- various data quality fixes (including #70)
parent
04ae968716
commit
46985dcee4
|
@ -13,9 +13,10 @@ def scrape_property(
|
|||
mls_only: bool = False,
|
||||
past_days: int = None,
|
||||
proxy: str = None,
|
||||
date_from: str = None,
|
||||
date_from: str = None, #: TODO: Switch to one parameter, Date, with date_from and date_to, pydantic validation
|
||||
date_to: str = None,
|
||||
foreclosure: bool = None,
|
||||
extra_property_data: bool = True,
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Scrape properties from Realtor.com based on a given location and listing type.
|
||||
|
@ -23,9 +24,11 @@ def scrape_property(
|
|||
:param listing_type: Listing Type (for_sale, for_rent, sold)
|
||||
:param radius: Get properties within _ (e.g. 1.0) miles. Only applicable for individual addresses.
|
||||
:param mls_only: If set, fetches only listings with MLS IDs.
|
||||
:param proxy: Proxy to use for scraping
|
||||
:param past_days: Get properties sold or listed (dependent on your listing_type) in the last _ days.
|
||||
:param date_from, date_to: Get properties sold or listed (dependent on your listing_type) between these dates. format: 2021-01-28
|
||||
:param proxy: Proxy to use for scraping
|
||||
:param foreclosure: If set, fetches only foreclosure listings.
|
||||
:param extra_property_data: Increases requests by O(n). If set, this fetches additional property data (e.g. agent, broker, property evaluations etc.)
|
||||
"""
|
||||
validate_input(listing_type)
|
||||
validate_dates(date_from, date_to)
|
||||
|
@ -51,4 +54,5 @@ def scrape_property(
|
|||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", category=FutureWarning)
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties]
|
||||
|
||||
return pd.concat(properties_dfs, ignore_index=True, axis=0)[ordered_properties].replace({"None": "", None: ""})
|
||||
|
|
|
@ -76,10 +76,27 @@ class Description:
|
|||
text: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class AgentPhone: #: For documentation purposes only (at the moment)
|
||||
number: str | None = None
|
||||
type: str | None = None
|
||||
primary: bool | None = None
|
||||
ext: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Agent:
|
||||
name: str | None = None
|
||||
phones: list[dict] | AgentPhone | None = None
|
||||
email: str | None = None
|
||||
href: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class Broker:
|
||||
name: str | None = None
|
||||
phone: str | None = None
|
||||
website: str | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
|
|
|
@ -651,26 +651,64 @@ class RealtorScraper(Scraper):
|
|||
return homes
|
||||
|
||||
def get_prop_details(self, property_id: str) -> dict:
|
||||
payload = f'{{"query":"query GetHome($property_id: ID!) {{\\n home(property_id: $property_id) {{\\n __typename\\n\\n consumerAdvertisers: consumer_advertisers {{\\n __typename\\n type\\n advertiserId: advertiser_id\\n name\\n phone\\n type\\n href\\n slogan\\n photo {{\\n __typename\\n href\\n }}\\n showRealtorLogo: show_realtor_logo\\n hours\\n }}\\n\\n\\n nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {{ __typename schools {{ district {{ __typename id name }} }} }} taxHistory: tax_history {{ __typename tax year assessment {{ __typename building land total }} }}estimates {{ __typename currentValues: current_values {{ __typename source {{ __typename type name }} estimate estimateHigh: estimate_high estimateLow: estimate_low date isBestHomeValue: isbest_homevalue }} }} }}\\n}}\\n","variables":{{"property_id":"{property_id}"}}}}'
|
||||
response = self.session.post(self.PROPERTY_GQL, data=payload)
|
||||
query = """query GetHome($property_id: ID!) {
|
||||
home(property_id: $property_id) {
|
||||
__typename
|
||||
|
||||
advertisers {
|
||||
__typename
|
||||
type
|
||||
name
|
||||
email
|
||||
phones { number type ext primary }
|
||||
}
|
||||
|
||||
|
||||
nearbySchools: nearby_schools(radius: 5.0, limit_per_level: 3) {
|
||||
__typename schools { district { __typename id name } }
|
||||
}
|
||||
taxHistory: tax_history { __typename tax year assessment { __typename building land total } }
|
||||
estimates {
|
||||
__typename
|
||||
currentValues: current_values {
|
||||
__typename
|
||||
source { __typename type name }
|
||||
estimate
|
||||
estimateHigh: estimate_high
|
||||
estimateLow: estimate_low
|
||||
date
|
||||
isBestHomeValue: isbest_homevalue
|
||||
}
|
||||
}
|
||||
}
|
||||
}"""
|
||||
|
||||
variables = {"property_id": property_id}
|
||||
response = self.session.post(self.PROPERTY_GQL, json={"query": query, "variables": variables})
|
||||
data = response.json()
|
||||
|
||||
def get_key(keys: list):
|
||||
try:
|
||||
data = response.json()
|
||||
value = data
|
||||
for key in keys:
|
||||
data = data[key]
|
||||
return data
|
||||
except (KeyError, TypeError):
|
||||
value = value[key]
|
||||
|
||||
return value or {}
|
||||
except (KeyError, TypeError, IndexError):
|
||||
return {}
|
||||
|
||||
ads = get_key(["data", "home", "consumerAdvertisers"])
|
||||
ads = get_key(["data", "home", "advertisers"])
|
||||
schools = get_key(["data", "home", "nearbySchools", "schools"])
|
||||
assessed_value = get_key(["data", "home", "taxHistory", 0, "assessment", "total"])
|
||||
estimated_value = get_key(["data", "home", "estimates", "currentValues", 0, "estimate"])
|
||||
|
||||
agents = [Agent(name=ad["name"], phone=ad["phone"]) for ad in ads]
|
||||
agents = [Agent(
|
||||
name=ad["name"],
|
||||
email=ad["email"],
|
||||
phones=ad["phones"]
|
||||
) for ad in ads]
|
||||
|
||||
schools = [school["district"]["name"] for school in schools]
|
||||
schools = [school["district"]["name"] for school in schools if school['district'].get('name')]
|
||||
return {
|
||||
"agents": agents if agents else None,
|
||||
"schools": schools if schools else None,
|
||||
|
@ -698,7 +736,8 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return address_part
|
||||
|
||||
def _parse_address(self, result: dict, search_type):
|
||||
@staticmethod
|
||||
def _parse_address(result: dict, search_type):
|
||||
if search_type == "general_search":
|
||||
address = result["location"]["address"]
|
||||
else:
|
||||
|
@ -706,12 +745,12 @@ class RealtorScraper(Scraper):
|
|||
|
||||
return Address(
|
||||
street=" ".join(
|
||||
[
|
||||
self.handle_none_safely(address.get("street_number")),
|
||||
self.handle_none_safely(address.get("street_direction")),
|
||||
self.handle_none_safely(address.get("street_name")),
|
||||
self.handle_none_safely(address.get("street_suffix")),
|
||||
]
|
||||
part for part in [
|
||||
address.get("street_number"),
|
||||
address.get("street_direction"),
|
||||
address.get("street_name"),
|
||||
address.get("street_suffix"),
|
||||
] if part is not None
|
||||
).strip(),
|
||||
unit=address["unit"],
|
||||
city=address["city"],
|
||||
|
@ -746,7 +785,7 @@ class RealtorScraper(Scraper):
|
|||
baths_half=description_data.get("baths_half"),
|
||||
sqft=description_data.get("sqft"),
|
||||
lot_sqft=description_data.get("lot_sqft"),
|
||||
sold_price=description_data.get("sold_price"),
|
||||
sold_price=description_data.get("sold_price") if result.get('last_sold_date') or result["list_price"] != description_data.get("sold_price") else None, #: has a sold date or list and sold price are different
|
||||
year_built=description_data.get("year_built"),
|
||||
garage=description_data.get("garage"),
|
||||
stories=description_data.get("stories"),
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from .core.scrapers.models import Property, ListingType
|
||||
from .core.scrapers.models import Property, ListingType, Agent
|
||||
from .exceptions import InvalidListingType, InvalidDate
|
||||
|
||||
ordered_properties = [
|
||||
|
@ -38,8 +38,8 @@ ordered_properties = [
|
|||
"hoa_fee",
|
||||
"parking_garage",
|
||||
"agent",
|
||||
"broker",
|
||||
"broker_phone",
|
||||
"agent_email",
|
||||
"agent_phones",
|
||||
"nearby_schools",
|
||||
"primary_photo",
|
||||
"alt_photos",
|
||||
|
@ -59,12 +59,11 @@ def process_result(result: Property) -> pd.DataFrame:
|
|||
prop_data["zip_code"] = address_data.zip
|
||||
|
||||
if "agents" in prop_data:
|
||||
agents = prop_data["agents"]
|
||||
agents: list[Agent] | None = prop_data["agents"]
|
||||
if agents:
|
||||
prop_data["agent"] = agents[0].name
|
||||
if len(agents) > 1:
|
||||
prop_data["broker"] = agents[1].name
|
||||
prop_data["broker_phone"] = agents[1].phone
|
||||
prop_data["agent_email"] = agents[0].email
|
||||
prop_data["agent_phones"] = agents[0].phones
|
||||
|
||||
prop_data["price_per_sqft"] = prop_data["prc_sqft"]
|
||||
prop_data["nearby_schools"] = filter(None, prop_data["nearby_schools"]) if prop_data["nearby_schools"] else None
|
||||
|
@ -107,5 +106,5 @@ def validate_dates(date_from: str | None, date_to: str | None) -> None:
|
|||
|
||||
if date_to_obj < date_from_obj:
|
||||
raise InvalidDate("date_to must be after date_from.")
|
||||
except ValueError as e:
|
||||
except ValueError:
|
||||
raise InvalidDate(f"Invalid date format or range")
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "homeharvest"
|
||||
version = "0.3.20"
|
||||
version = "0.3.21"
|
||||
description = "Real estate scraping library"
|
||||
authors = ["Zachary Hampton <zachary@bunsly.com>", "Cullen Watson <cullen@bunsly.com>"]
|
||||
homepage = "https://github.com/Bunsly/HomeHarvest"
|
||||
|
|
Loading…
Reference in New Issue