
|
||||||
%s
|
%s
|
||||||
city: $city
|
search_location: {location: $location}
|
||||||
county: $county
|
|
||||||
postal_code: $postal_code
|
|
||||||
state_code: $state_code
|
|
||||||
status: %s
|
status: %s
|
||||||
|
unique: true
|
||||||
%s
|
%s
|
||||||
%s
|
%s
|
||||||
%s
|
%s
|
||||||
}
|
}
|
||||||
|
bucket: { sort: "fractal_v1.1.3_fr" }
|
||||||
%s
|
%s
|
||||||
limit: 200
|
limit: 200
|
||||||
offset: $offset
|
offset: $offset
|
||||||
|
@ -363,7 +358,7 @@ class RealtorScraper(Scraper):
|
||||||
response_json = response.json()
|
response_json = response.json()
|
||||||
search_key = "home_search" if "home_search" in query else "property_search"
|
search_key = "home_search" if "home_search" in query else "property_search"
|
||||||
|
|
||||||
properties: list[Property] = []
|
properties: list[Union[Property, dict]] = []
|
||||||
|
|
||||||
if (
|
if (
|
||||||
response_json is None
|
response_json is None
|
||||||
|
@ -381,15 +376,25 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
#: limit the number of properties to be processed
|
#: limit the number of properties to be processed
|
||||||
#: example, if your offset is 200, and your limit is 250, return 50
|
#: example, if your offset is 200, and your limit is 250, return 50
|
||||||
properties_list = properties_list[: self.limit - offset]
|
properties_list: list[dict] = properties_list[: self.limit - offset]
|
||||||
|
|
||||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
if self.extra_property_data:
|
||||||
futures = [executor.submit(self.process_property, result, search_key) for result in properties_list]
|
property_ids = [data["property_id"] for data in properties_list]
|
||||||
|
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
|
||||||
|
|
||||||
for future in as_completed(futures):
|
for result in properties_list:
|
||||||
result = future.result()
|
result.update(extra_property_details.get(result["property_id"], {}))
|
||||||
if result:
|
|
||||||
properties.append(result)
|
if self.return_type != ReturnType.raw:
|
||||||
|
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||||
|
futures = [executor.submit(self.process_property, result) for result in properties_list]
|
||||||
|
|
||||||
|
for future in as_completed(futures):
|
||||||
|
result = future.result()
|
||||||
|
if result:
|
||||||
|
properties.append(result)
|
||||||
|
else:
|
||||||
|
properties = properties_list
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"total": total_properties,
|
"total": total_properties,
|
||||||
|
@ -434,10 +439,7 @@ class RealtorScraper(Scraper):
|
||||||
|
|
||||||
else: #: general search, location
|
else: #: general search, location
|
||||||
search_variables |= {
|
search_variables |= {
|
||||||
"city": location_info.get("city"),
|
"location": self.location,
|
||||||
"county": location_info.get("county"),
|
|
||||||
"state_code": location_info.get("state_code"),
|
|
||||||
"postal_code": location_info.get("postal_code"),
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if self.foreclosure:
|
if self.foreclosure:
|
||||||
|
@ -520,28 +522,35 @@ class RealtorScraper(Scraper):
|
||||||
wait=wait_exponential(min=4, max=10),
|
wait=wait_exponential(min=4, max=10),
|
||||||
stop=stop_after_attempt(3),
|
stop=stop_after_attempt(3),
|
||||||
)
|
)
|
||||||
def get_prop_details(self, property_id: str) -> dict:
|
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
|
||||||
if not self.extra_property_data:
|
"""
|
||||||
|
Fetch extra property details for multiple properties in a single GraphQL query.
|
||||||
|
Returns a map of property_id to its details.
|
||||||
|
"""
|
||||||
|
if not self.extra_property_data or not property_ids:
|
||||||
return {}
|
return {}
|
||||||
|
|
||||||
query = """query GetHome($property_id: ID!) {
|
property_ids = list(set(property_ids))
|
||||||
home(property_id: $property_id) {
|
|
||||||
__typename
|
|
||||||
|
|
||||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
# Construct the bulk query
|
||||||
__typename schools { district { __typename id name } }
|
fragments = "\n".join(
|
||||||
}
|
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
|
||||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
for property_id in property_ids
|
||||||
}
|
)
|
||||||
}"""
|
query = f"""{HOME_FRAGMENT}
|
||||||
|
|
||||||
variables = {"property_id": property_id}
|
query GetHomes {{
|
||||||
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query, "variables": variables})
|
{fragments}
|
||||||
|
}}"""
|
||||||
|
|
||||||
|
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
|
||||||
data = response.json()
|
data = response.json()
|
||||||
property_details = data["data"]["home"]
|
|
||||||
|
|
||||||
return self.process_extra_property_details(property_details)
|
if "data" not in data:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
properties = data["data"]
|
||||||
|
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
||||||
|
|
|
@ -11,6 +11,34 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
list_price_max
|
list_price_max
|
||||||
list_price_min
|
list_price_min
|
||||||
price_per_sqft
|
price_per_sqft
|
||||||
|
tags
|
||||||
|
details {
|
||||||
|
category
|
||||||
|
text
|
||||||
|
parent_category
|
||||||
|
}
|
||||||
|
pet_policy {
|
||||||
|
cats
|
||||||
|
dogs
|
||||||
|
dogs_small
|
||||||
|
dogs_large
|
||||||
|
__typename
|
||||||
|
}
|
||||||
|
units {
|
||||||
|
availability {
|
||||||
|
date
|
||||||
|
__typename
|
||||||
|
}
|
||||||
|
description {
|
||||||
|
baths_consolidated
|
||||||
|
baths
|
||||||
|
beds
|
||||||
|
sqft
|
||||||
|
__typename
|
||||||
|
}
|
||||||
|
list_price
|
||||||
|
__typename
|
||||||
|
}
|
||||||
flags {
|
flags {
|
||||||
is_contingent
|
is_contingent
|
||||||
is_pending
|
is_pending
|
||||||
|
@ -64,11 +92,14 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
tax_record {
|
tax_record {
|
||||||
public_record_id
|
public_record_id
|
||||||
}
|
}
|
||||||
primary_photo {
|
primary_photo(https: true) {
|
||||||
href
|
href
|
||||||
}
|
}
|
||||||
photos {
|
photos(https: true) {
|
||||||
href
|
href
|
||||||
|
tags {
|
||||||
|
label
|
||||||
|
}
|
||||||
}
|
}
|
||||||
advertisers {
|
advertisers {
|
||||||
email
|
email
|
||||||
|
@ -116,15 +147,63 @@ _SEARCH_HOMES_DATA_BASE = """{
|
||||||
}
|
}
|
||||||
rental_management {
|
rental_management {
|
||||||
name
|
name
|
||||||
|
href
|
||||||
fulfillment_id
|
fulfillment_id
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
HOME_FRAGMENT = """
|
||||||
|
fragment HomeData on Home {
|
||||||
|
property_id
|
||||||
|
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||||
|
__typename schools { district { __typename id name } }
|
||||||
|
}
|
||||||
|
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||||
|
monthly_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
one_time_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
parking {
|
||||||
|
unassigned_space_rent
|
||||||
|
assigned_spaces_available
|
||||||
|
description
|
||||||
|
assigned_space_rent
|
||||||
|
}
|
||||||
|
terms {
|
||||||
|
text
|
||||||
|
category
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
HOMES_DATA = """%s
|
HOMES_DATA = """%s
|
||||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||||
__typename schools { district { __typename id name } }
|
__typename schools { district { __typename id name } }
|
||||||
}
|
}
|
||||||
|
monthly_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
one_time_fees {
|
||||||
|
description
|
||||||
|
display_amount
|
||||||
|
}
|
||||||
|
parking {
|
||||||
|
unassigned_space_rent
|
||||||
|
assigned_spaces_available
|
||||||
|
description
|
||||||
|
assigned_space_rent
|
||||||
|
}
|
||||||
|
terms {
|
||||||
|
text
|
||||||
|
category
|
||||||
|
}
|
||||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||||
estimates {
|
estimates {
|
||||||
__typename
|
__typename
|
||||||
|
@ -141,19 +220,19 @@ HOMES_DATA = """%s
|
||||||
}""" % _SEARCH_HOMES_DATA_BASE
|
}""" % _SEARCH_HOMES_DATA_BASE
|
||||||
|
|
||||||
SEARCH_HOMES_DATA = """%s
|
SEARCH_HOMES_DATA = """%s
|
||||||
current_estimates {
|
current_estimates {
|
||||||
__typename
|
__typename
|
||||||
source {
|
source {
|
||||||
__typename
|
__typename
|
||||||
type
|
type
|
||||||
name
|
name
|
||||||
}
|
}
|
||||||
estimate
|
estimate
|
||||||
estimateHigh: estimate_high
|
estimateHigh: estimate_high
|
||||||
estimateLow: estimate_low
|
estimateLow: estimate_low
|
||||||
date
|
date
|
||||||
isBestHomeValue: isbest_homevalue
|
isBestHomeValue: isbest_homevalue
|
||||||
}
|
}
|
||||||
}""" % _SEARCH_HOMES_DATA_BASE
|
}""" % _SEARCH_HOMES_DATA_BASE
|
||||||
|
|
||||||
GENERAL_RESULTS_QUERY = """{
|
GENERAL_RESULTS_QUERY = """{
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "homeharvest"
|
name = "homeharvest"
|
||||||
version = "0.4.5"
|
version = "0.4.7"
|
||||||
description = "Real estate scraping library"
|
description = "Real estate scraping library"
|
||||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from homeharvest import scrape_property
|
from homeharvest import scrape_property, Property
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
def test_realtor_pending_or_contingent():
|
def test_realtor_pending_or_contingent():
|
||||||
|
@ -287,3 +288,15 @@ def test_phone_number_matching():
|
||||||
|
|
||||||
#: assert phone numbers are the same
|
#: assert phone numbers are the same
|
||||||
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
|
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
|
||||||
|
|
||||||
|
|
||||||
|
def test_return_type():
|
||||||
|
results = {
|
||||||
|
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
|
||||||
|
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
|
||||||
|
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
|
||||||
|
}
|
||||||
|
|
||||||
|
assert isinstance(results["pandas"], pd.DataFrame)
|
||||||
|
assert isinstance(results["pydantic"][0], Property)
|
||||||
|
assert isinstance(results["raw"][0], dict)
|
||||||
|
|
Loading…
Reference in New Issue