- realtor.com default

pull/31/head
Zachary Hampton 2023-10-02 10:28:13 -07:00
parent 8388d47f73
commit 1f1ca8068f
2 changed files with 20 additions and 18 deletions

View File

@ -29,6 +29,21 @@ pip install homeharvest
## Usage ## Usage
### Python
```py
from homeharvest import scrape_property
import pandas as pd
properties: pd.DataFrame = scrape_property(
location="85281",
listing_type="for_rent" # for_sale / sold
)
#: Note, to export to CSV or Excel, use properties.to_csv() or properties.to_excel().
print(properties)
```
### CLI ### CLI
```bash ```bash
@ -44,21 +59,6 @@ By default:
- If `-f` or `--filename` is left blank, the default is `HomeHarvest_<current_timestamp>`. - If `-f` or `--filename` is left blank, the default is `HomeHarvest_<current_timestamp>`.
- If `-p` or `--proxy` is not provided, the scraper uses the local IP. - If `-p` or `--proxy` is not provided, the scraper uses the local IP.
- Use `-k` or `--keep_duplicates` to keep duplicate properties based on address. If not provided, duplicates will be removed. - Use `-k` or `--keep_duplicates` to keep duplicate properties based on address. If not provided, duplicates will be removed.
### Python
```py
from homeharvest import scrape_property
import pandas as pd
properties: pd.DataFrame = scrape_property(
site_name=["zillow", "realtor.com", "redfin"],
location="85281",
listing_type="for_rent" # for_sale / sold
)
#: Note, to export to CSV or Excel, use properties.to_csv() or properties.to_excel().
print(properties)
```
## Output ## Output
```py ```py

View File

@ -132,7 +132,7 @@ def _scrape_single_site(location: str, site_name: str, listing_type: str, proxy:
def scrape_property( def scrape_property(
location: str, location: str,
site_name: Union[str, list[str]] = None, site_name: Union[str, list[str]] = "realtor.com",
listing_type: str = "for_sale", listing_type: str = "for_sale",
proxy: str = None, proxy: str = None,
keep_duplicates: bool = False keep_duplicates: bool = False
@ -140,12 +140,14 @@ def scrape_property(
""" """
Scrape property from various sites from a given location and listing type. Scrape property from various sites from a given location and listing type.
:returns: pd.DataFrame :param keep_duplicates:
:param proxy:
:param location: US Location (e.g. 'San Francisco, CA', 'Cook County, IL', '85281', '2530 Al Lipscomb Way') :param location: US Location (e.g. 'San Francisco, CA', 'Cook County, IL', '85281', '2530 Al Lipscomb Way')
:param site_name: Site name or list of site names (e.g. ['realtor.com', 'zillow'], 'redfin') :param site_name: Site name or list of site names (e.g. ['realtor.com', 'zillow'], 'redfin')
:param listing_type: Listing type (e.g. 'for_sale', 'for_rent', 'sold') :param listing_type: Listing type (e.g. 'for_sale', 'for_rent', 'sold')
:return: pd.DataFrame containing properties :returns: pd.DataFrame containing properties
""" """
if site_name is None: if site_name is None:
site_name = list(_scrapers.keys()) site_name = list(_scrapers.keys())