Compare commits

..

No commits in common. "master" and "v0.1.3" have entirely different histories.

22 changed files with 1010 additions and 2517 deletions

1
.github/FUNDING.yml vendored
View File

@ -1 +0,0 @@
github: Bunsly

View File

@ -30,4 +30,4 @@ jobs:
if: startsWith(github.ref, 'refs/tags') if: startsWith(github.ref, 'refs/tags')
uses: pypa/gh-action-pypi-publish@release/v1 uses: pypa/gh-action-pypi-publish@release/v1
with: with:
password: ${{ secrets.PYPI_API_TOKEN }} password: ${{ secrets.PYPI_API_TOKEN }}

3
.gitignore vendored
View File

@ -3,5 +3,4 @@
**/__pycache__/ **/__pycache__/
**/.pytest_cache/ **/.pytest_cache/
*.pyc *.pyc
/.ipynb_checkpoints/ /.ipynb_checkpoints/
*.csv

View File

@ -1,21 +0,0 @@
---
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.2.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-added-large-files
- id: check-yaml
- repo: https://github.com/adrienverge/yamllint
rev: v1.29.0
hooks:
- id: yamllint
verbose: true # create awareness of linter findings
args: ["-d", "{extends: relaxed, rules: {line-length: {max: 120}}}"]
- repo: https://github.com/psf/black
rev: 24.2.0
hooks:
- id: black
language_version: python
args: [--line-length=120, --quiet]

73
HomeHarvest_Demo.ipynb Normal file
View File

@ -0,0 +1,73 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "cb48903e-5021-49fe-9688-45cd0bc05d0f",
"metadata": {},
"outputs": [],
"source": [
"from homeharvest import scrape_property\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "156488ce-0d5f-43c5-87f4-c33e9c427860",
"metadata": {},
"outputs": [],
"source": [
"pd.set_option('display.max_columns', None) # Show all columns\n",
"pd.set_option('display.max_rows', None) # Show all rows\n",
"pd.set_option('display.width', None) # Auto-adjust display width to fit console\n",
"pd.set_option('display.max_colwidth', 50) # Limit max column width to 50 characters"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c8b9744-8606-4e9b-8add-b90371a249a7",
"metadata": {},
"outputs": [],
"source": [
"scrape_property(\n",
" location=\"dallas\", site_name=\"zillow\", listing_type=\"for_sale\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab7b4c21-da1d-4713-9df4-d7425d8ce21e",
"metadata": {},
"outputs": [],
"source": [
"scrape_property(\n",
" location=\"dallas\", site_name=\"redfin\", listing_type=\"for_sale\"\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

197
README.md
View File

@ -1,198 +1,33 @@
<img src="https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/d1a2bf8b-09f5-4c57-b33a-0ada8a34f12d" width="400"> # HomeHarvest
**HomeHarvest** is a real estate scraping library that extracts and formats data in the style of MLS listings. **HomeHarvest** aims to be the top Python real estate scraping library.
## HomeHarvest Features _**Under Consideration**: We're looking into the possibility of an Excel plugin to cater to a broader audience._
- **Source**: Fetches properties directly from **Realtor.com**.
- **Data Format**: Structures data to resemble MLS listings.
- **Export Flexibility**: Options to save as either CSV or Excel.
[Video Guide for HomeHarvest](https://youtu.be/J1qgNPgmSLI) - _updated for release v0.3.4_
![homeharvest](https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/b3d5d727-e67b-4a9f-85d8-1e65fd18620a)
## Installation ## Installation
```bash ```bash
pip install -U homeharvest pip install --upgrade homeharvest
``` ```
_Python version >= [3.9](https://www.python.org/downloads/release/python-3100/) required_
## Usage ## Example Usage
```
### Python
```py
from homeharvest import scrape_property from homeharvest import scrape_property
from datetime import datetime
# Generate filename based on current timestamp
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"HomeHarvest_{current_timestamp}.csv"
properties = scrape_property( properties = scrape_property(
location="San Diego, CA", location="85281", site_name="zillow", listing_type="for_rent"
listing_type="sold", # or (for_sale, for_rent, pending)
past_days=30, # sold in last 30 days - listed in last 30 days if (for_sale, for_rent)
# property_type=['single_family','multi_family'],
# date_from="2023-05-01", # alternative to past_days
# date_to="2023-05-28",
# foreclosure=True
# mls_only=True, # only fetch MLS listings
) )
print(f"Number of properties: {len(properties)}") print(properties)
# Export to csv
properties.to_csv(filename, index=False)
print(properties.head())
``` ```
## Output ### Site Name Options
```plaintext
>>> properties.head()
MLS MLS # Status Style ... COEDate LotSFApx PrcSqft Stories
0 SDCA 230018348 SOLD CONDOS ... 2023-10-03 290110 803 2
1 SDCA 230016614 SOLD TOWNHOMES ... 2023-10-03 None 838 3
2 SDCA 230016367 SOLD CONDOS ... 2023-10-03 30056 649 1
3 MRCA NDP2306335 SOLD SINGLE_FAMILY ... 2023-10-03 7519 661 2
4 SDCA 230014532 SOLD CONDOS ... 2023-10-03 None 752 1
[5 rows x 22 columns]
```
### Parameters for `scrape_property()` - `zillow`
``` - `redfin`
Required - `realtor.com`
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
├── listing_type (option): Choose the type of listing.
- 'for_rent'
- 'for_sale'
- 'sold'
- 'pending' (for pending/contingent sales)
Optional ### Listing Types
├── property_type (list): Choose the type of properties.
- 'single_family'
- 'multi_family'
- 'condos'
- 'condo_townhome_rowhome_coop'
- 'condo_townhome'
- 'townhomes'
- 'duplex_triplex'
- 'farm'
- 'land'
- 'mobile'
├── return_type (option): Choose the return type.
│ - 'pandas' (default)
│ - 'pydantic'
│ - 'raw' (json)
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
├── past_days (integer): Number of past days to filter properties. Utilizes 'last_sold_date' for 'sold' listing types, and 'list_date' for others (for_rent, for_sale).
│ Example: 30 (fetches properties listed/sold in the last 30 days)
├── date_from, date_to (string): Start and end dates to filter properties listed or sold, both dates are required.
| (use this to get properties in chunks as there's a 10k result limit)
│ Format for both must be "YYYY-MM-DD".
│ Example: "2023-05-01", "2023-05-15" (fetches properties listed/sold between these dates)
├── mls_only (True/False): If set, fetches only MLS listings (mainly applicable to 'sold' listings)
├── foreclosure (True/False): If set, fetches only foreclosures
├── proxy (string): In format 'http://user:pass@host:port'
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
```
### Property Schema - `for_rent`
```plaintext - `for_sale`
Property - `sold`
├── Basic Information:
│ ├── property_url
│ ├── property_id
│ ├── listing_id
│ ├── mls
│ ├── mls_id
│ └── status
├── Address Details:
│ ├── street
│ ├── unit
│ ├── city
│ ├── state
│ └── zip_code
├── Property Description:
│ ├── style
│ ├── beds
│ ├── full_baths
│ ├── half_baths
│ ├── sqft
│ ├── year_built
│ ├── stories
│ ├── garage
│ └── lot_sqft
├── Property Listing Details:
│ ├── days_on_mls
│ ├── list_price
│ ├── list_price_min
│ ├── list_price_max
│ ├── list_date
│ ├── pending_date
│ ├── sold_price
│ ├── last_sold_date
│ ├── price_per_sqft
│ ├── new_construction
│ └── hoa_fee
├── Tax Information:
│ ├── year
│ ├── tax
│ ├── assessment
│ │ ├── building
│ │ ├── land
│ │ └── total
├── Location Details:
│ ├── latitude
│ ├── longitude
│ ├── nearby_schools
├── Agent Info:
│ ├── agent_id
│ ├── agent_name
│ ├── agent_email
│ └── agent_phone
├── Broker Info:
│ ├── broker_id
│ └── broker_name
├── Builder Info:
│ ├── builder_id
│ └── builder_name
├── Office Info:
│ ├── office_id
│ ├── office_name
│ ├── office_phones
│ └── office_email
```
### Exceptions
The following exceptions may be raised when using HomeHarvest:
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`, `pending`.
- `InvalidDate` - date_from or date_to is not in the format YYYY-MM-DD.
- `AuthenticationError` - Realtor.com token request failed.

View File

@ -1,104 +0,0 @@
"""
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
"""
import os
import pandas as pd
from homeharvest import scrape_property
def get_property_details(zip: str, listing_type):
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
if not properties.empty:
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
properties = properties[properties["sqft"].isnull()]
properties["ppa"] = properties.apply(
lambda row: (
int(
(
row["sold_price"]
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
else row["list_price"]
)
/ row["lot_acres"]
)
if pd.notnull(row["lot_acres"])
and row["lot_acres"] > 0
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
else None
),
axis=1,
)
properties["ppa"] = properties["ppa"].astype("Int64")
selected_columns = [
"property_url",
"property_id",
"style",
"status",
"street",
"city",
"state",
"zip_code",
"county",
"list_date",
"last_sold_date",
"list_price",
"sold_price",
"lot_sqft",
"lot_acres",
"ppa",
]
properties = properties[selected_columns]
return properties
def output_to_excel(zip_code, sold_df, pending_df):
root_folder = os.getcwd()
zip_folder = os.path.join(root_folder, "zips", zip_code)
# Create zip code folder if it doesn't exist
os.makedirs(zip_folder, exist_ok=True)
# Define file paths
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
# Save individual sold and pending files
sold_df.to_excel(sold_file, index=False)
pending_df.to_excel(pending_file, index=False)
zip_codes = map(
str,
[
22920,
77024,
78028,
24553,
22967,
22971,
22922,
22958,
22969,
22949,
22938,
24599,
24562,
22976,
24464,
22964,
24581,
],
)
combined_df = pd.DataFrame()
for zip in zip_codes:
sold_df = get_property_details(zip, "sold")
pending_df = get_property_details(zip, "pending")
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
output_to_excel(zip, sold_df, pending_df)
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
combined_df.to_excel(combined_file, index=False)

View File

@ -1,77 +1,117 @@
import warnings from .core.scrapers.redfin import RedfinScraper
import pandas as pd
from .core.scrapers import ScraperInput
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
from .core.scrapers.realtor import RealtorScraper from .core.scrapers.realtor import RealtorScraper
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property from .core.scrapers.zillow import ZillowScraper
from .core.scrapers.models import ListingType, Property, Building, SiteName
from .core.scrapers import ScraperInput
from .exceptions import InvalidSite, InvalidListingType
from typing import Union
import pandas as pd
_scrapers = {
"redfin": RedfinScraper,
"realtor.com": RealtorScraper,
"zillow": ZillowScraper,
}
def validate_input(site_name: str, listing_type: str) -> None:
if site_name.lower() not in _scrapers:
raise InvalidSite(f"Provided site, '{site_name}', does not exist.")
if listing_type.upper() not in ListingType.__members__:
raise InvalidListingType(
f"Provided listing type, '{listing_type}', does not exist."
)
def get_ordered_properties(result: Union[Building, Property]) -> list[str]:
if isinstance(result, Property):
return [
"listing_type",
"address_one",
"city",
"state",
"zip_code",
"address_two",
"url",
"property_type",
"price",
"beds",
"baths",
"square_feet",
"price_per_square_foot",
"lot_size",
"stories",
"year_built",
"agent_name",
"mls_id",
"description",
]
elif isinstance(result, Building):
return [
"address_one",
"city",
"state",
"zip_code",
"address_two",
"url",
"num_units",
"min_unit_price",
"max_unit_price",
"avg_unit_price",
"listing_type",
]
return []
def process_result(result: Union[Building, Property]) -> pd.DataFrame:
prop_data = result.__dict__
address_data = prop_data["address"]
prop_data["site_name"] = prop_data["site_name"]
prop_data["listing_type"] = prop_data["listing_type"].value
prop_data["property_type"] = prop_data["property_type"].value.lower() if prop_data.get("property_type") else None
prop_data["address_one"] = address_data.address_one
prop_data["city"] = address_data.city
prop_data["state"] = address_data.state
prop_data["zip_code"] = address_data.zip_code
prop_data["address_two"] = address_data.address_two
del prop_data["address"]
properties_df = pd.DataFrame([prop_data])
properties_df = properties_df[get_ordered_properties(result)]
return properties_df
def scrape_property( def scrape_property(
location: str, location: str,
listing_type: str = "for_sale", site_name: str,
return_type: str = "pandas", listing_type: str = "for_sale", #: for_sale, for_rent, sold
property_type: list[str] | None = None, ) -> pd.DataFrame:
radius: float = None,
mls_only: bool = False,
past_days: int = None,
proxy: str = None,
date_from: str = None, #: TODO: Switch to one parameter, Date, with date_from and date_to, pydantic validation
date_to: str = None,
foreclosure: bool = None,
extra_property_data: bool = True,
exclude_pending: bool = False,
limit: int = 10000
) -> pd.DataFrame | list[dict] | list[Property]:
""" """
Scrape properties from Realtor.com based on a given location and listing type. Scrape property from various sites from a given location and listing type.
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
:param listing_type: Listing Type (for_sale, for_rent, sold, pending) :returns: pd.DataFrame
:param return_type: Return type (pandas, pydantic, raw) :param location: US Location (e.g. 'San Francisco, CA', 'Cook County, IL', '85281', '2530 Al Lipscomb Way')
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile) :param site_name: Site name (e.g. 'realtor.com', 'zillow', 'redfin')
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses. :param listing_type: Listing type (e.g. 'for_sale', 'for_rent', 'sold')
:param mls_only: If set, fetches only listings with MLS IDs. :return: pd.DataFrame containing properties
:param proxy: Proxy to use for scraping
:param past_days: Get properties sold or listed (dependent on your listing_type) in the last _ days.
:param date_from, date_to: Get properties sold or listed (dependent on your listing_type) between these dates. format: 2021-01-28
:param foreclosure: If set, fetches only foreclosure listings.
:param extra_property_data: Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
:param exclude_pending: If true, this excludes pending or contingent properties from the results, unless listing type is pending.
:param limit: Limit the number of results returned. Maximum is 10,000.
""" """
validate_input(listing_type)
validate_dates(date_from, date_to) validate_input(site_name, listing_type)
validate_limit(limit)
scraper_input = ScraperInput( scraper_input = ScraperInput(
location=location, location=location,
listing_type=ListingType(listing_type.upper()), listing_type=ListingType[listing_type.upper()],
return_type=ReturnType(return_type.lower()), site_name=site_name.lower(),
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
proxy=proxy,
radius=radius,
mls_only=mls_only,
last_x_days=past_days,
date_from=date_from,
date_to=date_to,
foreclosure=foreclosure,
extra_property_data=extra_property_data,
exclude_pending=exclude_pending,
limit=limit,
) )
site = RealtorScraper(scraper_input) site = _scrapers[site_name.lower()](scraper_input)
results = site.search() results = site.search()
if scraper_input.return_type != ReturnType.pandas: properties_dfs = [process_result(result) for result in results]
return results
properties_dfs = [df for result in results if not (df := process_result(result)).empty] return pd.concat(properties_dfs, ignore_index=True)
if not properties_dfs:
return pd.DataFrame()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
{"None": pd.NA, None: pd.NA, "": pd.NA}
)

View File

@ -1,85 +0,0 @@
import argparse
import datetime
from homeharvest import scrape_property
def main():
parser = argparse.ArgumentParser(description="Home Harvest Property Scraper")
parser.add_argument("location", type=str, help="Location to scrape (e.g., San Francisco, CA)")
parser.add_argument(
"-l",
"--listing_type",
type=str,
default="for_sale",
choices=["for_sale", "for_rent", "sold", "pending"],
help="Listing type to scrape",
)
parser.add_argument(
"-o",
"--output",
type=str,
default="excel",
choices=["excel", "csv"],
help="Output format",
)
parser.add_argument(
"-f",
"--filename",
type=str,
default=None,
help="Name of the output file (without extension)",
)
parser.add_argument("-p", "--proxy", type=str, default=None, help="Proxy to use for scraping")
parser.add_argument(
"-d",
"--days",
type=int,
default=None,
help="Sold/listed in last _ days filter.",
)
parser.add_argument(
"-r",
"--radius",
type=float,
default=None,
help="Get comparable properties within _ (eg. 0.0) miles. Only applicable for individual addresses.",
)
parser.add_argument(
"-m",
"--mls_only",
action="store_true",
help="If set, fetches only MLS listings.",
)
args = parser.parse_args()
result = scrape_property(
args.location,
args.listing_type,
radius=args.radius,
proxy=args.proxy,
mls_only=args.mls_only,
past_days=args.days,
)
if not args.filename:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
args.filename = f"HomeHarvest_{timestamp}"
if args.output == "excel":
output_filename = f"{args.filename}.xlsx"
result.to_excel(output_filename, index=False)
print(f"Excel file saved as {output_filename}")
elif args.output == "csv":
output_filename = f"{args.filename}.csv"
result.to_csv(output_filename, index=False)
print(f"CSV file saved as {output_filename}")
if __name__ == "__main__":
main()

View File

@ -1,128 +1,37 @@
from __future__ import annotations
from dataclasses import dataclass from dataclasses import dataclass
from typing import Union
import requests import requests
from requests.adapters import HTTPAdapter from .models import Property, ListingType, SiteName
from urllib3.util.retry import Retry
import uuid
from ...exceptions import AuthenticationError
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
import json
@dataclass @dataclass
class ScraperInput: class ScraperInput:
location: str location: str
listing_type: ListingType listing_type: ListingType
property_type: list[SearchPropertyType] | None = None site_name: str
radius: float | None = None proxy_url: str | None = None
mls_only: bool | None = False
proxy: str | None = None
last_x_days: int | None = None
date_from: str | None = None
date_to: str | None = None
foreclosure: bool | None = False
extra_property_data: bool | None = True
exclude_pending: bool | None = False
limit: int = 10000
return_type: ReturnType = ReturnType.pandas
class Scraper: class Scraper:
session = None def __init__(self, scraper_input: ScraperInput):
def __init__(
self,
scraper_input: ScraperInput,
):
self.location = scraper_input.location self.location = scraper_input.location
self.listing_type = scraper_input.listing_type self.listing_type = scraper_input.listing_type
self.property_type = scraper_input.property_type
if not self.session:
Scraper.session = requests.Session()
retries = Retry(
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
)
adapter = HTTPAdapter(max_retries=retries)
Scraper.session.mount("http://", adapter)
Scraper.session.mount("https://", adapter)
Scraper.session.headers.update(
{
"accept": "application/json, text/javascript",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": "https://www.realtor.com",
"pragma": "no-cache",
"priority": "u=1, i",
"rdc-ab-tests": "commute_travel_time_variation:v1",
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
}
)
if scraper_input.proxy:
proxy_url = scraper_input.proxy
proxies = {"http": proxy_url, "https": proxy_url}
self.session.proxies.update(proxies)
self.session = requests.Session()
self.listing_type = scraper_input.listing_type self.listing_type = scraper_input.listing_type
self.radius = scraper_input.radius self.site_name = scraper_input.site_name
self.last_x_days = scraper_input.last_x_days
self.mls_only = scraper_input.mls_only
self.date_from = scraper_input.date_from
self.date_to = scraper_input.date_to
self.foreclosure = scraper_input.foreclosure
self.extra_property_data = scraper_input.extra_property_data
self.exclude_pending = scraper_input.exclude_pending
self.limit = scraper_input.limit
self.return_type = scraper_input.return_type
def search(self) -> list[Union[Property | dict]]: ... if scraper_input.proxy_url:
self.session.proxies = {
"http": scraper_input.proxy_url,
"https": scraper_input.proxy_url,
}
def search(self) -> list[Property]:
...
@staticmethod @staticmethod
def _parse_home(home) -> Property: ... def _parse_home(home) -> Property:
...
def handle_location(self): ... def handle_location(self):
...
@staticmethod
def get_access_token():
device_id = str(uuid.uuid4()).upper()
response = requests.post(
"https://graph.realtor.com/auth/token",
headers={
"Host": "graph.realtor.com",
"Accept": "*/*",
"Content-Type": "Application/json",
"X-Client-ID": "rdc_mobile_native,iphone",
"X-Visitor-ID": device_id,
"X-Client-Version": "24.21.23.679885",
"Accept-Language": "en-US,en;q=0.9",
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
},
data=json.dumps(
{
"grant_type": "device_mobile",
"device_id": device_id,
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
}
),
)
data = response.json()
if not (access_token := data.get("access_token")):
raise AuthenticationError(
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
)
return access_token

View File

@ -1,13 +1,5 @@
from __future__ import annotations
from dataclasses import dataclass from dataclasses import dataclass
from enum import Enum from enum import Enum
from typing import Optional
class ReturnType(Enum):
pydantic = "pydantic"
pandas = "pandas"
raw = "raw"
class SiteName(Enum): class SiteName(Enum):
@ -15,180 +7,78 @@ class SiteName(Enum):
REDFIN = "redfin" REDFIN = "redfin"
REALTOR = "realtor.com" REALTOR = "realtor.com"
@classmethod
def get_by_value(cls, value):
for item in cls:
if item.value == value:
return item
raise ValueError(f"{value} not found in {cls}")
class SearchPropertyType(Enum):
SINGLE_FAMILY = "single_family"
APARTMENT = "apartment"
CONDOS = "condos"
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
CONDO_TOWNHOME = "condo_townhome"
TOWNHOMES = "townhomes"
DUPLEX_TRIPLEX = "duplex_triplex"
FARM = "farm"
LAND = "land"
MULTI_FAMILY = "multi_family"
MOBILE = "mobile"
class ListingType(Enum): class ListingType(Enum):
FOR_SALE = "FOR_SALE" FOR_SALE = "for_sale"
FOR_RENT = "FOR_RENT" FOR_RENT = "for_rent"
PENDING = "PENDING" SOLD = "sold"
SOLD = "SOLD"
@dataclass
class Agent:
name: str | None = None
phone: str | None = None
class PropertyType(Enum): class PropertyType(Enum):
APARTMENT = "APARTMENT" HOUSE = "HOUSE"
BUILDING = "BUILDING"
COMMERCIAL = "COMMERCIAL"
GOVERNMENT = "GOVERNMENT"
INDUSTRIAL = "INDUSTRIAL"
CONDO_TOWNHOME = "CONDO_TOWNHOME"
CONDO_TOWNHOME_ROWHOME_COOP = "CONDO_TOWNHOME_ROWHOME_COOP"
CONDO = "CONDO" CONDO = "CONDO"
CONDOP = "CONDOP" TOWNHOUSE = "TOWNHOUSE"
CONDOS = "CONDOS"
COOP = "COOP"
DUPLEX_TRIPLEX = "DUPLEX_TRIPLEX"
FARM = "FARM"
INVESTMENT = "INVESTMENT"
LAND = "LAND"
MOBILE = "MOBILE"
MULTI_FAMILY = "MULTI_FAMILY"
RENTAL = "RENTAL"
SINGLE_FAMILY = "SINGLE_FAMILY" SINGLE_FAMILY = "SINGLE_FAMILY"
TOWNHOMES = "TOWNHOMES" MULTI_FAMILY = "MULTI_FAMILY"
MANUFACTURED = "MANUFACTURED"
APARTMENT = "APARTMENT"
LAND = "LAND"
OTHER = "OTHER" OTHER = "OTHER"
@classmethod
def from_int_code(cls, code):
mapping = {
1: cls.HOUSE,
2: cls.CONDO,
3: cls.TOWNHOUSE,
4: cls.MULTI_FAMILY,
5: cls.LAND,
6: cls.OTHER,
8: cls.SINGLE_FAMILY,
13: cls.SINGLE_FAMILY,
}
return mapping.get(code, cls.OTHER)
@dataclass @dataclass
class Address: class Address:
full_line: str | None = None address_one: str
street: str | None = None city: str
unit: str | None = None state: str
city: str | None = None zip_code: str
state: str | None = None
zip: str | None = None address_two: str | None = None
@dataclass()
class Realty:
site_name: str
address: Address
url: str
listing_type: ListingType | None = None
@dataclass @dataclass
class Description: class Property(Realty):
primary_photo: str | None = None price: int | None = None
alt_photos: list[str] | None = None
style: PropertyType | None = None
beds: int | None = None beds: int | None = None
baths_full: int | None = None baths: float | None = None
baths_half: int | None = None
sqft: int | None = None
lot_sqft: int | None = None
sold_price: int | None = None
year_built: int | None = None
garage: float | None = None
stories: int | None = None stories: int | None = None
text: str | None = None year_built: int | None = None
square_feet: int | None = None
price_per_square_foot: int | None = None
@dataclass
class AgentPhone: #: For documentation purposes only (at the moment)
number: str | None = None
type: str | None = None
primary: bool | None = None
ext: str | None = None
@dataclass
class Entity:
name: str
uuid: str | None = None
@dataclass
class Agent(Entity):
mls_set: str | None = None
nrds_id: str | None = None
phones: list[dict] | AgentPhone | None = None
email: str | None = None
href: str | None = None
@dataclass
class Office(Entity):
mls_set: str | None = None
email: str | None = None
href: str | None = None
phones: list[dict] | AgentPhone | None = None
@dataclass
class Broker(Entity):
pass
@dataclass
class Builder(Entity):
pass
@dataclass
class Advertisers:
agent: Agent | None = None
broker: Broker | None = None
builder: Builder | None = None
office: Office | None = None
@dataclass
class Property:
property_url: str
property_id: str
#: allows_cats: bool
#: allows_dogs: bool
listing_id: str | None = None
mls: str | None = None
mls_id: str | None = None mls_id: str | None = None
status: str | None = None
address: Address | None = None
list_price: int | None = None agent_name: str | None = None
list_price_min: int | None = None property_type: PropertyType | None = None
list_price_max: int | None = None lot_size: int | None = None
description: str | None = None
list_date: str | None = None
pending_date: str | None = None
last_sold_date: str | None = None
prc_sqft: int | None = None
new_construction: bool | None = None
hoa_fee: int | None = None
days_on_mls: int | None = None
description: Description | None = None
tags: list[str] | None = None
details: list[dict] | None = None
latitude: float | None = None @dataclass
longitude: float | None = None class Building(Realty):
neighborhoods: Optional[str] = None num_units: int | None = None
county: Optional[str] = None min_unit_price: int | None = None
fips_code: Optional[str] = None max_unit_price: int | None = None
nearby_schools: list[str] = None avg_unit_price: int | None = None
assessed_value: int | None = None
estimated_value: int | None = None
tax: int | None = None
tax_history: list[dict] | None = None
advertisers: Advertisers | None = None

View File

@ -1,668 +1,268 @@
"""
homeharvest.realtor.__init__
~~~~~~~~~~~~
This module implements the scraper for realtor.com
"""
from __future__ import annotations
import json import json
from concurrent.futures import ThreadPoolExecutor, as_completed from ..models import Property, Address
from datetime import datetime
from json import JSONDecodeError
from typing import Dict, Union, Optional
from tenacity import (
retry,
retry_if_exception_type,
wait_exponential,
stop_after_attempt,
)
from .. import Scraper from .. import Scraper
from ..models import ( from typing import Any, Generator
Property, from ....exceptions import NoResultsFound
Address, from concurrent.futures import ThreadPoolExecutor, as_completed
ListingType,
Description,
PropertyType,
Agent,
Broker,
Builder,
Advertisers,
Office,
ReturnType
)
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
class RealtorScraper(Scraper): class RealtorScraper(Scraper):
SEARCH_GQL_URL = "https://www.realtor.com/api/v1/rdc_search_srp?client_id=rdc-search-new-communities&schema=vesta"
PROPERTY_URL = "https://www.realtor.com/realestateandhomes-detail/"
PROPERTY_GQL = "https://graph.realtor.com/graphql"
ADDRESS_AUTOCOMPLETE_URL = "https://parser-external.geo.moveaws.com/suggest"
NUM_PROPERTY_WORKERS = 20
DEFAULT_PAGE_SIZE = 200
def __init__(self, scraper_input): def __init__(self, scraper_input):
super().__init__(scraper_input) super().__init__(scraper_input)
self.search_url = "https://www.realtor.com/api/v1/rdc_search_srp?client_id=rdc-search-new-communities&schema=vesta"
def handle_location(self): def handle_location(self):
headers = {
"authority": "parser-external.geo.moveaws.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"origin": "https://www.realtor.com",
"referer": "https://www.realtor.com/",
"sec-ch-ua": '"Chromium";v="116", "Not)A;Brand";v="24", "Google Chrome";v="116"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",
}
params = { params = {
"input": self.location, "input": self.location,
"client_id": self.listing_type.value.lower().replace("_", "-"), "client_id": self.listing_type.value.replace('_', '-'),
"limit": "1", "limit": "1",
"area_types": "city,state,county,postal_code,address,street,neighborhood,school,school_district,university,park", "area_types": "city,state,county,postal_code,address,street,neighborhood,school,school_district,university,park",
} }
response = self.session.get( response = self.session.get(
self.ADDRESS_AUTOCOMPLETE_URL, "https://parser-external.geo.moveaws.com/suggest",
params=params, params=params,
headers=headers,
) )
response_json = response.json() response_json = response.json()
result = response_json["autocomplete"] result = response_json["autocomplete"]
if not result: if result is None:
return None raise NoResultsFound("No results found for location: " + self.location)
return result[0] return result[0]
def get_latest_listing_id(self, property_id: str) -> str | None: def handle_address(self, property_id: str) -> list[Property]:
query = """query Property($property_id: ID!) { query = """query Property($property_id: ID!) {
property(id: $property_id) { property(id: $property_id) {
listings { property_id
listing_id details {
primary date_updated
garage
permalink
year_built
stories
}
address {
address_validation_code
city
country
county
line
postal_code
state_code
street_direction
street_name
street_number
street_suffix
street_post_direction
unit_value
unit
unit_descriptor
zip
}
basic {
baths
beds
price
sqft
lot_sqft
type
sold_price
}
public_record {
lot_size
sqft
stories
units
year_built
} }
} }
}
"""
variables = {"property_id": property_id}
payload = {
"query": query,
"variables": variables,
}
response = self.session.post(self.SEARCH_GQL_URL, json=payload)
response_json = response.json()
property_info = response_json["data"]["property"]
if property_info["listings"] is None:
return None
primary_listing = next(
(listing for listing in property_info["listings"] if listing["primary"]),
None,
)
if primary_listing:
return primary_listing["listing_id"]
else:
return property_info["listings"][0]["listing_id"]
def handle_home(self, property_id: str) -> list[Property]:
query = (
"""query Home($property_id: ID!) {
home(property_id: $property_id) %s
}""" }"""
% HOMES_DATA
)
variables = {"property_id": property_id} variables = {
payload = { 'property_id': property_id
"query": query,
"variables": variables,
} }
response = self.session.post(self.SEARCH_GQL_URL, json=payload) payload = {
'query': query,
'variables': variables,
}
response = self.session.post(self.search_url, json=payload)
response_json = response.json() response_json = response.json()
property_info = response_json["data"]["home"] property_info = response_json['data']['property']
return [self.process_property(property_info)] return [Property(
site_name=self.site_name,
@staticmethod address=Address(
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None: address_one=property_info['address']['line'],
if not advertisers: city=property_info['address']['city'],
return None state=property_info['address']['state_code'],
zip_code=property_info['address']['postal_code'],
def _parse_fulfillment_id(fulfillment_id: str | None) -> str | None:
return fulfillment_id if fulfillment_id and fulfillment_id != "0" else None
processed_advertisers = Advertisers()
for advertiser in advertisers:
advertiser_type = advertiser.get("type")
if advertiser_type == "seller": #: agent
processed_advertisers.agent = Agent(
uuid=_parse_fulfillment_id(advertiser.get("fulfillment_id")),
nrds_id=advertiser.get("nrds_id"),
mls_set=advertiser.get("mls_set"),
name=advertiser.get("name"),
email=advertiser.get("email"),
phones=advertiser.get("phones"),
)
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
processed_advertisers.broker = Broker(
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
name=advertiser["broker"].get("name"),
)
if advertiser.get("office"): #: has an office
processed_advertisers.office = Office(
uuid=_parse_fulfillment_id(advertiser["office"].get("fulfillment_id")),
mls_set=advertiser["office"].get("mls_set"),
name=advertiser["office"].get("name"),
email=advertiser["office"].get("email"),
phones=advertiser["office"].get("phones"),
)
if advertiser_type == "community": #: could be builder
if advertiser.get("builder"):
processed_advertisers.builder = Builder(
uuid=_parse_fulfillment_id(advertiser["builder"].get("fulfillment_id")),
name=advertiser["builder"].get("name"),
)
return processed_advertisers
def process_property(self, result: dict) -> Property | None:
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
if not mls and self.mls_only:
return
able_to_get_lat_long = (
result
and result.get("location")
and result["location"].get("address")
and result["location"]["address"].get("coordinate")
)
is_pending = result["flags"].get("is_pending")
is_contingent = result["flags"].get("is_contingent")
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
return
property_id = result["property_id"]
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
advertisers = self.process_advertisers(result.get("advertisers"))
realty_property = Property(
mls=mls,
mls_id=(
result["source"].get("listing_id")
if "source" in result and isinstance(result["source"], dict)
else None
), ),
property_url=result["href"], url="https://www.realtor.com/realestateandhomes-detail/" + property_info['details']['permalink'],
property_id=property_id, beds=property_info['basic']['beds'],
listing_id=result.get("listing_id"), baths=property_info['basic']['baths'],
status=("PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper()), stories=property_info['details']['stories'],
list_price=result["list_price"], year_built=property_info['details']['year_built'],
list_price_min=result["list_price_min"], square_feet=property_info['basic']['sqft'],
list_price_max=result["list_price_max"], price_per_square_foot=property_info['basic']['price'] / property_info['basic']['sqft']
list_date=(result["list_date"].split("T")[0] if result.get("list_date") else None), if property_info['basic']['sqft'] is not None and
prc_sqft=result.get("price_per_sqft"), property_info['basic']['price'] is not None
last_sold_date=result.get("last_sold_date"), else None,
new_construction=result["flags"].get("is_new_construction") is True, price=property_info['basic']['price'],
hoa_fee=(result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None), mls_id=property_id,
latitude=(result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None), listing_type=self.listing_type,
longitude=(result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None), lot_size=property_info['public_record']['lot_size'] if property_info['public_record'] is not None else None,
address=self._parse_address(result, search_type="general_search"), )]
description=self._parse_description(result),
neighborhoods=self._parse_neighborhoods(result),
county=(result["location"]["county"].get("name") if result["location"]["county"] else None),
fips_code=(result["location"]["county"].get("fips_code") if result["location"]["county"] else None),
days_on_mls=self.calculate_days_on_mls(result),
nearby_schools=prop_details.get("schools"),
assessed_value=prop_details.get("assessed_value"),
estimated_value=estimated_value if estimated_value else None,
advertisers=advertisers,
tax=prop_details.get("tax"),
tax_history=prop_details.get("tax_history"),
)
return realty_property
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]: def handle_area(self, variables: dict, return_total: bool = False) -> list[Property] | int:
""" query = """query Home_search(
Handles a location area & returns a list of properties $city: String,
""" $county: [String],
$state_code: String,
date_param = "" $postal_code: String
if self.listing_type == ListingType.SOLD: $offset: Int,
if self.date_from and self.date_to: ) {
date_param = f'sold_date: {{ min: "{self.date_from}", max: "{self.date_to}" }}' home_search(
elif self.last_x_days: query: {
date_param = f'sold_date: {{ min: "$today-{self.last_x_days}D" }}' city: $city
else: county: $county
if self.date_from and self.date_to: postal_code: $postal_code
date_param = f'list_date: {{ min: "{self.date_from}", max: "{self.date_to}" }}' state_code: $state_code
elif self.last_x_days: status: %s
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
property_type_param = ""
if self.property_type:
property_types = [pt.value for pt in self.property_type]
property_type_param = f"type: {json.dumps(property_types)}"
sort_param = (
"sort: [{ field: sold_date, direction: desc }]"
if self.listing_type == ListingType.SOLD
else "" #: "sort: [{ field: list_date, direction: desc }]" #: prioritize normal fractal sort from realtor
)
pending_or_contingent_param = (
"or_filters: { contingent: true, pending: true }" if self.listing_type == ListingType.PENDING else ""
)
listing_type = ListingType.FOR_SALE if self.listing_type == ListingType.PENDING else self.listing_type
is_foreclosure = ""
if variables.get("foreclosure") is True:
is_foreclosure = "foreclosure: true"
elif variables.get("foreclosure") is False:
is_foreclosure = "foreclosure: false"
if search_type == "comps": #: comps search, came from an address
query = """query Property_search(
$coordinates: [Float]!
$radius: String!
$offset: Int!,
) {
home_search(
query: {
%s
nearby: {
coordinates: $coordinates
radius: $radius
} }
status: %s limit: 200
%s offset: $offset
%s
%s
}
%s
limit: 200
offset: $offset
) %s
}""" % (
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
)
elif search_type == "area": #: general search, came from a general location
query = """query Home_search(
$location: String!,
$offset: Int,
) { ) {
home_search( count
query: { total
%s results {
search_location: {location: $location} property_id
status: %s description {
unique: true baths
%s beds
%s lot_sqft
%s sqft
text
sold_price
stories
year_built
garage
unit_number
floor_number
} }
bucket: { sort: "fractal_v1.1.3_fr" } location {
%s address {
limit: 200 city
offset: $offset country
) %s line
}""" % ( postal_code
is_foreclosure, state_code
listing_type.value.lower(), state
date_param, street_direction
property_type_param, street_name
pending_or_contingent_param, street_number
sort_param, street_post_direction
GENERAL_RESULTS_QUERY, street_suffix
) unit
else: #: general search, came from an address }
query = ( }
"""query Property_search( list_price
$property_id: [ID]! price_per_sqft
$offset: Int!, source {
) { id
home_search( }
query: { }
property_id: $property_id
} }
limit: 1 }""" % self.listing_type.value
offset: $offset
) %s
}"""
% GENERAL_RESULTS_QUERY
)
payload = { payload = {
"query": query, 'query': query,
"variables": variables, 'variables': variables,
} }
response = self.session.post(self.SEARCH_GQL_URL, json=payload) response = self.session.post(self.search_url, json=payload)
response_json = response.json() response_json = response.json()
search_key = "home_search" if "home_search" in query else "property_search"
properties: list[Union[Property, dict]] = [] if return_total:
return response_json['data']['home_search']['total']
if ( properties: list[Property] = []
response_json is None
or "data" not in response_json
or response_json["data"] is None
or search_key not in response_json["data"]
or response_json["data"][search_key] is None
or "results" not in response_json["data"][search_key]
):
return {"total": 0, "properties": []}
properties_list = response_json["data"][search_key]["results"] for result in response_json['data']['home_search']['results']:
total_properties = response_json["data"][search_key]["total"] realty_property = Property(
offset = variables.get("offset", 0) address=Address(
address_one=result['location']['address']['line'],
city=result['location']['address']['city'],
state=result['location']['address']['state_code'],
zip_code=result['location']['address']['postal_code'],
address_two=result['location']['address']['unit'],
),
site_name=self.site_name,
url="https://www.realtor.com/realestateandhomes-detail/" + result['property_id'],
beds=result['description']['beds'],
baths=result['description']['baths'],
stories=result['description']['stories'],
year_built=result['description']['year_built'],
square_feet=result['description']['sqft'],
price_per_square_foot=result['price_per_sqft'],
price=result['list_price'],
mls_id=result['property_id'],
listing_type=self.listing_type,
lot_size=result['description']['lot_sqft'],
)
#: limit the number of properties to be processed properties.append(realty_property)
#: example, if your offset is 200, and your limit is 250, return 50
properties_list: list[dict] = properties_list[: self.limit - offset]
if self.extra_property_data: return properties
property_ids = [data["property_id"] for data in properties_list]
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
for result in properties_list:
result.update(extra_property_details.get(result["property_id"], {}))
if self.return_type != ReturnType.raw:
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
futures = [executor.submit(self.process_property, result) for result in properties_list]
for future in as_completed(futures):
result = future.result()
if result:
properties.append(result)
else:
properties = properties_list
return {
"total": total_properties,
"properties": properties,
}
def search(self): def search(self):
location_info = self.handle_location() location_info = self.handle_location()
if not location_info:
return []
location_type = location_info["area_type"] location_type = location_info["area_type"]
if location_type == 'address':
property_id = location_info['mpr_id']
return self.handle_address(property_id)
offset = 0
search_variables = { search_variables = {
"offset": 0, 'city': location_info.get('city'),
'county': location_info.get('county'),
'state_code': location_info.get('state_code'),
'postal_code': location_info.get('postal_code'),
'offset': offset,
} }
search_type = ( total = self.handle_area(search_variables, return_total=True)
"comps"
if self.radius and location_type == "address"
else "address" if location_type == "address" and not self.radius else "area"
)
if location_type == "address":
if not self.radius: #: single address search, non comps
property_id = location_info["mpr_id"]
return self.handle_home(property_id)
else: #: general search, comps (radius) homes = []
if not location_info.get("centroid"): with ThreadPoolExecutor(max_workers=10) as executor:
return []
coordinates = list(location_info["centroid"].values())
search_variables |= {
"coordinates": coordinates,
"radius": "{}mi".format(self.radius),
}
elif location_type == "postal_code":
search_variables |= {
"postal_code": location_info.get("postal_code"),
}
else: #: general search, location
search_variables |= {
"location": self.location,
}
if self.foreclosure:
search_variables["foreclosure"] = self.foreclosure
result = self.general_search(search_variables, search_type=search_type)
total = result["total"]
homes = result["properties"]
with ThreadPoolExecutor() as executor:
futures = [ futures = [
executor.submit( executor.submit(
self.general_search, self.handle_area, variables=search_variables | {'offset': i}, return_total=False
variables=search_variables | {"offset": i}, ) for i in range(0, total, 200)
search_type=search_type,
)
for i in range(
self.DEFAULT_PAGE_SIZE,
min(total, self.limit),
self.DEFAULT_PAGE_SIZE,
)
] ]
for future in as_completed(futures): for future in as_completed(futures):
homes.extend(future.result()["properties"]) homes.extend(future.result())
return homes return homes
@staticmethod
def get_key(data: dict, keys: list):
try:
value = data
for key in keys:
value = value[key]
return value or {}
except (KeyError, TypeError, IndexError):
return {}
def process_extra_property_details(self, result: dict) -> dict:
schools = self.get_key(result, ["nearbySchools", "schools"])
assessed_value = self.get_key(result, ["taxHistory", 0, "assessment", "total"])
tax_history = self.get_key(result, ["taxHistory"])
schools = [school["district"]["name"] for school in schools if school["district"].get("name")]
# Process tax history
latest_tax = None
processed_tax_history = None
if tax_history and isinstance(tax_history, list):
tax_history = sorted(tax_history, key=lambda x: x.get("year", 0), reverse=True)
if tax_history and "tax" in tax_history[0]:
latest_tax = tax_history[0]["tax"]
processed_tax_history = []
for entry in tax_history:
if "year" in entry and "tax" in entry:
processed_entry = {
"year": entry["year"],
"tax": entry["tax"],
}
if "assessment" in entry and isinstance(entry["assessment"], dict):
processed_entry["assessment"] = {
"building": entry["assessment"].get("building"),
"land": entry["assessment"].get("land"),
"total": entry["assessment"].get("total"),
}
processed_tax_history.append(processed_entry)
return {
"schools": schools if schools else None,
"assessed_value": assessed_value if assessed_value else None,
"tax": latest_tax,
"tax_history": processed_tax_history,
}
@retry(
retry=retry_if_exception_type(JSONDecodeError),
wait=wait_exponential(min=4, max=10),
stop=stop_after_attempt(3),
)
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
"""
Fetch extra property details for multiple properties in a single GraphQL query.
Returns a map of property_id to its details.
"""
if not self.extra_property_data or not property_ids:
return {}
property_ids = list(set(property_ids))
# Construct the bulk query
fragments = "\n".join(
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
for property_id in property_ids
)
query = f"""{HOME_FRAGMENT}
query GetHomes {{
{fragments}
}}"""
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
data = response.json()
if "data" not in data:
return {}
properties = data["data"]
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
@staticmethod
def _parse_neighborhoods(result: dict) -> Optional[str]:
neighborhoods_list = []
neighborhoods = result["location"].get("neighborhoods", [])
if neighborhoods:
for neighborhood in neighborhoods:
name = neighborhood.get("name")
if name:
neighborhoods_list.append(name)
return ", ".join(neighborhoods_list) if neighborhoods_list else None
@staticmethod
def handle_none_safely(address_part):
if address_part is None:
return ""
return address_part
@staticmethod
def _parse_address(result: dict, search_type):
if search_type == "general_search":
address = result["location"]["address"]
else:
address = result["address"]
return Address(
full_line=address.get("line"),
street=" ".join(
part
for part in [
address.get("street_number"),
address.get("street_direction"),
address.get("street_name"),
address.get("street_suffix"),
]
if part is not None
).strip(),
unit=address["unit"],
city=address["city"],
state=address["state_code"],
zip=address["postal_code"],
)
@staticmethod
def _parse_description(result: dict) -> Description | None:
if not result:
return None
description_data = result.get("description", {})
if description_data is None or not isinstance(description_data, dict):
description_data = {}
style = description_data.get("type", "")
if style is not None:
style = style.upper()
primary_photo = ""
if (primary_photo_info := result.get("primary_photo")) and (
primary_photo_href := primary_photo_info.get("href")
):
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
return Description(
primary_photo=primary_photo,
alt_photos=RealtorScraper.process_alt_photos(result.get("photos", [])),
style=(PropertyType.__getitem__(style) if style and style in PropertyType.__members__ else None),
beds=description_data.get("beds"),
baths_full=description_data.get("baths_full"),
baths_half=description_data.get("baths_half"),
sqft=description_data.get("sqft"),
lot_sqft=description_data.get("lot_sqft"),
sold_price=(
result.get("last_sold_price") or description_data.get("sold_price")
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
else None
), #: has a sold date or list and sold price are different
year_built=description_data.get("year_built"),
garage=description_data.get("garage"),
stories=description_data.get("stories"),
text=description_data.get("text"),
)
@staticmethod
def calculate_days_on_mls(result: dict) -> Optional[int]:
list_date_str = result.get("list_date")
list_date = datetime.strptime(list_date_str.split("T")[0], "%Y-%m-%d") if list_date_str else None
last_sold_date_str = result.get("last_sold_date")
last_sold_date = datetime.strptime(last_sold_date_str, "%Y-%m-%d") if last_sold_date_str else None
today = datetime.now()
if list_date:
if result["status"] == "sold":
if last_sold_date:
days = (last_sold_date - list_date).days
if days >= 0:
return days
elif result["status"] in ("for_sale", "for_rent"):
days = (today - list_date).days
if days >= 0:
return days
@staticmethod
def process_alt_photos(photos_info: list[dict]) -> list[str] | None:
if not photos_info:
return None
return [
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
for photo_info in photos_info
if photo_info.get("href")
]

View File

@ -1,242 +0,0 @@
_SEARCH_HOMES_DATA_BASE = """{
pending_date
listing_id
property_id
href
list_date
status
last_sold_price
last_sold_date
list_price
list_price_max
list_price_min
price_per_sqft
tags
details {
category
text
parent_category
}
pet_policy {
cats
dogs
dogs_small
dogs_large
__typename
}
units {
availability {
date
__typename
}
description {
baths_consolidated
baths
beds
sqft
__typename
}
list_price
__typename
}
flags {
is_contingent
is_pending
is_new_construction
}
description {
type
sqft
beds
baths_full
baths_half
lot_sqft
year_built
garage
type
name
stories
text
}
source {
id
listing_id
}
hoa {
fee
}
location {
address {
street_direction
street_number
street_name
street_suffix
line
unit
city
state_code
postal_code
coordinate {
lon
lat
}
}
county {
name
fips_code
}
neighborhoods {
name
}
}
tax_record {
public_record_id
}
primary_photo(https: true) {
href
}
photos(https: true) {
href
tags {
label
}
}
advertisers {
email
broker {
name
fulfillment_id
}
type
name
fulfillment_id
builder {
name
fulfillment_id
}
phones {
ext
primary
type
number
}
office {
name
email
fulfillment_id
href
phones {
number
type
primary
ext
}
mls_set
}
corporation {
specialties
name
bio
href
fulfillment_id
}
mls_set
nrds_id
rental_corporation {
fulfillment_id
}
rental_management {
name
href
fulfillment_id
}
}
"""
HOME_FRAGMENT = """
fragment HomeData on Home {
property_id
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
monthly_fees {
description
display_amount
}
one_time_fees {
description
display_amount
}
parking {
unassigned_space_rent
assigned_spaces_available
description
assigned_space_rent
}
terms {
text
category
}
}
"""
HOMES_DATA = """%s
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
__typename schools { district { __typename id name } }
}
monthly_fees {
description
display_amount
}
one_time_fees {
description
display_amount
}
parking {
unassigned_space_rent
assigned_spaces_available
description
assigned_space_rent
}
terms {
text
category
}
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
estimates {
__typename
currentValues: current_values {
__typename
source { __typename type name }
estimate
estimateHigh: estimate_high
estimateLow: estimate_low
date
isBestHomeValue: isbest_homevalue
}
}
}""" % _SEARCH_HOMES_DATA_BASE
SEARCH_HOMES_DATA = """%s
current_estimates {
__typename
source {
__typename
type
name
}
estimate
estimateHigh: estimate_high
estimateLow: estimate_low
date
isBestHomeValue: isbest_homevalue
}
}""" % _SEARCH_HOMES_DATA_BASE
GENERAL_RESULTS_QUERY = """{
count
total
results %s
}""" % SEARCH_HOMES_DATA

View File

@ -0,0 +1,158 @@
import json
from ..models import Property, Address, PropertyType, Building
from .. import Scraper
from typing import Any
class RedfinScraper(Scraper):
def __init__(self, scraper_input):
super().__init__(scraper_input)
self.listing_type = scraper_input.listing_type
def _handle_location(self):
url = "https://www.redfin.com/stingray/do/location-autocomplete?v=2&al=1&location={}".format(
self.location
)
response = self.session.get(url)
response_json = json.loads(response.text.replace("{}&&", ""))
def get_region_type(match_type: str):
if match_type == "4":
return "2" #: zip
elif match_type == "2":
return "6" #: city
elif match_type == "1":
return "address" #: address, needs to be handled differently
if response_json["payload"]["exactMatch"] is not None:
target = response_json["payload"]["exactMatch"]
else:
target = response_json["payload"]["sections"][0]["rows"][0]
return target["id"].split("_")[1], get_region_type(target["type"])
def _parse_home(self, home: dict, single_search: bool = False) -> Property:
def get_value(key: str) -> Any | None:
if key in home and "value" in home[key]:
return home[key]["value"]
if not single_search:
address = Address(
address_one=get_value("streetLine"),
city=home["city"],
state=home["state"],
zip_code=home["zip"],
)
else:
address_info = home["streetAddress"]
address = Address(
address_one=address_info["assembledAddress"],
city=home["city"],
state=home["state"],
zip_code=home["zip"],
)
url = "https://www.redfin.com{}".format(home["url"])
property_type = home["propertyType"] if "propertyType" in home else None
lot_size_data = home.get("lotSize")
if not isinstance(lot_size_data, int):
lot_size = (
lot_size_data.get("value", None)
if isinstance(lot_size_data, dict)
else None
)
else:
lot_size = lot_size_data
return Property(
site_name=self.site_name,
listing_type=self.listing_type,
address=address,
url=url,
beds=home["beds"] if "beds" in home else None,
baths=home["baths"] if "baths" in home else None,
stories=home["stories"] if "stories" in home else None,
agent_name=get_value("listingAgent"),
description=home["listingRemarks"] if "listingRemarks" in home else None,
year_built=get_value("yearBuilt")
if not single_search
else home["yearBuilt"],
square_feet=get_value("sqFt"),
lot_size=lot_size,
property_type=PropertyType.from_int_code(home.get("propertyType")),
price_per_square_foot=get_value("pricePerSqFt"),
price=get_value("price"),
mls_id=get_value("mlsId"),
)
def _parse_building(self, building: dict) -> Building:
return Building(
address=Address(
address_one=" ".join(
[
building['address']['streetNumber'],
building['address']['directionalPrefix'],
building['address']['streetName'],
building['address']['streetType'],
]
),
city=building['address']['city'],
state=building['address']['stateOrProvinceCode'],
zip_code=building['address']['postalCode'],
address_two=" ".join(
[
building['address']['unitType'],
building['address']['unitValue'],
]
)
),
site_name=self.site_name,
url="https://www.redfin.com{}".format(building["url"]),
listing_type=self.listing_type,
num_units=building["numUnitsForSale"],
)
def handle_address(self, home_id: str):
"""
EPs:
https://www.redfin.com/stingray/api/home/details/initialInfo?al=1&path=/TX/Austin/70-Rainey-St-78701/unit-1608/home/147337694
https://www.redfin.com/stingray/api/home/details/mainHouseInfoPanelInfo?propertyId=147337694&accessLevel=3
https://www.redfin.com/stingray/api/home/details/aboveTheFold?propertyId=147337694&accessLevel=3
https://www.redfin.com/stingray/api/home/details/belowTheFold?propertyId=147337694&accessLevel=3
"""
url = "https://www.redfin.com/stingray/api/home/details/aboveTheFold?propertyId={}&accessLevel=3".format(
home_id
)
response = self.session.get(url)
response_json = json.loads(response.text.replace("{}&&", ""))
parsed_home = self._parse_home(
response_json["payload"]["addressSectionInfo"], single_search=True
)
return [parsed_home]
def search(self):
region_id, region_type = self._handle_location()
if region_type == "address":
home_id = region_id
return self.handle_address(home_id)
url = "https://www.redfin.com/stingray/api/gis?al=1&region_id={}&region_type={}".format(
region_id, region_type
)
response = self.session.get(url)
response_json = json.loads(response.text.replace("{}&&", ""))
homes = [
self._parse_home(home) for home in response_json["payload"]["homes"]
] + [
self._parse_building(building) for building in response_json["payload"]["buildings"].values()
]
return homes

View File

@ -0,0 +1,210 @@
import re
import json
from ..models import Property, Address, Building, ListingType, PropertyType
from ....exceptions import NoResultsFound, PropertyNotFound
from .. import Scraper
class ZillowScraper(Scraper):
def __init__(self, scraper_input):
super().__init__(scraper_input)
self.listing_type = scraper_input.listing_type
if self.listing_type == ListingType.FOR_SALE:
self.url = f"https://www.zillow.com/homes/for_sale/{self.location}_rb/"
elif self.listing_type == ListingType.FOR_RENT:
self.url = f"https://www.zillow.com/homes/for_rent/{self.location}_rb/"
def search(self):
resp = self.session.get(self.url, headers=self._get_headers())
resp.raise_for_status()
content = resp.text
match = re.search(
r'<script id="__NEXT_DATA__" type="application/json">(.*?)</script>',
content,
re.DOTALL,
)
if not match:
raise NoResultsFound(
"No results were found for Zillow with the given Location."
)
json_str = match.group(1)
data = json.loads(json_str)
if "searchPageState" in data["props"]["pageProps"]:
houses = data["props"]["pageProps"]["searchPageState"]["cat1"][
"searchResults"
]["listResults"]
return [self._parse_home(house) for house in houses]
elif "gdpClientCache" in data["props"]["pageProps"]:
gdp_client_cache = json.loads(data["props"]["pageProps"]["gdpClientCache"])
main_key = list(gdp_client_cache.keys())[0]
property_data = gdp_client_cache[main_key]["property"]
property = self._get_single_property_page(property_data)
return [property]
raise PropertyNotFound("Specific property data not found in the response.")
def _parse_home(self, home: dict):
"""
This method is used when a user enters a generic location & zillow returns more than one property
"""
url = (
f"https://www.zillow.com{home['detailUrl']}"
if "zillow.com" not in home["detailUrl"]
else home["detailUrl"]
)
if "hdpData" in home and "homeInfo" in home["hdpData"]:
price_data = self._extract_price(home)
address = self._extract_address(home)
agent_name = self._extract_agent_name(home)
beds = home["hdpData"]["homeInfo"]["bedrooms"]
baths = home["hdpData"]["homeInfo"]["bathrooms"]
property_type = home["hdpData"]["homeInfo"].get("homeType")
return Property(
site_name=self.site_name,
address=address,
agent_name=agent_name,
url=url,
beds=beds,
baths=baths,
listing_type=self.listing_type,
property_type=PropertyType(property_type),
**price_data,
)
else:
keys = ("addressStreet", "addressCity", "addressState", "addressZipcode")
address_one, city, state, zip_code = (home[key] for key in keys)
address_one, address_two = self._parse_address_two(address_one)
address = Address(address_one, city, state, zip_code, address_two)
building_info = self._extract_building_info(home)
return Building(
site_name=self.site_name, address=address, url=url, **building_info
)
def _get_single_property_page(self, property_data: dict):
"""
This method is used when a user enters the exact location & zillow returns just one property
"""
url = (
f"https://www.zillow.com{property_data['hdpUrl']}"
if "zillow.com" not in property_data["hdpUrl"]
else property_data["hdpUrl"]
)
address_data = property_data["address"]
address_one, address_two = self._parse_address_two(
address_data["streetAddress"]
)
address = Address(
address_one=address_one,
address_two=address_two,
city=address_data["city"],
state=address_data["state"],
zip_code=address_data["zipcode"],
)
property_type = property_data.get("homeType", None)
return Property(
site_name=self.site_name,
address=address,
url=url,
beds=property_data.get("bedrooms", None),
baths=property_data.get("bathrooms", None),
year_built=property_data.get("yearBuilt", None),
price=property_data.get("price", None),
lot_size=property_data.get("lotSize", None),
agent_name=property_data.get("attributionInfo", {}).get("agentName", None),
stories=property_data.get("resoFacts", {}).get("stories", None),
description=property_data.get("description", None),
mls_id=property_data.get("attributionInfo", {}).get("mlsId", None),
price_per_square_foot=property_data.get("resoFacts", {}).get(
"pricePerSquareFoot", None
),
square_feet=property_data.get("livingArea", None),
property_type=PropertyType(property_type),
listing_type=self.listing_type,
)
def _extract_building_info(self, home: dict) -> dict:
num_units = len(home["units"])
prices = [
int(unit["price"].replace("$", "").replace(",", "").split("+")[0])
for unit in home["units"]
]
return {
"listing_type": self.listing_type,
"num_units": len(home["units"]),
"min_unit_price": min(
(
int(unit["price"].replace("$", "").replace(",", "").split("+")[0])
for unit in home["units"]
)
),
"max_unit_price": max(
(
int(unit["price"].replace("$", "").replace(",", "").split("+")[0])
for unit in home["units"]
)
),
"avg_unit_price": sum(prices) // len(prices) if num_units else None,
}
@staticmethod
def _extract_price(home: dict) -> dict:
price = int(home["hdpData"]["homeInfo"]["priceForHDP"])
square_feet = home["hdpData"]["homeInfo"].get("livingArea")
lot_size = home["hdpData"]["homeInfo"].get("lotAreaValue")
price_per_square_foot = price // square_feet if square_feet and price else None
return {
k: v
for k, v in locals().items()
if k in ["price", "square_feet", "lot_size", "price_per_square_foot"]
}
@staticmethod
def _extract_agent_name(home: dict) -> str | None:
broker_str = home.get("brokerName", "")
match = re.search(r"Listing by: (.+)", broker_str)
return match.group(1) if match else None
@staticmethod
def _parse_address_two(address_one: str):
apt_match = re.search(r"(APT\s*.+|#[\s\S]+)$", address_one, re.I)
address_two = apt_match.group().strip() if apt_match else None
address_one = (
address_one.replace(address_two, "").strip() if address_two else address_one
)
return address_one, address_two
@staticmethod
def _extract_address(home: dict) -> Address:
keys = ("streetAddress", "city", "state", "zipcode")
address_one, city, state, zip_code = (
home["hdpData"]["homeInfo"][key] for key in keys
)
address_one, address_two = ZillowScraper._parse_address_two(address_one)
return Address(address_one, city, state, zip_code, address_two=address_two)
@staticmethod
def _get_headers():
return {
"authority": "parser-external.geo.moveaws.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"origin": "https://www.zillow.com",
"referer": "https://www.zillow.com/",
"sec-ch-ua": '"Chromium";v="116", "Not)A;Brand";v="24", "Google Chrome";v="116"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",
}

View File

@ -1,14 +1,14 @@
class InvalidSite(Exception):
"""Raised when a provided site is does not exist."""
class InvalidListingType(Exception): class InvalidListingType(Exception):
"""Raised when a provided listing type is does not exist.""" """Raised when a provided listing type is does not exist."""
class InvalidDate(Exception): class NoResultsFound(Exception):
"""Raised when only one of date_from or date_to is provided or not in the correct format. ex: 2023-10-23""" """Raised when no results are found for the given location"""
class AuthenticationError(Exception): class PropertyNotFound(Exception):
"""Raised when there is an issue with the authentication process.""" """Raised when no property is found for the given address"""
def __init__(self, *args, response):
super().__init__(*args)
self.response = response

View File

@ -1,166 +0,0 @@
from __future__ import annotations
import pandas as pd
from datetime import datetime
from .core.scrapers.models import Property, ListingType, Advertisers
from .exceptions import InvalidListingType, InvalidDate
ordered_properties = [
"property_url",
"property_id",
"listing_id",
"mls",
"mls_id",
"status",
"text",
"style",
"full_street_line",
"street",
"unit",
"city",
"state",
"zip_code",
"beds",
"full_baths",
"half_baths",
"sqft",
"year_built",
"days_on_mls",
"list_price",
"list_price_min",
"list_price_max",
"list_date",
"sold_price",
"last_sold_date",
"assessed_value",
"estimated_value",
"tax",
"tax_history",
"new_construction",
"lot_sqft",
"price_per_sqft",
"latitude",
"longitude",
"neighborhoods",
"county",
"fips_code",
"stories",
"hoa_fee",
"parking_garage",
"agent_id",
"agent_name",
"agent_email",
"agent_phones",
"agent_mls_set",
"agent_nrds_id",
"broker_id",
"broker_name",
"builder_id",
"builder_name",
"office_id",
"office_mls_set",
"office_name",
"office_email",
"office_phones",
"nearby_schools",
"primary_photo",
"alt_photos",
]
def process_result(result: Property) -> pd.DataFrame:
prop_data = {prop: None for prop in ordered_properties}
prop_data.update(result.__dict__)
if "address" in prop_data:
address_data = prop_data["address"]
prop_data["full_street_line"] = address_data.full_line
prop_data["street"] = address_data.street
prop_data["unit"] = address_data.unit
prop_data["city"] = address_data.city
prop_data["state"] = address_data.state
prop_data["zip_code"] = address_data.zip
if "advertisers" in prop_data and prop_data.get("advertisers"):
advertiser_data: Advertisers | None = prop_data["advertisers"]
if advertiser_data.agent:
agent_data = advertiser_data.agent
prop_data["agent_id"] = agent_data.uuid
prop_data["agent_name"] = agent_data.name
prop_data["agent_email"] = agent_data.email
prop_data["agent_phones"] = agent_data.phones
prop_data["agent_mls_set"] = agent_data.mls_set
prop_data["agent_nrds_id"] = agent_data.nrds_id
if advertiser_data.broker:
broker_data = advertiser_data.broker
prop_data["broker_id"] = broker_data.uuid
prop_data["broker_name"] = broker_data.name
if advertiser_data.builder:
builder_data = advertiser_data.builder
prop_data["builder_id"] = builder_data.uuid
prop_data["builder_name"] = builder_data.name
if advertiser_data.office:
office_data = advertiser_data.office
prop_data["office_id"] = office_data.uuid
prop_data["office_name"] = office_data.name
prop_data["office_email"] = office_data.email
prop_data["office_phones"] = office_data.phones
prop_data["office_mls_set"] = office_data.mls_set
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
prop_data["nearby_schools"] = ", ".join(set(prop_data["nearby_schools"])) if prop_data["nearby_schools"] else None
description = result.description
if description:
prop_data["primary_photo"] = description.primary_photo
prop_data["alt_photos"] = ", ".join(description.alt_photos) if description.alt_photos else None
prop_data["style"] = (
description.style
if isinstance(description.style, str)
else description.style.value if description.style else None
)
prop_data["beds"] = description.beds
prop_data["full_baths"] = description.baths_full
prop_data["half_baths"] = description.baths_half
prop_data["sqft"] = description.sqft
prop_data["lot_sqft"] = description.lot_sqft
prop_data["sold_price"] = description.sold_price
prop_data["year_built"] = description.year_built
prop_data["parking_garage"] = description.garage
prop_data["stories"] = description.stories
prop_data["text"] = description.text
properties_df = pd.DataFrame([prop_data])
properties_df = properties_df.reindex(columns=ordered_properties)
return properties_df[ordered_properties]
def validate_input(listing_type: str) -> None:
if listing_type.upper() not in ListingType.__members__:
raise InvalidListingType(f"Provided listing type, '{listing_type}', does not exist.")
def validate_dates(date_from: str | None, date_to: str | None) -> None:
if isinstance(date_from, str) != isinstance(date_to, str):
raise InvalidDate("Both date_from and date_to must be provided.")
if date_from and date_to:
try:
date_from_obj = datetime.strptime(date_from, "%Y-%m-%d")
date_to_obj = datetime.strptime(date_to, "%Y-%m-%d")
if date_to_obj < date_from_obj:
raise InvalidDate("date_to must be after date_from.")
except ValueError:
raise InvalidDate(f"Invalid date format or range")
def validate_limit(limit: int) -> None:
#: 1 -> 10000 limit
if limit is not None and (limit < 1 or limit > 10000):
raise ValueError("Property limit must be between 1 and 10,000.")

600
poetry.lock generated
View File

@ -1,15 +1,4 @@
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand. # This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand.
[[package]]
name = "annotated-types"
version = "0.7.0"
description = "Reusable constraint types to use with typing.Annotated"
optional = false
python-versions = ">=3.8"
files = [
{file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"},
{file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"},
]
[[package]] [[package]]
name = "certifi" name = "certifi"
@ -22,114 +11,88 @@ files = [
{file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"}, {file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"},
] ]
[[package]]
name = "cfgv"
version = "3.4.0"
description = "Validate configuration and produce human readable error messages."
optional = false
python-versions = ">=3.8"
files = [
{file = "cfgv-3.4.0-py2.py3-none-any.whl", hash = "sha256:b7265b1f29fd3316bfcd2b330d63d024f2bfd8bcb8b0272f8e19a504856c48f9"},
{file = "cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560"},
]
[[package]] [[package]]
name = "charset-normalizer" name = "charset-normalizer"
version = "3.3.0" version = "3.2.0"
description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
optional = false optional = false
python-versions = ">=3.7.0" python-versions = ">=3.7.0"
files = [ files = [
{file = "charset-normalizer-3.3.0.tar.gz", hash = "sha256:63563193aec44bce707e0c5ca64ff69fa72ed7cf34ce6e11d5127555756fd2f6"}, {file = "charset-normalizer-3.2.0.tar.gz", hash = "sha256:3bb3d25a8e6c0aedd251753a79ae98a093c7e7b471faa3aa9a93a81431987ace"},
{file = "charset_normalizer-3.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:effe5406c9bd748a871dbcaf3ac69167c38d72db8c9baf3ff954c344f31c4cbe"}, {file = "charset_normalizer-3.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b87549028f680ca955556e3bd57013ab47474c3124dc069faa0b6545b6c9710"},
{file = "charset_normalizer-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4162918ef3098851fcd8a628bf9b6a98d10c380725df9e04caf5ca6dd48c847a"}, {file = "charset_normalizer-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7c70087bfee18a42b4040bb9ec1ca15a08242cf5867c58726530bdf3945672ed"},
{file = "charset_normalizer-3.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0570d21da019941634a531444364f2482e8db0b3425fcd5ac0c36565a64142c8"}, {file = "charset_normalizer-3.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a103b3a7069b62f5d4890ae1b8f0597618f628b286b03d4bc9195230b154bfa9"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5707a746c6083a3a74b46b3a631d78d129edab06195a92a8ece755aac25a3f3d"}, {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94aea8eff76ee6d1cdacb07dd2123a68283cb5569e0250feab1240058f53b623"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:278c296c6f96fa686d74eb449ea1697f3c03dc28b75f873b65b5201806346a69"}, {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db901e2ac34c931d73054d9797383d0f8009991e723dab15109740a63e7f902a"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a4b71f4d1765639372a3b32d2638197f5cd5221b19531f9245fcc9ee62d38f56"}, {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0dac0ff919ba34d4df1b6131f59ce95b08b9065233446be7e459f95554c0dc8"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5969baeaea61c97efa706b9b107dcba02784b1601c74ac84f2a532ea079403e"}, {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:193cbc708ea3aca45e7221ae58f0fd63f933753a9bfb498a3b474878f12caaad"},
{file = "charset_normalizer-3.3.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3f93dab657839dfa61025056606600a11d0b696d79386f974e459a3fbc568ec"}, {file = "charset_normalizer-3.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09393e1b2a9461950b1c9a45d5fd251dc7c6f228acab64da1c9c0165d9c7765c"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:db756e48f9c5c607b5e33dd36b1d5872d0422e960145b08ab0ec7fd420e9d649"}, {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:baacc6aee0b2ef6f3d308e197b5d7a81c0e70b06beae1f1fcacffdbd124fe0e3"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:232ac332403e37e4a03d209a3f92ed9071f7d3dbda70e2a5e9cff1c4ba9f0678"}, {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:bf420121d4c8dce6b889f0e8e4ec0ca34b7f40186203f06a946fa0276ba54029"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e5c1502d4ace69a179305abb3f0bb6141cbe4714bc9b31d427329a95acfc8bdd"}, {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:c04a46716adde8d927adb9457bbe39cf473e1e2c2f5d0a16ceb837e5d841ad4f"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:2502dd2a736c879c0f0d3e2161e74d9907231e25d35794584b1ca5284e43f596"}, {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:aaf63899c94de41fe3cf934601b0f7ccb6b428c6e4eeb80da72c58eab077b19a"},
{file = "charset_normalizer-3.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23e8565ab7ff33218530bc817922fae827420f143479b753104ab801145b1d5b"}, {file = "charset_normalizer-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d62e51710986674142526ab9f78663ca2b0726066ae26b78b22e0f5e571238dd"},
{file = "charset_normalizer-3.3.0-cp310-cp310-win32.whl", hash = "sha256:1872d01ac8c618a8da634e232f24793883d6e456a66593135aeafe3784b0848d"}, {file = "charset_normalizer-3.2.0-cp310-cp310-win32.whl", hash = "sha256:04e57ab9fbf9607b77f7d057974694b4f6b142da9ed4a199859d9d4d5c63fe96"},
{file = "charset_normalizer-3.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:557b21a44ceac6c6b9773bc65aa1b4cc3e248a5ad2f5b914b91579a32e22204d"}, {file = "charset_normalizer-3.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:48021783bdf96e3d6de03a6e39a1171ed5bd7e8bb93fc84cc649d11490f87cea"},
{file = "charset_normalizer-3.3.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d7eff0f27edc5afa9e405f7165f85a6d782d308f3b6b9d96016c010597958e63"}, {file = "charset_normalizer-3.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4957669ef390f0e6719db3613ab3a7631e68424604a7b448f079bee145da6e09"},
{file = "charset_normalizer-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6a685067d05e46641d5d1623d7c7fdf15a357546cbb2f71b0ebde91b175ffc3e"}, {file = "charset_normalizer-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46fb8c61d794b78ec7134a715a3e564aafc8f6b5e338417cb19fe9f57a5a9bf2"},
{file = "charset_normalizer-3.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0d3d5b7db9ed8a2b11a774db2bbea7ba1884430a205dbd54a32d61d7c2a190fa"}, {file = "charset_normalizer-3.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f779d3ad205f108d14e99bb3859aa7dd8e9c68874617c72354d7ecaec2a054ac"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2935ffc78db9645cb2086c2f8f4cfd23d9b73cc0dc80334bc30aac6f03f68f8c"}, {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25c229a6ba38a35ae6e25ca1264621cc25d4d38dca2942a7fce0b67a4efe918"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fe359b2e3a7729010060fbca442ca225280c16e923b37db0e955ac2a2b72a05"}, {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2efb1bd13885392adfda4614c33d3b68dee4921fd0ac1d3988f8cbb7d589e72a"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:380c4bde80bce25c6e4f77b19386f5ec9db230df9f2f2ac1e5ad7af2caa70459"}, {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f30b48dd7fa1474554b0b0f3fdfdd4c13b5c737a3c6284d3cdc424ec0ffff3a"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0d1e3732768fecb052d90d62b220af62ead5748ac51ef61e7b32c266cac9293"}, {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:246de67b99b6851627d945db38147d1b209a899311b1305dd84916f2b88526c6"},
{file = "charset_normalizer-3.3.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1b2919306936ac6efb3aed1fbf81039f7087ddadb3160882a57ee2ff74fd2382"}, {file = "charset_normalizer-3.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd9b3b31adcb054116447ea22caa61a285d92e94d710aa5ec97992ff5eb7cf3"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f8888e31e3a85943743f8fc15e71536bda1c81d5aa36d014a3c0c44481d7db6e"}, {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:8c2f5e83493748286002f9369f3e6607c565a6a90425a3a1fef5ae32a36d749d"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:82eb849f085624f6a607538ee7b83a6d8126df6d2f7d3b319cb837b289123078"}, {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3170c9399da12c9dc66366e9d14da8bf7147e1e9d9ea566067bbce7bb74bd9c2"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7b8b8bf1189b3ba9b8de5c8db4d541b406611a71a955bbbd7385bbc45fcb786c"}, {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7a4826ad2bd6b07ca615c74ab91f32f6c96d08f6fcc3902ceeedaec8cdc3bcd6"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:5adf257bd58c1b8632046bbe43ee38c04e1038e9d37de9c57a94d6bd6ce5da34"}, {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:3b1613dd5aee995ec6d4c69f00378bbd07614702a315a2cf6c1d21461fe17c23"},
{file = "charset_normalizer-3.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c350354efb159b8767a6244c166f66e67506e06c8924ed74669b2c70bc8735b1"}, {file = "charset_normalizer-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9e608aafdb55eb9f255034709e20d5a83b6d60c054df0802fa9c9883d0a937aa"},
{file = "charset_normalizer-3.3.0-cp311-cp311-win32.whl", hash = "sha256:02af06682e3590ab952599fbadac535ede5d60d78848e555aa58d0c0abbde786"}, {file = "charset_normalizer-3.2.0-cp311-cp311-win32.whl", hash = "sha256:f2a1d0fd4242bd8643ce6f98927cf9c04540af6efa92323e9d3124f57727bfc1"},
{file = "charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:86d1f65ac145e2c9ed71d8ffb1905e9bba3a91ae29ba55b4c46ae6fc31d7c0d4"}, {file = "charset_normalizer-3.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:681eb3d7e02e3c3655d1b16059fbfb605ac464c834a0c629048a30fad2b27489"},
{file = "charset_normalizer-3.3.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:3b447982ad46348c02cb90d230b75ac34e9886273df3a93eec0539308a6296d7"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c57921cda3a80d0f2b8aec7e25c8aa14479ea92b5b51b6876d975d925a2ea346"},
{file = "charset_normalizer-3.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:abf0d9f45ea5fb95051c8bfe43cb40cda383772f7e5023a83cc481ca2604d74e"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41b25eaa7d15909cf3ac4c96088c1f266a9a93ec44f87f1d13d4a0e86c81b982"},
{file = "charset_normalizer-3.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b09719a17a2301178fac4470d54b1680b18a5048b481cb8890e1ef820cb80455"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f058f6963fd82eb143c692cecdc89e075fa0828db2e5b291070485390b2f1c9c"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3d9b48ee6e3967b7901c052b670c7dda6deb812c309439adaffdec55c6d7b78"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7647ebdfb9682b7bb97e2a5e7cb6ae735b1c25008a70b906aecca294ee96cf4"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:edfe077ab09442d4ef3c52cb1f9dab89bff02f4524afc0acf2d46be17dc479f5"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eef9df1eefada2c09a5e7a40991b9fc6ac6ef20b1372abd48d2794a316dc0449"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3debd1150027933210c2fc321527c2299118aa929c2f5a0a80ab6953e3bd1908"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e03b8895a6990c9ab2cdcd0f2fe44088ca1c65ae592b8f795c3294af00a461c3"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86f63face3a527284f7bb8a9d4f78988e3c06823f7bea2bd6f0e0e9298ca0403"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:ee4006268ed33370957f55bf2e6f4d263eaf4dc3cfc473d1d90baff6ed36ce4a"},
{file = "charset_normalizer-3.3.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:24817cb02cbef7cd499f7c9a2735286b4782bd47a5b3516a0e84c50eab44b98e"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c4983bf937209c57240cff65906b18bb35e64ae872da6a0db937d7b4af845dd7"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c71f16da1ed8949774ef79f4a0260d28b83b3a50c6576f8f4f0288d109777989"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:3bb7fda7260735efe66d5107fb7e6af6a7c04c7fce9b2514e04b7a74b06bf5dd"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9cf3126b85822c4e53aa28c7ec9869b924d6fcfb76e77a45c44b83d91afd74f9"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:72814c01533f51d68702802d74f77ea026b5ec52793c791e2da806a3844a46c3"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:b3b2316b25644b23b54a6f6401074cebcecd1244c0b8e80111c9a3f1c8e83d65"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:70c610f6cbe4b9fce272c407dd9d07e33e6bf7b4aa1b7ffb6f6ded8e634e3592"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:03680bb39035fbcffe828eae9c3f8afc0428c91d38e7d61aa992ef7a59fb120e"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-win32.whl", hash = "sha256:a401b4598e5d3f4a9a811f3daf42ee2291790c7f9d74b18d75d6e21dda98a1a1"},
{file = "charset_normalizer-3.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4cc152c5dd831641e995764f9f0b6589519f6f5123258ccaca8c6d34572fefa8"}, {file = "charset_normalizer-3.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c0b21078a4b56965e2b12f247467b234734491897e99c1d51cee628da9786959"},
{file = "charset_normalizer-3.3.0-cp312-cp312-win32.whl", hash = "sha256:b8f3307af845803fb0b060ab76cf6dd3a13adc15b6b451f54281d25911eb92df"}, {file = "charset_normalizer-3.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:95eb302ff792e12aba9a8b8f8474ab229a83c103d74a750ec0bd1c1eea32e669"},
{file = "charset_normalizer-3.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:8eaf82f0eccd1505cf39a45a6bd0a8cf1c70dcfc30dba338207a969d91b965c0"}, {file = "charset_normalizer-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a100c6d595a7f316f1b6f01d20815d916e75ff98c27a01ae817439ea7726329"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dc45229747b67ffc441b3de2f3ae5e62877a282ea828a5bdb67883c4ee4a8810"}, {file = "charset_normalizer-3.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6339d047dab2780cc6220f46306628e04d9750f02f983ddb37439ca47ced7149"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f4a0033ce9a76e391542c182f0d48d084855b5fcba5010f707c8e8c34663d77"}, {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4b749b9cc6ee664a3300bb3a273c1ca8068c46be705b6c31cf5d276f8628a94"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ada214c6fa40f8d800e575de6b91a40d0548139e5dc457d2ebb61470abf50186"}, {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a38856a971c602f98472050165cea2cdc97709240373041b69030be15047691f"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b1121de0e9d6e6ca08289583d7491e7fcb18a439305b34a30b20d8215922d43c"}, {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f87f746ee241d30d6ed93969de31e5ffd09a2961a051e60ae6bddde9ec3583aa"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1063da2c85b95f2d1a430f1c33b55c9c17ffaf5e612e10aeaad641c55a9e2b9d"}, {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89f1b185a01fe560bc8ae5f619e924407efca2191b56ce749ec84982fc59a32a"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:70f1d09c0d7748b73290b29219e854b3207aea922f839437870d8cc2168e31cc"}, {file = "charset_normalizer-3.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1c8a2f4c69e08e89632defbfabec2feb8a8d99edc9f89ce33c4b9e36ab63037"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:250c9eb0f4600361dd80d46112213dff2286231d92d3e52af1e5a6083d10cad9"}, {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2f4ac36d8e2b4cc1aa71df3dd84ff8efbe3bfb97ac41242fbcfc053c67434f46"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:750b446b2ffce1739e8578576092179160f6d26bd5e23eb1789c4d64d5af7dc7"}, {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a386ebe437176aab38c041de1260cd3ea459c6ce5263594399880bbc398225b2"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:fc52b79d83a3fe3a360902d3f5d79073a993597d48114c29485e9431092905d8"}, {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:ccd16eb18a849fd8dcb23e23380e2f0a354e8daa0c984b8a732d9cfaba3a776d"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:588245972aca710b5b68802c8cad9edaa98589b1b42ad2b53accd6910dad3545"}, {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:e6a5bf2cba5ae1bb80b154ed68a3cfa2fa00fde979a7f50d6598d3e17d9ac20c"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e39c7eb31e3f5b1f88caff88bcff1b7f8334975b46f6ac6e9fc725d829bc35d4"}, {file = "charset_normalizer-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:45de3f87179c1823e6d9e32156fb14c1927fcc9aba21433f088fdfb555b77c10"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-win32.whl", hash = "sha256:abecce40dfebbfa6abf8e324e1860092eeca6f7375c8c4e655a8afb61af58f2c"}, {file = "charset_normalizer-3.2.0-cp38-cp38-win32.whl", hash = "sha256:1000fba1057b92a65daec275aec30586c3de2401ccdcd41f8a5c1e2c87078706"},
{file = "charset_normalizer-3.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:24a91a981f185721542a0b7c92e9054b7ab4fea0508a795846bc5b0abf8118d4"}, {file = "charset_normalizer-3.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:8b2c760cfc7042b27ebdb4a43a4453bd829a5742503599144d54a032c5dc7e9e"},
{file = "charset_normalizer-3.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:67b8cc9574bb518ec76dc8e705d4c39ae78bb96237cb533edac149352c1f39fe"}, {file = "charset_normalizer-3.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:855eafa5d5a2034b4621c74925d89c5efef61418570e5ef9b37717d9c796419c"},
{file = "charset_normalizer-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac71b2977fb90c35d41c9453116e283fac47bb9096ad917b8819ca8b943abecd"}, {file = "charset_normalizer-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:203f0c8871d5a7987be20c72442488a0b8cfd0f43b7973771640fc593f56321f"},
{file = "charset_normalizer-3.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3ae38d325b512f63f8da31f826e6cb6c367336f95e418137286ba362925c877e"}, {file = "charset_normalizer-3.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e857a2232ba53ae940d3456f7533ce6ca98b81917d47adc3c7fd55dad8fab858"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:542da1178c1c6af8873e143910e2269add130a299c9106eef2594e15dae5e482"}, {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e86d77b090dbddbe78867a0275cb4df08ea195e660f1f7f13435a4649e954e5"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:30a85aed0b864ac88309b7d94be09f6046c834ef60762a8833b660139cfbad13"}, {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4fb39a81950ec280984b3a44f5bd12819953dc5fa3a7e6fa7a80db5ee853952"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aae32c93e0f64469f74ccc730a7cb21c7610af3a775157e50bbd38f816536b38"}, {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dee8e57f052ef5353cf608e0b4c871aee320dd1b87d351c28764fc0ca55f9f4"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15b26ddf78d57f1d143bdf32e820fd8935d36abe8a25eb9ec0b5a71c82eb3895"}, {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8700f06d0ce6f128de3ccdbc1acaea1ee264d2caa9ca05daaf492fde7c2a7200"},
{file = "charset_normalizer-3.3.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f5d10bae5d78e4551b7be7a9b29643a95aded9d0f602aa2ba584f0388e7a557"}, {file = "charset_normalizer-3.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1920d4ff15ce893210c1f0c0e9d19bfbecb7983c76b33f046c13a8ffbd570252"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:249c6470a2b60935bafd1d1d13cd613f8cd8388d53461c67397ee6a0f5dce741"}, {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c1c76a1743432b4b60ab3358c937a3fe1341c828ae6194108a94c69028247f22"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c5a74c359b2d47d26cdbbc7845e9662d6b08a1e915eb015d044729e92e7050b7"}, {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f7560358a6811e52e9c4d142d497f1a6e10103d3a6881f18d04dbce3729c0e2c"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:b5bcf60a228acae568e9911f410f9d9e0d43197d030ae5799e20dca8df588287"}, {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:c8063cf17b19661471ecbdb3df1c84f24ad2e389e326ccaf89e3fb2484d8dd7e"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:187d18082694a29005ba2944c882344b6748d5be69e3a89bf3cc9d878e548d5a"}, {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:cd6dbe0238f7743d0efe563ab46294f54f9bc8f4b9bcf57c3c666cc5bc9d1299"},
{file = "charset_normalizer-3.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:81bf654678e575403736b85ba3a7867e31c2c30a69bc57fe88e3ace52fb17b89"}, {file = "charset_normalizer-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1249cbbf3d3b04902ff081ffbb33ce3377fa6e4c7356f759f3cd076cc138d020"},
{file = "charset_normalizer-3.3.0-cp38-cp38-win32.whl", hash = "sha256:85a32721ddde63c9df9ebb0d2045b9691d9750cb139c161c80e500d210f5e26e"}, {file = "charset_normalizer-3.2.0-cp39-cp39-win32.whl", hash = "sha256:6c409c0deba34f147f77efaa67b8e4bb83d2f11c8806405f76397ae5b8c0d1c9"},
{file = "charset_normalizer-3.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:468d2a840567b13a590e67dd276c570f8de00ed767ecc611994c301d0f8c014f"}, {file = "charset_normalizer-3.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:7095f6fbfaa55defb6b733cfeb14efaae7a29f0b59d8cf213be4e7ca0b857b80"},
{file = "charset_normalizer-3.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e0fc42822278451bc13a2e8626cf2218ba570f27856b536e00cfa53099724828"}, {file = "charset_normalizer-3.2.0-py3-none-any.whl", hash = "sha256:8e098148dd37b4ce3baca71fb394c81dc5d9c7728c95df695d2dca218edf40e6"},
{file = "charset_normalizer-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:09c77f964f351a7369cc343911e0df63e762e42bac24cd7d18525961c81754f4"},
{file = "charset_normalizer-3.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:12ebea541c44fdc88ccb794a13fe861cc5e35d64ed689513a5c03d05b53b7c82"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:805dfea4ca10411a5296bcc75638017215a93ffb584c9e344731eef0dcfb026a"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96c2b49eb6a72c0e4991d62406e365d87067ca14c1a729a870d22354e6f68115"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aaf7b34c5bc56b38c931a54f7952f1ff0ae77a2e82496583b247f7c969eb1479"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:619d1c96099be5823db34fe89e2582b336b5b074a7f47f819d6b3a57ff7bdb86"},
{file = "charset_normalizer-3.3.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0ac5e7015a5920cfce654c06618ec40c33e12801711da6b4258af59a8eff00a"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:93aa7eef6ee71c629b51ef873991d6911b906d7312c6e8e99790c0f33c576f89"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7966951325782121e67c81299a031f4c115615e68046f79b85856b86ebffc4cd"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:02673e456dc5ab13659f85196c534dc596d4ef260e4d86e856c3b2773ce09843"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:c2af80fb58f0f24b3f3adcb9148e6203fa67dd3f61c4af146ecad033024dde43"},
{file = "charset_normalizer-3.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:153e7b6e724761741e0974fc4dcd406d35ba70b92bfe3fedcb497226c93b9da7"},
{file = "charset_normalizer-3.3.0-cp39-cp39-win32.whl", hash = "sha256:d47ecf253780c90ee181d4d871cd655a789da937454045b17b5798da9393901a"},
{file = "charset_normalizer-3.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:d97d85fa63f315a8bdaba2af9a6a686e0eceab77b3089af45133252618e70884"},
{file = "charset_normalizer-3.3.0-py3-none-any.whl", hash = "sha256:e46cd37076971c1040fc8c41273a8b3e2c624ce4f2be3f5dfcb7a430c1d3acc2"},
] ]
[[package]] [[package]]
@ -143,17 +106,6 @@ files = [
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
] ]
[[package]]
name = "distlib"
version = "0.3.8"
description = "Distribution utilities"
optional = false
python-versions = "*"
files = [
{file = "distlib-0.3.8-py2.py3-none-any.whl", hash = "sha256:034db59a0b96f8ca18035f36290806a9a6e6bd9d1ff91e45a7f172eb17e51784"},
{file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"},
]
[[package]] [[package]]
name = "exceptiongroup" name = "exceptiongroup"
version = "1.1.3" version = "1.1.3"
@ -168,36 +120,6 @@ files = [
[package.extras] [package.extras]
test = ["pytest (>=6)"] test = ["pytest (>=6)"]
[[package]]
name = "filelock"
version = "3.13.4"
description = "A platform independent file lock."
optional = false
python-versions = ">=3.8"
files = [
{file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"},
{file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"},
]
[package.extras]
docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"]
typing = ["typing-extensions (>=4.8)"]
[[package]]
name = "identify"
version = "2.5.35"
description = "File identification library for Python"
optional = false
python-versions = ">=3.8"
files = [
{file = "identify-2.5.35-py2.py3-none-any.whl", hash = "sha256:c4de0081837b211594f8e877a6b4fad7ca32bbfc1a9307fdd61c28bfe923f13e"},
{file = "identify-2.5.35.tar.gz", hash = "sha256:10a7ca245cfcd756a554a7288159f72ff105ad233c7c4b9c6f0f4d108f5f6791"},
]
[package.extras]
license = ["ukkonen"]
[[package]] [[package]]
name = "idna" name = "idna"
version = "3.4" version = "3.4"
@ -221,19 +143,39 @@ files = [
] ]
[[package]] [[package]]
name = "nodeenv" name = "numpy"
version = "1.8.0" version = "1.25.2"
description = "Node.js virtual environment builder" description = "Fundamental package for array computing in Python"
optional = false optional = false
python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*" python-versions = ">=3.9"
files = [ files = [
{file = "nodeenv-1.8.0-py2.py3-none-any.whl", hash = "sha256:df865724bb3c3adc86b3876fa209771517b0cfe596beff01a92700e0e8be4cec"}, {file = "numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3"},
{file = "nodeenv-1.8.0.tar.gz", hash = "sha256:d51e0c37e64fbf47d017feac3145cdbb58836d7eee8c6f6d3b6880c5456227d2"}, {file = "numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187"},
{file = "numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357"},
{file = "numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9"},
{file = "numpy-1.25.2-cp310-cp310-win32.whl", hash = "sha256:7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044"},
{file = "numpy-1.25.2-cp310-cp310-win_amd64.whl", hash = "sha256:834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545"},
{file = "numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418"},
{file = "numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2"},
{file = "numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf"},
{file = "numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364"},
{file = "numpy-1.25.2-cp311-cp311-win32.whl", hash = "sha256:5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d"},
{file = "numpy-1.25.2-cp311-cp311-win_amd64.whl", hash = "sha256:5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4"},
{file = "numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3"},
{file = "numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca"},
{file = "numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295"},
{file = "numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f"},
{file = "numpy-1.25.2-cp39-cp39-win32.whl", hash = "sha256:2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01"},
{file = "numpy-1.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901"},
{file = "numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf"},
{file = "numpy-1.25.2.tar.gz", hash = "sha256:fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760"},
] ]
[package.dependencies]
setuptools = "*"
[[package]] [[package]]
name = "numpy" name = "numpy"
version = "1.26.0" version = "1.26.0"
@ -277,54 +219,47 @@ files = [
[[package]] [[package]]
name = "packaging" name = "packaging"
version = "23.2" version = "23.1"
description = "Core utilities for Python packages" description = "Core utilities for Python packages"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, {file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"},
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, {file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"},
] ]
[[package]] [[package]]
name = "pandas" name = "pandas"
version = "2.1.1" version = "2.1.0"
description = "Powerful data structures for data analysis, time series, and statistics" description = "Powerful data structures for data analysis, time series, and statistics"
optional = false optional = false
python-versions = ">=3.9" python-versions = ">=3.9"
files = [ files = [
{file = "pandas-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58d997dbee0d4b64f3cb881a24f918b5f25dd64ddf31f467bb9b67ae4c63a1e4"}, {file = "pandas-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:40dd20439ff94f1b2ed55b393ecee9cb6f3b08104c2c40b0cb7186a2f0046242"},
{file = "pandas-2.1.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02304e11582c5d090e5a52aec726f31fe3f42895d6bfc1f28738f9b64b6f0614"}, {file = "pandas-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d4f38e4fedeba580285eaac7ede4f686c6701a9e618d8a857b138a126d067f2f"},
{file = "pandas-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffa8f0966de2c22de408d0e322db2faed6f6e74265aa0856f3824813cf124363"}, {file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e6a0fe052cf27ceb29be9429428b4918f3740e37ff185658f40d8702f0b3e09"},
{file = "pandas-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1f84c144dee086fe4f04a472b5cd51e680f061adf75c1ae4fc3a9275560f8f4"}, {file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d81e1813191070440d4c7a413cb673052b3b4a984ffd86b8dd468c45742d3cc"},
{file = "pandas-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:75ce97667d06d69396d72be074f0556698c7f662029322027c226fd7a26965cb"}, {file = "pandas-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eb20252720b1cc1b7d0b2879ffc7e0542dd568f24d7c4b2347cb035206936421"},
{file = "pandas-2.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:4c3f32fd7c4dccd035f71734df39231ac1a6ff95e8bdab8d891167197b7018d2"}, {file = "pandas-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:38f74ef7ebc0ffb43b3d633e23d74882bce7e27bfa09607f3c5d3e03ffd9a4a5"},
{file = "pandas-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9e2959720b70e106bb1d8b6eadd8ecd7c8e99ccdbe03ee03260877184bb2877d"}, {file = "pandas-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cda72cc8c4761c8f1d97b169661f23a86b16fdb240bdc341173aee17e4d6cedd"},
{file = "pandas-2.1.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:25e8474a8eb258e391e30c288eecec565bfed3e026f312b0cbd709a63906b6f8"}, {file = "pandas-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d97daeac0db8c993420b10da4f5f5b39b01fc9ca689a17844e07c0a35ac96b4b"},
{file = "pandas-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8bd1685556f3374520466998929bade3076aeae77c3e67ada5ed2b90b4de7f0"}, {file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8c58b1113892e0c8078f006a167cc210a92bdae23322bb4614f2f0b7a4b510f"},
{file = "pandas-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc3657869c7902810f32bd072f0740487f9e030c1a3ab03e0af093db35a9d14e"}, {file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:629124923bcf798965b054a540f9ccdfd60f71361255c81fa1ecd94a904b9dd3"},
{file = "pandas-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:05674536bd477af36aa2effd4ec8f71b92234ce0cc174de34fd21e2ee99adbc2"}, {file = "pandas-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:70cf866af3ab346a10debba8ea78077cf3a8cd14bd5e4bed3d41555a3280041c"},
{file = "pandas-2.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:b407381258a667df49d58a1b637be33e514b07f9285feb27769cedb3ab3d0b3a"}, {file = "pandas-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d53c8c1001f6a192ff1de1efe03b31a423d0eee2e9e855e69d004308e046e694"},
{file = "pandas-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c747793c4e9dcece7bb20156179529898abf505fe32cb40c4052107a3c620b49"}, {file = "pandas-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86f100b3876b8c6d1a2c66207288ead435dc71041ee4aea789e55ef0e06408cb"},
{file = "pandas-2.1.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3bcad1e6fb34b727b016775bea407311f7721db87e5b409e6542f4546a4951ea"}, {file = "pandas-2.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28f330845ad21c11db51e02d8d69acc9035edfd1116926ff7245c7215db57957"},
{file = "pandas-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5ec7740f9ccb90aec64edd71434711f58ee0ea7f5ed4ac48be11cfa9abf7317"}, {file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9a6ccf0963db88f9b12df6720e55f337447aea217f426a22d71f4213a3099a6"},
{file = "pandas-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29deb61de5a8a93bdd033df328441a79fcf8dd3c12d5ed0b41a395eef9cd76f0"}, {file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d99e678180bc59b0c9443314297bddce4ad35727a1a2656dbe585fd78710b3b9"},
{file = "pandas-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4f99bebf19b7e03cf80a4e770a3e65eee9dd4e2679039f542d7c1ace7b7b1daa"}, {file = "pandas-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b31da36d376d50a1a492efb18097b9101bdbd8b3fbb3f49006e02d4495d4c644"},
{file = "pandas-2.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:84e7e910096416adec68075dc87b986ff202920fb8704e6d9c8c9897fe7332d6"}, {file = "pandas-2.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0164b85937707ec7f70b34a6c3a578dbf0f50787f910f21ca3b26a7fd3363437"},
{file = "pandas-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:366da7b0e540d1b908886d4feb3d951f2f1e572e655c1160f5fde28ad4abb750"}, {file = "pandas-2.1.0.tar.gz", hash = "sha256:62c24c7fc59e42b775ce0679cfa7b14a5f9bfb7643cfbe708c960699e05fb918"},
{file = "pandas-2.1.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e50e72b667415a816ac27dfcfe686dc5a0b02202e06196b943d54c4f9c7693e"},
{file = "pandas-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc1ab6a25da197f03ebe6d8fa17273126120874386b4ac11c1d687df288542dd"},
{file = "pandas-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0dbfea0dd3901ad4ce2306575c54348d98499c95be01b8d885a2737fe4d7a98"},
{file = "pandas-2.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0489b0e6aa3d907e909aef92975edae89b1ee1654db5eafb9be633b0124abe97"},
{file = "pandas-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:4cdb0fab0400c2cb46dafcf1a0fe084c8bb2480a1fa8d81e19d15e12e6d4ded2"},
{file = "pandas-2.1.1.tar.gz", hash = "sha256:fecb198dc389429be557cde50a2d46da8434a17fe37d7d41ff102e3987fd947b"},
] ]
[package.dependencies] [package.dependencies]
numpy = [ numpy = [
{version = ">=1.22.4", markers = "python_version < \"3.11\""}, {version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""}, {version = ">=1.23.2", markers = "python_version >= \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
] ]
python-dateutil = ">=2.8.2" python-dateutil = ">=2.8.2"
pytz = ">=2020.1" pytz = ">=2020.1"
@ -354,21 +289,6 @@ sql-other = ["SQLAlchemy (>=1.4.36)"]
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.8.0)"] xml = ["lxml (>=4.8.0)"]
[[package]]
name = "platformdirs"
version = "4.2.0"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = ">=3.8"
files = [
{file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"},
{file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"},
]
[package.extras]
docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"]
[[package]] [[package]]
name = "pluggy" name = "pluggy"
version = "1.3.0" version = "1.3.0"
@ -384,134 +304,6 @@ files = [
dev = ["pre-commit", "tox"] dev = ["pre-commit", "tox"]
testing = ["pytest", "pytest-benchmark"] testing = ["pytest", "pytest-benchmark"]
[[package]]
name = "pre-commit"
version = "3.7.0"
description = "A framework for managing and maintaining multi-language pre-commit hooks."
optional = false
python-versions = ">=3.9"
files = [
{file = "pre_commit-3.7.0-py2.py3-none-any.whl", hash = "sha256:5eae9e10c2b5ac51577c3452ec0a490455c45a0533f7960f993a0d01e59decab"},
{file = "pre_commit-3.7.0.tar.gz", hash = "sha256:e209d61b8acdcf742404408531f0c37d49d2c734fd7cff2d6076083d191cb060"},
]
[package.dependencies]
cfgv = ">=2.0.0"
identify = ">=1.0.0"
nodeenv = ">=0.11.1"
pyyaml = ">=5.1"
virtualenv = ">=20.10.0"
[[package]]
name = "pydantic"
version = "2.7.4"
description = "Data validation using Python type hints"
optional = false
python-versions = ">=3.8"
files = [
{file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"},
{file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"},
]
[package.dependencies]
annotated-types = ">=0.4.0"
pydantic-core = "2.18.4"
typing-extensions = ">=4.6.1"
[package.extras]
email = ["email-validator (>=2.0.0)"]
[[package]]
name = "pydantic-core"
version = "2.18.4"
description = "Core functionality for Pydantic validation and serialization"
optional = false
python-versions = ">=3.8"
files = [
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"},
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"},
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"},
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"},
{file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"},
{file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"},
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"},
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"},
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"},
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"},
{file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"},
{file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"},
{file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"},
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"},
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"},
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"},
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"},
{file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"},
{file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"},
{file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"},
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"},
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"},
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"},
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"},
{file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"},
{file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"},
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"},
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"},
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"},
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"},
{file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"},
{file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"},
{file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
]
[package.dependencies]
typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0"
[[package]] [[package]]
name = "pytest" name = "pytest"
version = "7.4.2" version = "7.4.2"
@ -559,66 +351,6 @@ files = [
{file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"},
] ]
[[package]]
name = "pyyaml"
version = "6.0.1"
description = "YAML parser and emitter for Python"
optional = false
python-versions = ">=3.6"
files = [
{file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
{file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
{file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"},
{file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"},
{file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"},
{file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"},
{file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"},
{file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"},
{file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"},
{file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
{file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
]
[[package]] [[package]]
name = "requests" name = "requests"
version = "2.31.0" version = "2.31.0"
@ -640,22 +372,6 @@ urllib3 = ">=1.21.1,<3"
socks = ["PySocks (>=1.5.6,!=1.5.7)"] socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "setuptools"
version = "69.5.1"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"},
{file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
[[package]] [[package]]
name = "six" name = "six"
version = "1.16.0" version = "1.16.0"
@ -667,21 +383,6 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
] ]
[[package]]
name = "tenacity"
version = "9.0.0"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.8"
files = [
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
]
[package.extras]
doc = ["reno", "sphinx"]
test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]] [[package]]
name = "tomli" name = "tomli"
version = "2.0.1" version = "2.0.1"
@ -693,17 +394,6 @@ files = [
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
] ]
[[package]]
name = "typing-extensions"
version = "4.12.2"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]] [[package]]
name = "tzdata" name = "tzdata"
version = "2023.3" version = "2023.3"
@ -717,13 +407,13 @@ files = [
[[package]] [[package]]
name = "urllib3" name = "urllib3"
version = "2.0.6" version = "2.0.4"
description = "HTTP library with thread-safe connection pooling, file post, and more." description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "urllib3-2.0.6-py3-none-any.whl", hash = "sha256:7a7c7003b000adf9e7ca2a377c9688bbc54ed41b985789ed576570342a375cd2"}, {file = "urllib3-2.0.4-py3-none-any.whl", hash = "sha256:de7df1803967d2c2a98e4b11bb7d6bd9210474c46e8a0401514e3a42a75ebde4"},
{file = "urllib3-2.0.6.tar.gz", hash = "sha256:b19e1a85d206b56d7df1d5e683df4a7725252a964e3993648dd0fb5a1c157564"}, {file = "urllib3-2.0.4.tar.gz", hash = "sha256:8d22f86aae8ef5e410d4f539fde9ce6b2113a001bb4d189e0aed70642d602b11"},
] ]
[package.extras] [package.extras]
@ -732,27 +422,7 @@ secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"] zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "virtualenv"
version = "20.25.1"
description = "Virtual Python Environment builder"
optional = false
python-versions = ">=3.7"
files = [
{file = "virtualenv-20.25.1-py3-none-any.whl", hash = "sha256:961c026ac520bac5f69acb8ea063e8a4f071bcc9457b9c1f28f6b085c511583a"},
{file = "virtualenv-20.25.1.tar.gz", hash = "sha256:e08e13ecdca7a0bd53798f356d5831434afa5b07b93f0abdf0797b7a06ffe197"},
]
[package.dependencies]
distlib = ">=0.3.7,<1"
filelock = ">=3.12.2,<4"
platformdirs = ">=3.9.1,<5"
[package.extras]
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"]
test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.9,<3.13" python-versions = "^3.10"
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c" content-hash = "eede625d6d45085e143b0af246cb2ce00cff8579c667be3b63387c8594a5570d"

View File

@ -1,25 +1,19 @@
[tool.poetry] [tool.poetry]
name = "homeharvest" name = "homeharvest"
version = "0.4.7" version = "0.1.3"
description = "Real estate scraping library" description = "Real estate scraping library"
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"] authors = ["Zachary Hampton <zachary@zacharysproducts.com>", "Cullen Watson <cullen@cullen.ai>"]
homepage = "https://github.com/Bunsly/HomeHarvest" homepage = "https://github.com/ZacharyHampton/HomeHarvest"
readme = "README.md" readme = "README.md"
[tool.poetry.scripts]
homeharvest = "homeharvest.cli:main"
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = ">=3.9,<3.13" python = "^3.10"
requests = "^2.31.0" requests = "^2.31.0"
pandas = "^2.1.1" pandas = "^2.1.0"
pydantic = "^2.7.4"
tenacity = "^9.0.0"
[tool.poetry.group.dev.dependencies] [tool.poetry.group.dev.dependencies]
pytest = "^7.4.2" pytest = "^7.4.2"
pre-commit = "^3.7.0"
[build-system] [build-system]
requires = ["poetry-core"] requires = ["poetry-core"]

View File

@ -1,302 +1,12 @@
from homeharvest import scrape_property, Property from homeharvest import scrape_property
import pandas as pd
def test_realtor_pending_or_contingent():
pending_or_contingent_result = scrape_property(location="Surprise, AZ", listing_type="pending")
regular_result = scrape_property(location="Surprise, AZ", listing_type="for_sale", exclude_pending=True)
assert all([result is not None for result in [pending_or_contingent_result, regular_result]])
assert len(pending_or_contingent_result) != len(regular_result)
def test_realtor_pending_comps():
pending_comps = scrape_property(
location="2530 Al Lipscomb Way",
radius=5,
past_days=180,
listing_type="pending",
)
for_sale_comps = scrape_property(
location="2530 Al Lipscomb Way",
radius=5,
past_days=180,
listing_type="for_sale",
)
sold_comps = scrape_property(
location="2530 Al Lipscomb Way",
radius=5,
past_days=180,
listing_type="sold",
)
results = [pending_comps, for_sale_comps, sold_comps]
assert all([result is not None for result in results])
#: assert all lengths are different
assert len(set([len(result) for result in results])) == len(results)
def test_realtor_sold_past():
result = scrape_property(
location="San Diego, CA",
past_days=30,
listing_type="sold",
)
assert result is not None and len(result) > 0
def test_realtor_comps():
result = scrape_property(
location="2530 Al Lipscomb Way",
radius=0.5,
past_days=180,
listing_type="sold",
)
assert result is not None and len(result) > 0
def test_realtor_last_x_days_sold():
days_result_30 = scrape_property(location="Dallas, TX", listing_type="sold", past_days=30)
days_result_10 = scrape_property(location="Dallas, TX", listing_type="sold", past_days=10)
assert all([result is not None for result in [days_result_30, days_result_10]]) and len(days_result_30) != len(
days_result_10
)
def test_realtor_date_range_sold():
days_result_30 = scrape_property(
location="Dallas, TX", listing_type="sold", date_from="2023-05-01", date_to="2023-05-28"
)
days_result_60 = scrape_property(
location="Dallas, TX", listing_type="sold", date_from="2023-04-01", date_to="2023-06-10"
)
assert all([result is not None for result in [days_result_30, days_result_60]]) and len(days_result_30) < len(
days_result_60
)
def test_realtor_single_property():
results = [
scrape_property(
location="15509 N 172nd Dr, Surprise, AZ 85388",
listing_type="for_sale",
),
scrape_property(
location="2530 Al Lipscomb Way",
listing_type="for_sale",
),
]
assert all([result is not None for result in results])
def test_realtor(): def test_realtor():
results = [ results = [
scrape_property( scrape_property(location="2530 Al Lipscomb Way", site_name="realtor.com"),
location="2530 Al Lipscomb Way", scrape_property(location="Phoenix, AZ", site_name="realtor.com"), #: does not support "city, state, USA" format
listing_type="for_sale", scrape_property(location="Dallas, TX", site_name="realtor.com"), #: does not support "city, state, USA" format
), scrape_property(location="85281", site_name="realtor.com"),
scrape_property(
location="Phoenix, AZ", listing_type="for_rent", limit=1000
), #: does not support "city, state, USA" format
scrape_property(
location="Dallas, TX", listing_type="sold", limit=1000
), #: does not support "city, state, USA" format
scrape_property(location="85281"),
] ]
assert all([result is not None for result in results]) assert all([result is not None for result in results])
def test_realtor_city():
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
assert results is not None and len(results) > 0
def test_realtor_land():
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
assert results is not None and len(results) > 0
def test_realtor_bad_address():
bad_results = scrape_property(
location="abceefg ju098ot498hh9",
listing_type="for_sale",
)
if len(bad_results) == 0:
assert True
def test_realtor_foreclosed():
foreclosed = scrape_property(location="Dallas, TX", listing_type="for_sale", past_days=100, foreclosure=True)
not_foreclosed = scrape_property(location="Dallas, TX", listing_type="for_sale", past_days=100, foreclosure=False)
assert len(foreclosed) != len(not_foreclosed)
def test_realtor_agent():
scraped = scrape_property(location="Detroit, MI", listing_type="for_sale", limit=1000, extra_property_data=False)
assert scraped["agent_name"].nunique() > 1
def test_realtor_without_extra_details():
results = [
scrape_property(
location="00741",
listing_type="sold",
limit=10,
extra_property_data=False,
),
scrape_property(
location="00741",
listing_type="sold",
limit=10,
extra_property_data=True,
),
]
assert not results[0].equals(results[1])
def test_pr_zip_code():
results = scrape_property(
location="00741",
listing_type="for_sale",
)
assert results is not None and len(results) > 0
def test_exclude_pending():
results = scrape_property(
location="33567",
listing_type="pending",
exclude_pending=True,
)
assert results is not None and len(results) > 0
def test_style_value_error():
results = scrape_property(
location="Alaska, AK",
listing_type="sold",
extra_property_data=False,
limit=1000,
)
assert results is not None and len(results) > 0
def test_primary_image_error():
results = scrape_property(
location="Spokane, PA",
listing_type="for_rent", # or (for_sale, for_rent, pending)
past_days=360,
radius=3,
extra_property_data=False,
)
assert results is not None and len(results) > 0
def test_limit():
over_limit = 876
extra_params = {"limit": over_limit}
over_results = scrape_property(
location="Waddell, AZ",
listing_type="for_sale",
**extra_params,
)
assert over_results is not None and len(over_results) <= over_limit
under_limit = 1
under_results = scrape_property(
location="Waddell, AZ",
listing_type="for_sale",
limit=under_limit,
)
assert under_results is not None and len(under_results) == under_limit
def test_apartment_list_price():
results = scrape_property(
location="Spokane, WA",
listing_type="for_rent", # or (for_sale, for_rent, pending)
extra_property_data=False,
)
assert results is not None
results = results[results["style"] == "APARTMENT"]
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
assert (
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
> 0.5
)
def test_builder_exists():
listing = scrape_property(
location="18149 W Poston Dr, Surprise, AZ 85387",
extra_property_data=False,
)
assert listing is not None
assert listing["builder_name"].nunique() > 0
def test_phone_number_matching():
searches = [
scrape_property(
location="Phoenix, AZ",
listing_type="for_sale",
limit=100,
),
scrape_property(
location="Phoenix, AZ",
listing_type="for_sale",
limit=100,
),
]
assert all([search is not None for search in searches])
#: random row
row = searches[0][searches[0]["agent_phones"].notnull()].sample()
#: find matching row
matching_row = searches[1].loc[searches[1]["property_url"] == row["property_url"].values[0]]
#: assert phone numbers are the same
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
def test_return_type():
results = {
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
}
assert isinstance(results["pandas"], pd.DataFrame)
assert isinstance(results["pydantic"][0], Property)
assert isinstance(results["raw"][0], dict)

12
tests/test_redfin.py Normal file
View File

@ -0,0 +1,12 @@
from homeharvest import scrape_property
def test_redfin():
results = [
scrape_property(location="2530 Al Lipscomb Way", site_name="redfin"),
scrape_property(location="Phoenix, AZ, USA", site_name="redfin"),
scrape_property(location="Dallas, TX, USA", site_name="redfin"),
scrape_property(location="85281", site_name="redfin"),
]
assert all([result is not None for result in results])

12
tests/test_zillow.py Normal file
View File

@ -0,0 +1,12 @@
from homeharvest import scrape_property
def test_zillow():
results = [
scrape_property(location="2530 Al Lipscomb Way", site_name="zillow"),
scrape_property(location="Phoenix, AZ, USA", site_name="zillow"),
scrape_property(location="Dallas, TX, USA", site_name="zillow"),
scrape_property(location="85281", site_name="zillow"),
]
assert all([result is not None for result in results])