enh: property type

pull/102/head
Cullen Watson 2024-11-03 15:21:03 -06:00
parent 1f717bd9e3
commit bf4ed201ee
9 changed files with 274 additions and 80 deletions

View File

@ -68,13 +68,24 @@ print(properties.head())
```
Required
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
── listing_type (option): Choose the type of listing.
── listing_type (option): Choose the type of listing.
- 'for_rent'
- 'for_sale'
- 'sold'
- 'pending'
- 'pending' (for pending/contingent sales)
Optional
├── property_type (list): Choose the type of properties.
- 'single_family'
- 'multi_family'
- 'condos'
- 'condo_townhome_rowhome_coop'
- 'condo_townhome'
- 'townhomes'
- 'duplex_triplex'
- 'farm'
- 'land'
- 'mobile'
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
@ -94,7 +105,7 @@ Optional
├── extra_property_data (True/False): Increases requests by O(n). If set, this fetches additional property data for general searches (e.g. schools, tax appraisals etc.)
├── exclude_pending (True/False): If set, excludes pending properties from the results unless listing_type is 'pending'
├── exclude_pending (True/False): If set, excludes 'pending' properties from the 'for_sale' results unless listing_type is 'pending'
└── limit (integer): Limit the number of properties to fetch. Max & default is 10000.
```

104
examples/price_of_land.py Normal file
View File

@ -0,0 +1,104 @@
"""
This script scrapes sold and pending sold land listings in past year for a list of zip codes and saves the data to individual Excel files.
It adds two columns to the data: 'lot_acres' and 'ppa' (price per acre) for user to analyze average price of land in a zip code.
"""
import os
import pandas as pd
from homeharvest import scrape_property
def get_property_details(zip: str, listing_type):
properties = scrape_property(location=zip, listing_type=listing_type, property_type=["land"], past_days=365)
if not properties.empty:
properties["lot_acres"] = properties["lot_sqft"].apply(lambda x: x / 43560 if pd.notnull(x) else None)
properties = properties[properties["sqft"].isnull()]
properties["ppa"] = properties.apply(
lambda row: (
int(
(
row["sold_price"]
if (pd.notnull(row["sold_price"]) and row["status"] == "SOLD")
else row["list_price"]
)
/ row["lot_acres"]
)
if pd.notnull(row["lot_acres"])
and row["lot_acres"] > 0
and (pd.notnull(row["sold_price"]) or pd.notnull(row["list_price"]))
else None
),
axis=1,
)
properties["ppa"] = properties["ppa"].astype("Int64")
selected_columns = [
"property_url",
"property_id",
"style",
"status",
"street",
"city",
"state",
"zip_code",
"county",
"list_date",
"last_sold_date",
"list_price",
"sold_price",
"lot_sqft",
"lot_acres",
"ppa",
]
properties = properties[selected_columns]
return properties
def output_to_excel(zip_code, sold_df, pending_df):
root_folder = os.getcwd()
zip_folder = os.path.join(root_folder, "zips", zip_code)
# Create zip code folder if it doesn't exist
os.makedirs(zip_folder, exist_ok=True)
# Define file paths
sold_file = os.path.join(zip_folder, f"{zip_code}_sold.xlsx")
pending_file = os.path.join(zip_folder, f"{zip_code}_pending.xlsx")
# Save individual sold and pending files
sold_df.to_excel(sold_file, index=False)
pending_df.to_excel(pending_file, index=False)
zip_codes = map(
str,
[
22920,
77024,
78028,
24553,
22967,
22971,
22922,
22958,
22969,
22949,
22938,
24599,
24562,
22976,
24464,
22964,
24581,
],
)
combined_df = pd.DataFrame()
for zip in zip_codes:
sold_df = get_property_details(zip, "sold")
pending_df = get_property_details(zip, "pending")
combined_df = pd.concat([combined_df, sold_df, pending_df], ignore_index=True)
output_to_excel(zip, sold_df, pending_df)
combined_file = os.path.join(os.getcwd(), "zips", "combined.xlsx")
combined_df.to_excel(combined_file, index=False)

View File

@ -3,12 +3,13 @@ import pandas as pd
from .core.scrapers import ScraperInput
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
from .core.scrapers.realtor import RealtorScraper
from .core.scrapers.models import ListingType
from .core.scrapers.models import ListingType, SearchPropertyType
def scrape_property(
location: str,
listing_type: str = "for_sale",
property_type: list[str] | None = None,
radius: float = None,
mls_only: bool = False,
past_days: int = None,
@ -24,6 +25,7 @@ def scrape_property(
Scrape properties from Realtor.com based on a given location and listing type.
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
:param mls_only: If set, fetches only listings with MLS IDs.
:param proxy: Proxy to use for scraping
@ -41,6 +43,7 @@ def scrape_property(
scraper_input = ScraperInput(
location=location,
listing_type=ListingType[listing_type.upper()],
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
proxy=proxy,
radius=radius,
mls_only=mls_only,
@ -63,4 +66,6 @@ def scrape_property(
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=FutureWarning)
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": pd.NA, None: pd.NA, "": pd.NA})
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace(
{"None": pd.NA, None: pd.NA, "": pd.NA}
)

View File

@ -5,7 +5,7 @@ from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import uuid
from ...exceptions import AuthenticationError
from .models import Property, ListingType, SiteName
from .models import Property, ListingType, SiteName, SearchPropertyType
import json
@ -13,6 +13,7 @@ import json
class ScraperInput:
location: str
listing_type: ListingType
property_type: list[SearchPropertyType] | None = None
radius: float | None = None
mls_only: bool | None = False
proxy: str | None = None
@ -34,11 +35,12 @@ class Scraper:
):
self.location = scraper_input.location
self.listing_type = scraper_input.listing_type
self.property_type = scraper_input.property_type
if not self.session:
Scraper.session = requests.Session()
retries = Retry(
total=3, backoff_factor=3, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
total=3, backoff_factor=4, status_forcelist=[429, 403], allowed_methods=frozenset(["GET", "POST"])
)
adapter = HTTPAdapter(max_retries=retries)
@ -46,21 +48,21 @@ class Scraper:
Scraper.session.mount("https://", adapter)
Scraper.session.headers.update(
{
'accept': 'application/json, text/javascript',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'content-type': 'application/json',
'origin': 'https://www.realtor.com',
'pragma': 'no-cache',
'priority': 'u=1, i',
'rdc-ab-tests': 'commute_travel_time_variation:v1',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
"accept": "application/json, text/javascript",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": "https://www.realtor.com",
"pragma": "no-cache",
"priority": "u=1, i",
"rdc-ab-tests": "commute_travel_time_variation:v1",
"sec-ch-ua": '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
}
)
@ -94,27 +96,29 @@ class Scraper:
response = requests.post(
"https://graph.realtor.com/auth/token",
headers={
'Host': 'graph.realtor.com',
'Accept': '*/*',
'Content-Type': 'Application/json',
'X-Client-ID': 'rdc_mobile_native,iphone',
'X-Visitor-ID': device_id,
'X-Client-Version': '24.21.23.679885',
'Accept-Language': 'en-US,en;q=0.9',
'User-Agent': 'Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0',
"Host": "graph.realtor.com",
"Accept": "*/*",
"Content-Type": "Application/json",
"X-Client-ID": "rdc_mobile_native,iphone",
"X-Visitor-ID": device_id,
"X-Client-Version": "24.21.23.679885",
"Accept-Language": "en-US,en;q=0.9",
"User-Agent": "Realtor.com/24.21.23.679885 CFNetwork/1494.0.7 Darwin/23.4.0",
},
data=json.dumps({
"grant_type": "device_mobile",
"device_id": device_id,
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone"
}))
data=json.dumps(
{
"grant_type": "device_mobile",
"device_id": device_id,
"client_app_id": "rdc_mobile_native,24.21.23.679885,iphone",
}
),
)
data = response.json()
if not (access_token := data.get("access_token")):
raise AuthenticationError(
"Failed to get access token, use a proxy/vpn or wait a moment and try again.",
response=response
"Failed to get access token, use a proxy/vpn or wait a moment and try again.", response=response
)
return access_token

View File

@ -17,6 +17,19 @@ class SiteName(Enum):
raise ValueError(f"{value} not found in {cls}")
class SearchPropertyType(Enum):
SINGLE_FAMILY = "single_family"
CONDOS = "condos"
CONDO_TOWNHOME_ROWHOME_COOP = "condo_townhome_rowhome_coop"
CONDO_TOWNHOME = "condo_townhome"
TOWNHOMES = "townhomes"
DUPLEX_TRIPLEX = "duplex_triplex"
FARM = "farm"
LAND = "land"
MULTI_FAMILY = "multi_family"
MOBILE = "mobile"
class ListingType(Enum):
FOR_SALE = "FOR_SALE"
FOR_RENT = "FOR_RENT"

View File

@ -6,12 +6,28 @@ This module implements the scraper for realtor.com
"""
from __future__ import annotations
import json
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from json import JSONDecodeError
from typing import Dict, Union, Optional
from tenacity import retry, retry_if_exception_type, wait_exponential, stop_after_attempt
from .. import Scraper
from ..models import Property, Address, ListingType, Description, PropertyType, Agent, Broker, Builder, Advertisers, Office
from ..models import (
Property,
Address,
ListingType,
Description,
PropertyType,
Agent,
Broker,
Builder,
Advertisers,
Office,
)
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
@ -81,9 +97,12 @@ class RealtorScraper(Scraper):
return property_info["listings"][0]["listing_id"]
def handle_home(self, property_id: str) -> list[Property]:
query = """query Home($property_id: ID!) {
query = (
"""query Home($property_id: ID!) {
home(property_id: $property_id) %s
}""" % HOMES_DATA
}"""
% HOMES_DATA
)
variables = {"property_id": property_id}
payload = {
@ -96,9 +115,7 @@ class RealtorScraper(Scraper):
property_info = response_json["data"]["home"]
return [
self.process_property(property_info, "home")
]
return [self.process_property(property_info, "home")]
@staticmethod
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
@ -122,7 +139,7 @@ class RealtorScraper(Scraper):
phones=advertiser.get("phones"),
)
if advertiser.get('broker') and advertiser["broker"].get('name'): #: has a broker
if advertiser.get("broker") and advertiser["broker"].get("name"): #: has a broker
processed_advertisers.broker = Broker(
uuid=_parse_fulfillment_id(advertiser["broker"].get("fulfillment_id")),
name=advertiser["broker"].get("name"),
@ -153,15 +170,16 @@ class RealtorScraper(Scraper):
return
able_to_get_lat_long = (
result
and result.get("location")
and result["location"].get("address")
and result["location"]["address"].get("coordinate")
result
and result.get("location")
and result["location"].get("address")
and result["location"]["address"].get("coordinate")
)
is_pending = result["flags"].get("is_pending") or result["flags"].get("is_contingent")
is_pending = result["flags"].get("is_pending")
is_contingent = result["flags"].get("is_contingent")
if is_pending and (self.exclude_pending and self.listing_type != ListingType.PENDING):
if (is_pending or is_contingent) and (self.exclude_pending and self.listing_type != ListingType.PENDING):
return
property_id = result["property_id"]
@ -184,7 +202,7 @@ class RealtorScraper(Scraper):
property_url=result["href"],
property_id=property_id,
listing_id=result.get("listing_id"),
status="PENDING" if is_pending else result["status"].upper(),
status="PENDING" if is_pending else "CONTINGENT" if is_contingent else result["status"].upper(),
list_price=result["list_price"],
list_price_min=result["list_price_min"],
list_price_max=result["list_price_max"],
@ -225,6 +243,11 @@ class RealtorScraper(Scraper):
elif self.last_x_days:
date_param = f'list_date: {{ min: "$today-{self.last_x_days}D" }}'
property_type_param = ""
if self.property_type:
property_types = [pt.value for pt in self.property_type]
property_type_param = f"type: {json.dumps(property_types)}"
sort_param = (
"sort: [{ field: sold_date, direction: desc }]"
if self.listing_type == ListingType.SOLD
@ -259,6 +282,7 @@ class RealtorScraper(Scraper):
status: %s
%s
%s
%s
}
%s
limit: 200
@ -268,6 +292,7 @@ class RealtorScraper(Scraper):
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
@ -290,6 +315,7 @@ class RealtorScraper(Scraper):
status: %s
%s
%s
%s
}
%s
limit: 200
@ -299,13 +325,14 @@ class RealtorScraper(Scraper):
is_foreclosure,
listing_type.value.lower(),
date_param,
property_type_param,
pending_or_contingent_param,
sort_param,
GENERAL_RESULTS_QUERY,
)
else: #: general search, came from an address
query = (
"""query Property_search(
"""query Property_search(
$property_id: [ID]!
$offset: Int!,
) {
@ -315,9 +342,9 @@ class RealtorScraper(Scraper):
}
limit: 1
offset: $offset
) %s
) %s
}"""
% GENERAL_RESULTS_QUERY
% GENERAL_RESULTS_QUERY
)
payload = {
@ -332,12 +359,12 @@ class RealtorScraper(Scraper):
properties: list[Property] = []
if (
response_json is None
or "data" not in response_json
or response_json["data"] is None
or search_key not in response_json["data"]
or response_json["data"][search_key] is None
or "results" not in response_json["data"][search_key]
response_json is None
or "data" not in response_json
or response_json["data"] is None
or search_key not in response_json["data"]
or response_json["data"][search_key] is None
or "results" not in response_json["data"][search_key]
):
return {"total": 0, "properties": []}
@ -347,12 +374,10 @@ class RealtorScraper(Scraper):
#: limit the number of properties to be processed
#: example, if your offset is 200, and your limit is 250, return 50
properties_list = properties_list[:self.limit - offset]
properties_list = properties_list[: self.limit - offset]
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
futures = [
executor.submit(self.process_property, result, search_key) for result in properties_list
]
futures = [executor.submit(self.process_property, result, search_key) for result in properties_list]
for future in as_completed(futures):
result = future.result()
@ -451,6 +476,9 @@ class RealtorScraper(Scraper):
"assessed_value": assessed_value if assessed_value else None,
}
@retry(
retry=retry_if_exception_type(JSONDecodeError), wait=wait_exponential(min=4, max=10), stop=stop_after_attempt(3)
)
def get_prop_details(self, property_id: str) -> dict:
if not self.extra_property_data:
return {}
@ -534,7 +562,9 @@ class RealtorScraper(Scraper):
style = style.upper()
primary_photo = ""
if (primary_photo_info := result.get('primary_photo')) and (primary_photo_href := primary_photo_info.get("href")):
if (primary_photo_info := result.get("primary_photo")) and (
primary_photo_href := primary_photo_info.get("href")
):
primary_photo = primary_photo_href.replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
return Description(
@ -547,7 +577,7 @@ class RealtorScraper(Scraper):
sqft=description_data.get("sqft"),
lot_sqft=description_data.get("lot_sqft"),
sold_price=(
result.get('last_sold_price') or description_data.get("sold_price")
result.get("last_sold_price") or description_data.get("sold_price")
if result.get("last_sold_date") or result["list_price"] != description_data.get("sold_price")
else None
), #: has a sold date or list and sold price are different
@ -581,4 +611,8 @@ class RealtorScraper(Scraper):
if not photos_info:
return None
return [photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75") for photo_info in photos_info if photo_info.get("href")]
return [
photo_info["href"].replace("s.jpg", "od-w480_h360_x2.webp?w=1080&q=75")
for photo_info in photos_info
if photo_info.get("href")
]

19
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "annotated-types"
@ -667,6 +667,21 @@ files = [
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
name = "tenacity"
version = "9.0.0"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.8"
files = [
{file = "tenacity-9.0.0-py3-none-any.whl", hash = "sha256:93de0c98785b27fcf659856aa9f54bfbd399e29969b0621bc7f762bd441b4539"},
{file = "tenacity-9.0.0.tar.gz", hash = "sha256:807f37ca97d62aa361264d497b0e31e92b8027044942bfa756160d908320d73b"},
]
[package.extras]
doc = ["reno", "sphinx"]
test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tomli"
version = "2.0.1"
@ -740,4 +755,4 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<3.13"
content-hash = "21ef9cfb35c446a375a2b74c37691d7031afb1e4f66a8b63cb7c1669470689d2"
content-hash = "cefc11b1bf5ad99d628f6d08f6f03003522cc1b6e48b519230d99d716a5c165c"

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "homeharvest"
version = "0.4.3"
version = "0.4.4"
description = "Real estate scraping library"
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
homepage = "https://github.com/Bunsly/HomeHarvest"
@ -14,6 +14,7 @@ python = ">=3.9,<3.13"
requests = "^2.31.0"
pandas = "^2.1.1"
pydantic = "^2.7.4"
tenacity = "^9.0.0"
[tool.poetry.group.dev.dependencies]

View File

@ -105,8 +105,12 @@ def test_realtor():
location="2530 Al Lipscomb Way",
listing_type="for_sale",
),
scrape_property(location="Phoenix, AZ", listing_type="for_rent", limit=1000), #: does not support "city, state, USA" format
scrape_property(location="Dallas, TX", listing_type="sold", limit=1000), #: does not support "city, state, USA" format
scrape_property(
location="Phoenix, AZ", listing_type="for_rent", limit=1000
), #: does not support "city, state, USA" format
scrape_property(
location="Dallas, TX", listing_type="sold", limit=1000
), #: does not support "city, state, USA" format
scrape_property(location="85281"),
]
@ -114,11 +118,13 @@ def test_realtor():
def test_realtor_city():
results = scrape_property(
location="Atlanta, GA",
listing_type="for_sale",
limit=1000
)
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", limit=1000)
assert results is not None and len(results) > 0
def test_realtor_land():
results = scrape_property(location="Atlanta, GA", listing_type="for_sale", property_type=["land"], limit=1000)
assert results is not None and len(results) > 0
@ -241,9 +247,10 @@ def test_apartment_list_price():
results = results[results["style"] == "APARTMENT"]
#: get percentage of results with atleast 1 of any column not none, list_price, list_price_min, list_price_max
assert len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(
results
) > 0.5
assert (
len(results[results[["list_price", "list_price_min", "list_price_max"]].notnull().any(axis=1)]) / len(results)
> 0.5
)
def test_builder_exists():