- return type parameter
- optimized get extra fields with query clusteringmaster v0.4.6
parent
65f799a27d
commit
8a5683fe79
|
@ -83,7 +83,12 @@ Optional
|
|||
- 'farm'
|
||||
- 'land'
|
||||
- 'mobile'
|
||||
|
||||
│
|
||||
├── return_type (option): Choose the return type.
|
||||
│ - 'pandas' (default)
|
||||
│ - 'pydantic'
|
||||
│ - 'raw' (json)
|
||||
│
|
||||
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
|
||||
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
|
||||
│
|
||||
|
|
|
@ -3,12 +3,13 @@ import pandas as pd
|
|||
from .core.scrapers import ScraperInput
|
||||
from .utils import process_result, ordered_properties, validate_input, validate_dates, validate_limit
|
||||
from .core.scrapers.realtor import RealtorScraper
|
||||
from .core.scrapers.models import ListingType, SearchPropertyType
|
||||
from .core.scrapers.models import ListingType, SearchPropertyType, ReturnType, Property
|
||||
|
||||
|
||||
def scrape_property(
|
||||
location: str,
|
||||
listing_type: str = "for_sale",
|
||||
return_type: str = "pandas",
|
||||
property_type: list[str] | None = None,
|
||||
radius: float = None,
|
||||
mls_only: bool = False,
|
||||
|
@ -19,12 +20,13 @@ def scrape_property(
|
|||
foreclosure: bool = None,
|
||||
extra_property_data: bool = True,
|
||||
exclude_pending: bool = False,
|
||||
limit: int = 10000,
|
||||
) -> pd.DataFrame:
|
||||
limit: int = 10000
|
||||
) -> pd.DataFrame | list[dict] | list[Property]:
|
||||
"""
|
||||
Scrape properties from Realtor.com based on a given location and listing type.
|
||||
:param location: Location to search (e.g. "Dallas, TX", "85281", "2530 Al Lipscomb Way")
|
||||
:param listing_type: Listing Type (for_sale, for_rent, sold, pending)
|
||||
:param return_type: Return type (pandas, pydantic, raw)
|
||||
:param property_type: Property Type (single_family, multi_family, condos, condo_townhome_rowhome_coop, condo_townhome, townhomes, duplex_triplex, farm, land, mobile)
|
||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||
|
@ -42,7 +44,8 @@ def scrape_property(
|
|||
|
||||
scraper_input = ScraperInput(
|
||||
location=location,
|
||||
listing_type=ListingType[listing_type.upper()],
|
||||
listing_type=ListingType(listing_type.upper()),
|
||||
return_type=ReturnType(return_type.lower()),
|
||||
property_type=[SearchPropertyType[prop.upper()] for prop in property_type] if property_type else None,
|
||||
proxy=proxy,
|
||||
radius=radius,
|
||||
|
@ -59,6 +62,9 @@ def scrape_property(
|
|||
site = RealtorScraper(scraper_input)
|
||||
results = site.search()
|
||||
|
||||
if scraper_input.return_type != ReturnType.pandas:
|
||||
return results
|
||||
|
||||
properties_dfs = [df for result in results if not (df := process_result(result)).empty]
|
||||
if not properties_dfs:
|
||||
return pd.DataFrame()
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
from typing import Union
|
||||
|
||||
import requests
|
||||
from requests.adapters import HTTPAdapter
|
||||
from urllib3.util.retry import Retry
|
||||
import uuid
|
||||
from ...exceptions import AuthenticationError
|
||||
from .models import Property, ListingType, SiteName, SearchPropertyType
|
||||
from .models import Property, ListingType, SiteName, SearchPropertyType, ReturnType
|
||||
import json
|
||||
|
||||
|
||||
|
@ -24,6 +26,7 @@ class ScraperInput:
|
|||
extra_property_data: bool | None = True
|
||||
exclude_pending: bool | None = False
|
||||
limit: int = 10000
|
||||
return_type: ReturnType = ReturnType.pandas
|
||||
|
||||
|
||||
class Scraper:
|
||||
|
@ -81,8 +84,9 @@ class Scraper:
|
|||
self.extra_property_data = scraper_input.extra_property_data
|
||||
self.exclude_pending = scraper_input.exclude_pending
|
||||
self.limit = scraper_input.limit
|
||||
self.return_type = scraper_input.return_type
|
||||
|
||||
def search(self) -> list[Property]: ...
|
||||
def search(self) -> list[Union[Property | dict]]: ...
|
||||
|
||||
@staticmethod
|
||||
def _parse_home(home) -> Property: ...
|
||||
|
|
|
@ -4,6 +4,12 @@ from enum import Enum
|
|||
from typing import Optional
|
||||
|
||||
|
||||
class ReturnType(Enum):
|
||||
pydantic = "pydantic"
|
||||
pandas = "pandas"
|
||||
raw = "raw"
|
||||
|
||||
|
||||
class SiteName(Enum):
|
||||
ZILLOW = "zillow"
|
||||
REDFIN = "redfin"
|
||||
|
@ -148,6 +154,9 @@ class Property:
|
|||
property_url: str
|
||||
|
||||
property_id: str
|
||||
#: allows_cats: bool
|
||||
#: allows_dogs: bool
|
||||
|
||||
listing_id: str | None = None
|
||||
|
||||
mls: str | None = None
|
||||
|
@ -167,6 +176,8 @@ class Property:
|
|||
hoa_fee: int | None = None
|
||||
days_on_mls: int | None = None
|
||||
description: Description | None = None
|
||||
tags: list[str] | None = None
|
||||
details: list[dict] | None = None
|
||||
|
||||
latitude: float | None = None
|
||||
longitude: float | None = None
|
||||
|
|
|
@ -32,8 +32,9 @@ from ..models import (
|
|||
Builder,
|
||||
Advertisers,
|
||||
Office,
|
||||
ReturnType
|
||||
)
|
||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA
|
||||
from .queries import GENERAL_RESULTS_QUERY, SEARCH_HOMES_DATA, HOMES_DATA, HOME_FRAGMENT
|
||||
|
||||
|
||||
class RealtorScraper(Scraper):
|
||||
|
@ -120,7 +121,7 @@ class RealtorScraper(Scraper):
|
|||
|
||||
property_info = response_json["data"]["home"]
|
||||
|
||||
return [self.process_property(property_info, "home")]
|
||||
return [self.process_property(property_info)]
|
||||
|
||||
@staticmethod
|
||||
def process_advertisers(advertisers: list[dict] | None) -> Advertisers | None:
|
||||
|
@ -168,7 +169,7 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return processed_advertisers
|
||||
|
||||
def process_property(self, result: dict, query_name: str) -> Property | None:
|
||||
def process_property(self, result: dict) -> Property | None:
|
||||
mls = result["source"].get("id") if "source" in result and isinstance(result["source"], dict) else None
|
||||
|
||||
if not mls and self.mls_only:
|
||||
|
@ -188,9 +189,7 @@ class RealtorScraper(Scraper):
|
|||
return
|
||||
|
||||
property_id = result["property_id"]
|
||||
prop_details = self.get_prop_details(property_id) if self.extra_property_data and query_name != "home" else {}
|
||||
if not prop_details:
|
||||
prop_details = self.process_extra_property_details(result)
|
||||
prop_details = self.process_extra_property_details(result) if self.extra_property_data else {}
|
||||
|
||||
property_estimates_root = result.get("current_estimates") or result.get("estimates", {}).get("currentValues")
|
||||
estimated_value = self.get_key(property_estimates_root, [0, "estimate"])
|
||||
|
@ -233,7 +232,7 @@ class RealtorScraper(Scraper):
|
|||
)
|
||||
return realty_property
|
||||
|
||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, list[Property]]]:
|
||||
def general_search(self, variables: dict, search_type: str) -> Dict[str, Union[int, Union[list[Property], list[dict]]]]:
|
||||
"""
|
||||
Handles a location area & returns a list of properties
|
||||
"""
|
||||
|
@ -324,6 +323,7 @@ class RealtorScraper(Scraper):
|
|||
%s
|
||||
%s
|
||||
}
|
||||
bucket: { sort: "fractal_v1.1.3_fr" }
|
||||
%s
|
||||
limit: 200
|
||||
offset: $offset
|
||||
|
@ -363,7 +363,7 @@ class RealtorScraper(Scraper):
|
|||
response_json = response.json()
|
||||
search_key = "home_search" if "home_search" in query else "property_search"
|
||||
|
||||
properties: list[Property] = []
|
||||
properties: list[Union[Property, dict]] = []
|
||||
|
||||
if (
|
||||
response_json is None
|
||||
|
@ -381,15 +381,25 @@ class RealtorScraper(Scraper):
|
|||
|
||||
#: limit the number of properties to be processed
|
||||
#: example, if your offset is 200, and your limit is 250, return 50
|
||||
properties_list = properties_list[: self.limit - offset]
|
||||
properties_list: list[dict] = properties_list[: self.limit - offset]
|
||||
|
||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||
futures = [executor.submit(self.process_property, result, search_key) for result in properties_list]
|
||||
if self.extra_property_data:
|
||||
property_ids = [data["property_id"] for data in properties_list]
|
||||
extra_property_details = self.get_bulk_prop_details(property_ids) or {}
|
||||
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
if result:
|
||||
properties.append(result)
|
||||
for result in properties_list:
|
||||
result.update(extra_property_details.get(result["property_id"], {}))
|
||||
|
||||
if self.return_type != ReturnType.raw:
|
||||
with ThreadPoolExecutor(max_workers=self.NUM_PROPERTY_WORKERS) as executor:
|
||||
futures = [executor.submit(self.process_property, result) for result in properties_list]
|
||||
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
if result:
|
||||
properties.append(result)
|
||||
else:
|
||||
properties = properties_list
|
||||
|
||||
return {
|
||||
"total": total_properties,
|
||||
|
@ -520,28 +530,35 @@ class RealtorScraper(Scraper):
|
|||
wait=wait_exponential(min=4, max=10),
|
||||
stop=stop_after_attempt(3),
|
||||
)
|
||||
def get_prop_details(self, property_id: str) -> dict:
|
||||
if not self.extra_property_data:
|
||||
def get_bulk_prop_details(self, property_ids: list[str]) -> dict:
|
||||
"""
|
||||
Fetch extra property details for multiple properties in a single GraphQL query.
|
||||
Returns a map of property_id to its details.
|
||||
"""
|
||||
if not self.extra_property_data or not property_ids:
|
||||
return {}
|
||||
|
||||
query = """query GetHome($property_id: ID!) {
|
||||
home(property_id: $property_id) {
|
||||
__typename
|
||||
property_ids = list(set(property_ids))
|
||||
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
}
|
||||
}"""
|
||||
|
||||
variables = {"property_id": property_id}
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query, "variables": variables})
|
||||
# Construct the bulk query
|
||||
fragments = "\n".join(
|
||||
f'home_{property_id}: home(property_id: {property_id}) {{ ...HomeData }}'
|
||||
for property_id in property_ids
|
||||
)
|
||||
query = f"""{HOME_FRAGMENT}
|
||||
|
||||
query GetHomes {{
|
||||
{fragments}
|
||||
}}"""
|
||||
|
||||
response = self.session.post(self.SEARCH_GQL_URL, json={"query": query})
|
||||
data = response.json()
|
||||
property_details = data["data"]["home"]
|
||||
|
||||
return self.process_extra_property_details(property_details)
|
||||
if "data" not in data:
|
||||
return {}
|
||||
|
||||
properties = data["data"]
|
||||
return {data.replace('home_', ''): properties[data] for data in properties if properties[data]}
|
||||
|
||||
@staticmethod
|
||||
def _parse_neighborhoods(result: dict) -> Optional[str]:
|
||||
|
|
|
@ -11,6 +11,34 @@ _SEARCH_HOMES_DATA_BASE = """{
|
|||
list_price_max
|
||||
list_price_min
|
||||
price_per_sqft
|
||||
tags
|
||||
details {
|
||||
category
|
||||
text
|
||||
parent_category
|
||||
}
|
||||
pet_policy {
|
||||
cats
|
||||
dogs
|
||||
dogs_small
|
||||
dogs_large
|
||||
__typename
|
||||
}
|
||||
units {
|
||||
availability {
|
||||
date
|
||||
__typename
|
||||
}
|
||||
description {
|
||||
baths_consolidated
|
||||
baths
|
||||
beds
|
||||
sqft
|
||||
__typename
|
||||
}
|
||||
list_price
|
||||
__typename
|
||||
}
|
||||
flags {
|
||||
is_contingent
|
||||
is_pending
|
||||
|
@ -64,11 +92,14 @@ _SEARCH_HOMES_DATA_BASE = """{
|
|||
tax_record {
|
||||
public_record_id
|
||||
}
|
||||
primary_photo {
|
||||
primary_photo(https: true) {
|
||||
href
|
||||
}
|
||||
photos {
|
||||
photos(https: true) {
|
||||
href
|
||||
tags {
|
||||
label
|
||||
}
|
||||
}
|
||||
advertisers {
|
||||
email
|
||||
|
@ -116,15 +147,63 @@ _SEARCH_HOMES_DATA_BASE = """{
|
|||
}
|
||||
rental_management {
|
||||
name
|
||||
href
|
||||
fulfillment_id
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
HOME_FRAGMENT = """
|
||||
fragment HomeData on Home {
|
||||
property_id
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
monthly_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
one_time_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
parking {
|
||||
unassigned_space_rent
|
||||
assigned_spaces_available
|
||||
description
|
||||
assigned_space_rent
|
||||
}
|
||||
terms {
|
||||
text
|
||||
category
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
HOMES_DATA = """%s
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
monthly_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
one_time_fees {
|
||||
description
|
||||
display_amount
|
||||
}
|
||||
parking {
|
||||
unassigned_space_rent
|
||||
assigned_spaces_available
|
||||
description
|
||||
assigned_space_rent
|
||||
}
|
||||
terms {
|
||||
text
|
||||
category
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
estimates {
|
||||
__typename
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "homeharvest"
|
||||
version = "0.4.5"
|
||||
version = "0.4.6"
|
||||
description = "Real estate scraping library"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from homeharvest import scrape_property
|
||||
from homeharvest import scrape_property, Property
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_realtor_pending_or_contingent():
|
||||
|
@ -287,3 +288,15 @@ def test_phone_number_matching():
|
|||
|
||||
#: assert phone numbers are the same
|
||||
assert row["agent_phones"].values[0] == matching_row["agent_phones"].values[0]
|
||||
|
||||
|
||||
def test_return_type():
|
||||
results = {
|
||||
"pandas": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100),
|
||||
"pydantic": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="pydantic"),
|
||||
"raw": scrape_property(location="Surprise, AZ", listing_type="for_rent", limit=100, return_type="raw"),
|
||||
}
|
||||
|
||||
assert isinstance(results["pandas"], pd.DataFrame)
|
||||
assert isinstance(results["pydantic"][0], Property)
|
||||
assert isinstance(results["raw"][0], dict)
|
||||
|
|
Loading…
Reference in New Issue