commit
7297f0eb33
|
@ -31,11 +31,33 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# scrapes all 3 sites by default\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\", site_name=\"zillow\", listing_type=\"for_sale\"\n",
|
||||
" location=\"dallas\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aaf86093",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# search a specific address\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"2530 Al Lipscomb Way\",\n",
|
||||
" site_name=\"zillow\",\n",
|
||||
" listing_type=\"for_sale\"\n",
|
||||
"),"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -43,8 +65,31 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check rentals\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"dallas\", site_name=\"redfin\", listing_type=\"for_sale\"\n",
|
||||
" location=\"chicago\",\n",
|
||||
" site_name=[\"redfin\", \"realtor.com\"],\n",
|
||||
" listing_type=\"for_rent\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af280cd3",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check sold properties\n",
|
||||
"scrape_property(\n",
|
||||
" location=\"chicago, illinois\",\n",
|
||||
" site_name=[\"redfin\"],\n",
|
||||
" listing_type=\"sold\"\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# HomeHarvest
|
||||
<img src="https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/d1a2bf8b-09f5-4c57-b33a-0ada8a34f12d" width="400">
|
||||
|
||||
**HomeHarvest** is a simple but comprehensive real estate scraping library.
|
||||
**HomeHarvest** is a simple, yet comprehensive, real estate scraping library.
|
||||
|
||||
[![Try with Replit](https://replit.com/badge?caption=Try%20with%20Replit)](https://replit.com/@ZacharyHampton/HomeHarvestDemo)
|
||||
|
||||
|
||||
*Looking to build a data-focused software product?* **[Book a call](https://calendly.com/zachary-products/15min)** *to work with us.*
|
||||
## Features
|
||||
|
||||
|
||||
|
||||
- Scrapes properties from **Zillow**, **Realtor.com** & **Redfin** simultaneously
|
||||
- Aggregates the properties in a Pandas DataFrame
|
||||
|
||||
|
@ -32,8 +32,6 @@ properties: pd.DataFrame = scrape_property(
|
|||
|
||||
#: Note, to export to CSV or Excel, use properties.to_csv() or properties.to_excel().
|
||||
print(properties)
|
||||
|
||||
|
||||
```
|
||||
## Output
|
||||
```py
|
||||
|
|
|
@ -17,7 +17,6 @@ _scrapers = {
|
|||
"zillow": ZillowScraper,
|
||||
}
|
||||
|
||||
|
||||
def validate_input(site_name: str, listing_type: str) -> None:
|
||||
if site_name.lower() not in _scrapers:
|
||||
raise InvalidSite(f"Provided site, '{site_name}', does not exist.")
|
||||
|
@ -27,7 +26,6 @@ def validate_input(site_name: str, listing_type: str) -> None:
|
|||
f"Provided listing type, '{listing_type}', does not exist."
|
||||
)
|
||||
|
||||
|
||||
def get_ordered_properties(result: Property) -> list[str]:
|
||||
return [
|
||||
"property_url",
|
||||
|
@ -67,7 +65,6 @@ def get_ordered_properties(result: Property) -> list[str]:
|
|||
"longitude",
|
||||
]
|
||||
|
||||
|
||||
def process_result(result: Property) -> pd.DataFrame:
|
||||
prop_data = result.__dict__
|
||||
|
||||
|
@ -93,7 +90,6 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
|
||||
return properties_df
|
||||
|
||||
|
||||
def _scrape_single_site(
|
||||
location: str, site_name: str, listing_type: str
|
||||
) -> pd.DataFrame:
|
||||
|
@ -112,6 +108,7 @@ def _scrape_single_site(
|
|||
results = site.search()
|
||||
|
||||
properties_dfs = [process_result(result) for result in results]
|
||||
properties_dfs = [df.dropna(axis=1, how='all') for df in properties_dfs if not df.empty]
|
||||
if not properties_dfs:
|
||||
return pd.DataFrame()
|
||||
|
||||
|
@ -154,6 +151,8 @@ def scrape_property(
|
|||
result = future.result()
|
||||
results.append(result)
|
||||
|
||||
results = [df for df in results if not df.empty and not df.isna().all().all()]
|
||||
|
||||
if not results:
|
||||
return pd.DataFrame()
|
||||
|
||||
|
|
|
@ -249,8 +249,8 @@ class RealtorScraper(Scraper):
|
|||
unit=parse_unit(result["location"]["address"]["unit"]),
|
||||
country="USA",
|
||||
),
|
||||
latitude=result["location"]["address"]["coordinate"]["lat"],
|
||||
longitude=result["location"]["address"]["coordinate"]["lon"],
|
||||
latitude=result["location"]["address"]["coordinate"]["lat"] if result and result.get("location") and result["location"].get("address") and result["location"]["address"].get("coordinate") and "lat" in result["location"]["address"]["coordinate"] else None,
|
||||
longitude=result["location"]["address"]["coordinate"]["lon"] if result and result.get("location") and result["location"].get("address") and result["location"]["address"].get("coordinate") and "lon" in result["location"]["address"]["coordinate"] else None,
|
||||
site_name=self.site_name,
|
||||
property_url="https://www.realtor.com/realestateandhomes-detail/"
|
||||
+ result["property_id"],
|
||||
|
|
|
@ -94,8 +94,8 @@ class RedfinScraper(Scraper):
|
|||
price_per_sqft=get_value("pricePerSqFt"),
|
||||
price=get_value("price"),
|
||||
mls_id=get_value("mlsId"),
|
||||
latitude=home["latLong"]["latitude"] if "latLong" in home else None,
|
||||
longitude=home["latLong"]["longitude"] if "latLong" in home else None,
|
||||
latitude=home["latLong"]["latitude"] if "latLong" in home and "latitude" in home["latLong"] else None,
|
||||
longitude = home["latLong"]["longitude"] if "latLong" in home and "longitude" in home["latLong"] else None
|
||||
)
|
||||
|
||||
def _parse_building(self, building: dict) -> Property:
|
||||
|
|
Loading…
Reference in New Issue