parent
51bde20c3c
commit
c4870677c2
85
README.md
85
README.md
|
@ -36,7 +36,7 @@ pip install homeharvest
|
|||
### CLI
|
||||
|
||||
```
|
||||
usage: homeharvest [-h] [-l {for_sale,for_rent,sold}] [-o {excel,csv}] [-f FILENAME] [-p PROXY] [-d DAYS] [-r RADIUS] location
|
||||
usage: homeharvest [-l {for_sale,for_rent,sold}] [-o {excel,csv}] [-f FILENAME] [-p PROXY] [-d DAYS] [-r RADIUS] [-m] location
|
||||
|
||||
Home Harvest Property Scraper
|
||||
|
||||
|
@ -55,6 +55,7 @@ options:
|
|||
-d DAYS, --days DAYS Sold in last _ days filter.
|
||||
-r RADIUS, --radius RADIUS
|
||||
Get comparable properties within _ (eg. 0.0) miles. Only applicable for individual addresses.
|
||||
-m, --mls_only If set, fetches only MLS listings.
|
||||
```
|
||||
```bash
|
||||
> homeharvest "San Francisco, CA" -l for_rent -o excel -f HomeHarvest
|
||||
|
@ -73,9 +74,14 @@ filename = f"output/{current_timestamp}.csv"
|
|||
properties = scrape_property(
|
||||
location="San Diego, CA",
|
||||
listing_type="sold", # for_sale, for_rent
|
||||
last_x_days=30, # sold/listed in last 30 days
|
||||
mls_only=True, # only fetch MLS listings
|
||||
)
|
||||
print(f"Number of properties: {len(properties)}")
|
||||
|
||||
# Export to csv
|
||||
properties.to_csv(filename, index=False)
|
||||
print(properties.head())
|
||||
```
|
||||
|
||||
|
||||
|
@ -94,12 +100,23 @@ properties.to_csv(filename, index=False)
|
|||
### Parameters for `scrape_property()`
|
||||
```
|
||||
Required
|
||||
├── location (str): address in various formats e.g. just zip, full address, city/state, etc.
|
||||
└── listing_type (enum): for_rent, for_sale, sold
|
||||
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
|
||||
└── listing_type (option): Choose the type of listing.
|
||||
- 'for_rent'
|
||||
- 'for_sale'
|
||||
- 'sold'
|
||||
|
||||
Optional
|
||||
├── radius_for_comps (float): Radius in miles to find comparable properties based on individual addresses.
|
||||
├── sold_last_x_days (int): Number of past days to filter sold properties.
|
||||
├── proxy (str): in format 'http://user:pass@host:port'
|
||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||
│
|
||||
├── last_x_days (integer): Number of past days to filter properties. Utilizes 'COEDate' for 'sold' listing types, and 'Lst Date' for others (for_rent, for_sale).
|
||||
│ Example: 30 (fetches properties listed/sold in the last 30 days)
|
||||
│
|
||||
├── mls_only (True/False): If set, fetches only MLS listings (mainly applicable to 'sold' listings)
|
||||
│
|
||||
└── proxy (string): In format 'http://user:pass@host:port'
|
||||
|
||||
```
|
||||
### Property Schema
|
||||
```plaintext
|
||||
|
@ -111,51 +128,49 @@ Property
|
|||
│ └── status (str)
|
||||
|
||||
├── Address Details:
|
||||
│ ├── street (str)
|
||||
│ ├── unit (str)
|
||||
│ ├── city (str)
|
||||
│ ├── state (str)
|
||||
│ └── zip (str)
|
||||
│ ├── street
|
||||
│ ├── unit
|
||||
│ ├── city
|
||||
│ ├── state
|
||||
│ └── zip
|
||||
|
||||
├── Property Description:
|
||||
│ ├── style (str)
|
||||
│ ├── beds (int)
|
||||
│ ├── baths_full (int)
|
||||
│ ├── baths_half (int)
|
||||
│ ├── sqft (int)
|
||||
│ ├── lot_sqft (int)
|
||||
│ ├── sold_price (int)
|
||||
│ ├── year_built (int)
|
||||
│ ├── garage (float)
|
||||
│ └── stories (int)
|
||||
│ ├── style
|
||||
│ ├── beds
|
||||
│ ├── baths_full
|
||||
│ ├── baths_half
|
||||
│ ├── sqft
|
||||
│ ├── lot_sqft
|
||||
│ ├── sold_price
|
||||
│ ├── year_built
|
||||
│ ├── garage
|
||||
│ └── stories
|
||||
|
||||
├── Property Listing Details:
|
||||
│ ├── list_price (int)
|
||||
│ ├── list_date (str)
|
||||
│ ├── last_sold_date (str)
|
||||
│ ├── prc_sqft (int)
|
||||
│ └── hoa_fee (int)
|
||||
│ ├── list_price
|
||||
│ ├── list_date
|
||||
│ ├── last_sold_date
|
||||
│ ├── prc_sqft
|
||||
│ └── hoa_fee
|
||||
|
||||
├── Location Details:
|
||||
│ ├── latitude (float)
|
||||
│ ├── longitude (float)
|
||||
│ └── neighborhoods (str)
|
||||
│ ├── latitude
|
||||
│ ├── longitude
|
||||
│ └── neighborhoods
|
||||
```
|
||||
## Supported Countries for Property Scraping
|
||||
|
||||
* **Realtor.com**: mainly from the **US** but also has international listings
|
||||
|
||||
### Exceptions
|
||||
The following exceptions may be raised when using HomeHarvest:
|
||||
|
||||
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`
|
||||
- `NoResultsFound` - no properties found from your input
|
||||
- `NoResultsFound` - no properties found from your search
|
||||
|
||||
|
||||
## Frequently Asked Questions
|
||||
---
|
||||
|
||||
**Q: Encountering issues with your searches?**
|
||||
**A:** Try to broaden the location. If problems persist, [submit an issue](https://github.com/ZacharyHampton/HomeHarvest/issues).
|
||||
**A:** Try to broaden the parameters you're using. If problems persist, [submit an issue](https://github.com/ZacharyHampton/HomeHarvest/issues).
|
||||
|
||||
---
|
||||
|
||||
|
@ -163,7 +178,7 @@ The following exceptions may be raised when using HomeHarvest:
|
|||
**A:** This indicates that you have been blocked by Realtor.com for sending too many requests. We recommend:
|
||||
|
||||
- Waiting a few seconds between requests.
|
||||
- Trying a VPN to change your IP address.
|
||||
- Trying a VPN or useing a proxy as a parameter to scrape_property() to change your IP address.
|
||||
|
||||
---
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# scrapes all 3 sites by default\n",
|
||||
"# check for sale properties\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
|
@ -53,7 +53,6 @@
|
|||
"# search a specific address\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"2530 Al Lipscomb Way\",\n",
|
||||
" site_name=\"zillow\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
|
@ -68,7 +67,6 @@
|
|||
"# check rentals\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"chicago, illinois\",\n",
|
||||
" site_name=[\"redfin\", \"zillow\"],\n",
|
||||
" listing_type=\"for_rent\"\n",
|
||||
")"
|
||||
]
|
||||
|
@ -88,7 +86,6 @@
|
|||
"# check sold properties\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"90210\",\n",
|
||||
" site_name=[\"redfin\"],\n",
|
||||
" listing_type=\"sold\"\n",
|
||||
")"
|
||||
]
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
from homeharvest import scrape_property
|
||||
from datetime import datetime
|
||||
|
||||
# Generate filename based on current timestamp
|
||||
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"output/{current_timestamp}.csv"
|
||||
|
||||
properties = scrape_property(
|
||||
location="San Diego, CA",
|
||||
listing_type="sold", # for_sale, for_rent
|
||||
last_x_days=30, # sold/listed in last 30 days
|
||||
mls_only=True, # only fetch MLS listings
|
||||
)
|
||||
print(f"Number of properties: {len(properties)}")
|
||||
|
||||
# Export to csv
|
||||
properties.to_csv(filename, index=False)
|
||||
print(properties.head())
|
|
@ -1,103 +1,41 @@
|
|||
import warnings
|
||||
import pandas as pd
|
||||
import concurrent.futures
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from .core.scrapers import ScraperInput
|
||||
from .utils import process_result, ordered_properties
|
||||
from .utils import process_result, ordered_properties, validate_input
|
||||
from .core.scrapers.realtor import RealtorScraper
|
||||
from .core.scrapers.models import ListingType, Property, SiteName
|
||||
from .exceptions import InvalidListingType
|
||||
|
||||
|
||||
_scrapers = {
|
||||
"realtor.com": RealtorScraper,
|
||||
}
|
||||
|
||||
|
||||
def _validate_input(listing_type: str) -> None:
|
||||
if listing_type.upper() not in ListingType.__members__:
|
||||
raise InvalidListingType(f"Provided listing type, '{listing_type}', does not exist.")
|
||||
|
||||
|
||||
def _scrape_single_site(location: str, site_name: str, listing_type: str, radius: float, proxy: str = None, sold_last_x_days: int = None) -> pd.DataFrame:
|
||||
"""
|
||||
Helper function to scrape a single site.
|
||||
"""
|
||||
_validate_input(listing_type)
|
||||
|
||||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
site_name=SiteName.get_by_value(site_name.lower()),
|
||||
proxy=proxy,
|
||||
radius=radius,
|
||||
sold_last_x_days=sold_last_x_days
|
||||
)
|
||||
|
||||
site = _scrapers[site_name.lower()](scraper_input)
|
||||
results = site.search()
|
||||
print(f"found {len(results)}")
|
||||
|
||||
properties_dfs = [process_result(result) for result in results]
|
||||
if not properties_dfs:
|
||||
return pd.DataFrame()
|
||||
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties]
|
||||
from .core.scrapers.models import ListingType
|
||||
from .exceptions import InvalidListingType, NoResultsFound
|
||||
|
||||
|
||||
def scrape_property(
|
||||
location: str,
|
||||
listing_type: str = "for_sale",
|
||||
radius: float = None,
|
||||
sold_last_x_days: int = None,
|
||||
mls_only: bool = False,
|
||||
last_x_days: int = None,
|
||||
proxy: str = None,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Scrape properties from Realtor.com based on a given location and listing type.
|
||||
|
||||
:param location: US Location (e.g. 'San Francisco, CA', 'Cook County, IL', '85281', '2530 Al Lipscomb Way')
|
||||
:param listing_type: Listing type (e.g. 'for_sale', 'for_rent', 'sold'). Default is 'for_sale'.
|
||||
:param radius: Radius in miles to find comparable properties on individual addresses. Optional.
|
||||
:param sold_last_x_days: Number of past days to filter sold properties. Optional.
|
||||
:param proxy: Proxy IP address to be used for scraping. Optional.
|
||||
:returns: pd.DataFrame containing properties
|
||||
"""
|
||||
site_name = "realtor.com"
|
||||
validate_input(listing_type)
|
||||
|
||||
if site_name is None:
|
||||
site_name = list(_scrapers.keys())
|
||||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
proxy=proxy,
|
||||
radius=radius,
|
||||
mls_only=mls_only,
|
||||
last_x_days=last_x_days,
|
||||
)
|
||||
|
||||
if not isinstance(site_name, list):
|
||||
site_name = [site_name]
|
||||
site = RealtorScraper(scraper_input)
|
||||
results = site.search()
|
||||
|
||||
results = []
|
||||
properties_dfs = [process_result(result) for result in results]
|
||||
if not properties_dfs:
|
||||
raise NoResultsFound("no results found for the query")
|
||||
|
||||
if len(site_name) == 1:
|
||||
final_df = _scrape_single_site(location, site_name[0], listing_type, radius, proxy, sold_last_x_days)
|
||||
results.append(final_df)
|
||||
else:
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = {
|
||||
executor.submit(_scrape_single_site, location, s_name, listing_type, radius, proxy, sold_last_x_days): s_name
|
||||
for s_name in site_name
|
||||
}
|
||||
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
result = future.result()
|
||||
results.append(result)
|
||||
|
||||
results = [df for df in results if not df.empty and not df.isna().all().all()]
|
||||
|
||||
if not results:
|
||||
return pd.DataFrame()
|
||||
|
||||
final_df = pd.concat(results, ignore_index=True)
|
||||
|
||||
columns_to_track = ["Street", "Unit", "Zip"]
|
||||
|
||||
#: validate they exist, otherwise create them
|
||||
for col in columns_to_track:
|
||||
if col not in final_df.columns:
|
||||
final_df[col] = None
|
||||
|
||||
return final_df
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", category=FutureWarning)
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties]
|
||||
|
|
|
@ -5,7 +5,9 @@ from homeharvest import scrape_property
|
|||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Home Harvest Property Scraper")
|
||||
parser.add_argument("location", type=str, help="Location to scrape (e.g., San Francisco, CA)")
|
||||
parser.add_argument(
|
||||
"location", type=str, help="Location to scrape (e.g., San Francisco, CA)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
|
@ -33,21 +35,41 @@ def main():
|
|||
help="Name of the output file (without extension)",
|
||||
)
|
||||
|
||||
parser.add_argument("-p", "--proxy", type=str, default=None, help="Proxy to use for scraping")
|
||||
parser.add_argument("-d", "--days", type=int, default=None, help="Sold in last _ days filter.")
|
||||
parser.add_argument(
|
||||
"-p", "--proxy", type=str, default=None, help="Proxy to use for scraping"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--days",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Sold/listed in last _ days filter.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--sold-properties-radius",
|
||||
dest="sold_properties_radius", # This makes sure the parsed argument is stored as radius_for_comps in args
|
||||
"--radius",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Get comparable properties within _ (eg. 0.0) miles. Only applicable for individual addresses."
|
||||
help="Get comparable properties within _ (eg. 0.0) miles. Only applicable for individual addresses.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m",
|
||||
"--mls_only",
|
||||
action="store_true",
|
||||
help="If set, fetches only MLS listings.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
result = scrape_property(args.location, args.listing_type, radius_for_comps=args.radius_for_comps, proxy=args.proxy)
|
||||
result = scrape_property(
|
||||
args.location,
|
||||
args.listing_type,
|
||||
radius=args.radius,
|
||||
proxy=args.proxy,
|
||||
mls_only=args.mls_only,
|
||||
last_x_days=args.days,
|
||||
)
|
||||
|
||||
if not args.filename:
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
|
|
|
@ -8,14 +8,18 @@ from .models import Property, ListingType, SiteName
|
|||
class ScraperInput:
|
||||
location: str
|
||||
listing_type: ListingType
|
||||
site_name: SiteName
|
||||
radius: float | None = None
|
||||
mls_only: bool | None = None
|
||||
proxy: str | None = None
|
||||
sold_last_x_days: int | None = None
|
||||
last_x_days: int | None = None
|
||||
|
||||
|
||||
class Scraper:
|
||||
def __init__(self, scraper_input: ScraperInput, session: requests.Session | tls_client.Session = None):
|
||||
def __init__(
|
||||
self,
|
||||
scraper_input: ScraperInput,
|
||||
session: requests.Session | tls_client.Session = None,
|
||||
):
|
||||
self.location = scraper_input.location
|
||||
self.listing_type = scraper_input.listing_type
|
||||
|
||||
|
@ -30,9 +34,9 @@ class Scraper:
|
|||
self.session.proxies.update(proxies)
|
||||
|
||||
self.listing_type = scraper_input.listing_type
|
||||
self.site_name = scraper_input.site_name
|
||||
self.radius = scraper_input.radius
|
||||
self.sold_last_x_days = scraper_input.sold_last_x_days
|
||||
self.last_x_days = scraper_input.last_x_days
|
||||
self.mls_only = scraper_input.mls_only
|
||||
|
||||
def search(self) -> list[Property]:
|
||||
...
|
||||
|
|
|
@ -106,12 +106,16 @@ class RealtorScraper(Scraper):
|
|||
Property(
|
||||
mls_id=property_id,
|
||||
property_url=f"{self.PROPERTY_URL}{property_info['details']['permalink']}",
|
||||
address=self._parse_address(property_info, search_type="handle_address"),
|
||||
description=self._parse_description(property_info)
|
||||
address=self._parse_address(
|
||||
property_info, search_type="handle_address"
|
||||
),
|
||||
description=self._parse_description(property_info),
|
||||
)
|
||||
]
|
||||
|
||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, list[Property]]]:
|
||||
def general_search(
|
||||
self, variables: dict, search_type: str
|
||||
) -> Dict[str, Union[int, list[Property]]]:
|
||||
"""
|
||||
Handles a location area & returns a list of properties
|
||||
"""
|
||||
|
@ -169,17 +173,23 @@ class RealtorScraper(Scraper):
|
|||
}
|
||||
}"""
|
||||
|
||||
sold_date_param = ('sold_date: { min: "$today-%sD" }' % self.sold_last_x_days
|
||||
if self.listing_type == ListingType.SOLD and self.sold_last_x_days
|
||||
else "")
|
||||
sort_param = ('sort: [{ field: sold_date, direction: desc }]'
|
||||
date_param = (
|
||||
'sold_date: { min: "$today-%sD" }' % self.last_x_days
|
||||
if self.listing_type == ListingType.SOLD and self.last_x_days
|
||||
else (
|
||||
'list_date: { min: "$today-%sD" }' % self.last_x_days
|
||||
if self.last_x_days
|
||||
else ""
|
||||
)
|
||||
)
|
||||
sort_param = (
|
||||
"sort: [{ field: sold_date, direction: desc }]"
|
||||
if self.listing_type == ListingType.SOLD
|
||||
else 'sort: [{ field: list_date, direction: desc }]')
|
||||
else "sort: [{ field: list_date, direction: desc }]"
|
||||
)
|
||||
|
||||
if search_type == "comps":
|
||||
print('general - comps')
|
||||
query = (
|
||||
"""query Property_search(
|
||||
query = """query Property_search(
|
||||
$coordinates: [Float]!
|
||||
$radius: String!
|
||||
$offset: Int!,
|
||||
|
@ -198,15 +208,12 @@ class RealtorScraper(Scraper):
|
|||
offset: $offset
|
||||
) %s""" % (
|
||||
self.listing_type.value.lower(),
|
||||
sold_date_param,
|
||||
date_param,
|
||||
sort_param,
|
||||
results_query
|
||||
)
|
||||
results_query,
|
||||
)
|
||||
else:
|
||||
print('general - not comps')
|
||||
query = (
|
||||
"""query Home_search(
|
||||
query = """query Home_search(
|
||||
$city: String,
|
||||
$county: [String],
|
||||
$state_code: String,
|
||||
|
@ -225,13 +232,11 @@ class RealtorScraper(Scraper):
|
|||
%s
|
||||
limit: 200
|
||||
offset: $offset
|
||||
) %s"""
|
||||
% (
|
||||
) %s""" % (
|
||||
self.listing_type.value.lower(),
|
||||
sold_date_param,
|
||||
date_param,
|
||||
sort_param,
|
||||
results_query
|
||||
)
|
||||
results_query,
|
||||
)
|
||||
|
||||
payload = {
|
||||
|
@ -264,32 +269,44 @@ class RealtorScraper(Scraper):
|
|||
else None
|
||||
)
|
||||
|
||||
if not mls:
|
||||
if not mls and self.mls_only:
|
||||
continue
|
||||
|
||||
able_to_get_lat_long = result and result.get("location") and result["location"].get("address") and result["location"]["address"].get("coordinate")
|
||||
able_to_get_lat_long = (
|
||||
result
|
||||
and result.get("location")
|
||||
and result["location"].get("address")
|
||||
and result["location"]["address"].get("coordinate")
|
||||
)
|
||||
|
||||
realty_property = Property(
|
||||
mls=mls,
|
||||
mls_id=result["source"].get("listing_id") if "source" in result and isinstance(result["source"], dict) else None,
|
||||
mls_id=result["source"].get("listing_id")
|
||||
if "source" in result and isinstance(result["source"], dict)
|
||||
else None,
|
||||
property_url=f"{self.PROPERTY_URL}{result['property_id']}",
|
||||
status=result["status"].upper(),
|
||||
list_price=result["list_price"],
|
||||
list_date=result["list_date"].split("T")[0] if result.get("list_date") else None,
|
||||
list_date=result["list_date"].split("T")[0]
|
||||
if result.get("list_date")
|
||||
else None,
|
||||
prc_sqft=result.get("price_per_sqft"),
|
||||
last_sold_date=result.get("last_sold_date"),
|
||||
hoa_fee=result["hoa"]["fee"] if result.get("hoa") and isinstance(result["hoa"], dict) else None,
|
||||
latitude=result["location"]["address"]["coordinate"].get("lat") if able_to_get_lat_long else None,
|
||||
longitude=result["location"]["address"]["coordinate"].get("lon") if able_to_get_lat_long else None,
|
||||
hoa_fee=result["hoa"]["fee"]
|
||||
if result.get("hoa") and isinstance(result["hoa"], dict)
|
||||
else None,
|
||||
latitude=result["location"]["address"]["coordinate"].get("lat")
|
||||
if able_to_get_lat_long
|
||||
else None,
|
||||
longitude=result["location"]["address"]["coordinate"].get("lon")
|
||||
if able_to_get_lat_long
|
||||
else None,
|
||||
address=self._parse_address(result, search_type="general_search"),
|
||||
neighborhoods=self._parse_neighborhoods(result),
|
||||
description=self._parse_description(result)
|
||||
description=self._parse_description(result),
|
||||
)
|
||||
properties.append(realty_property)
|
||||
|
||||
|
||||
# print(response_json["data"]["property_search"], variables["offset"])
|
||||
# print(response_json["data"]["home_search"]["total"], variables["offset"])
|
||||
return {
|
||||
"total": response_json["data"][search_key]["total"],
|
||||
"properties": properties,
|
||||
|
@ -304,7 +321,6 @@ class RealtorScraper(Scraper):
|
|||
}
|
||||
|
||||
search_type = "comps" if self.radius and location_type == "address" else "area"
|
||||
print(search_type)
|
||||
if location_type == "address":
|
||||
if not self.radius: #: single address search, non comps
|
||||
property_id = location_info["mpr_id"]
|
||||
|
@ -370,10 +386,10 @@ class RealtorScraper(Scraper):
|
|||
)
|
||||
return Address(
|
||||
street=f"{result['address']['street_number']} {result['address']['street_name']} {result['address']['street_suffix']}",
|
||||
unit=result['address']['unit'],
|
||||
city=result['address']['city'],
|
||||
state=result['address']['state_code'],
|
||||
zip=result['address']['postal_code'],
|
||||
unit=result["address"]["unit"],
|
||||
city=result["address"]["city"],
|
||||
state=result["address"]["state_code"],
|
||||
zip=result["address"]["postal_code"],
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from .core.scrapers.models import Property
|
||||
from .core.scrapers.models import Property, ListingType
|
||||
import pandas as pd
|
||||
|
||||
ordered_properties = [
|
||||
|
@ -74,3 +74,10 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
properties_df = properties_df.reindex(columns=ordered_properties)
|
||||
|
||||
return properties_df[ordered_properties]
|
||||
|
||||
|
||||
def validate_input(listing_type: str) -> None:
|
||||
if listing_type.upper() not in ListingType.__members__:
|
||||
raise InvalidListingType(
|
||||
f"Provided listing type, '{listing_type}', does not exist."
|
||||
)
|
||||
|
|
|
@ -27,7 +27,9 @@ def test_realtor_last_x_days_sold():
|
|||
location="Dallas, TX", listing_type="sold", sold_last_x_days=10
|
||||
)
|
||||
|
||||
assert all([result is not None for result in [days_result_30, days_result_10]]) and len(days_result_30) != len(days_result_10)
|
||||
assert all(
|
||||
[result is not None for result in [days_result_30, days_result_10]]
|
||||
) and len(days_result_30) != len(days_result_10)
|
||||
|
||||
|
||||
def test_realtor_single_property():
|
||||
|
@ -39,7 +41,7 @@ def test_realtor_single_property():
|
|||
scrape_property(
|
||||
location="2530 Al Lipscomb Way",
|
||||
listing_type="for_sale",
|
||||
)
|
||||
),
|
||||
]
|
||||
|
||||
assert all([result is not None for result in results])
|
||||
|
|
Loading…
Reference in New Issue