76 lines
2.0 KiB
Python
76 lines
2.0 KiB
Python
# use headless backend
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
|
|
import base64
|
|
import cv2 as cv
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from skimage import measure, morphology, color, segmentation
|
|
import io
|
|
|
|
def get_projected_area(image, area_threshold, display_threshold, paper_width, paper_height):
|
|
total_px = image.size
|
|
total_mm = paper_width * paper_height * 25.4
|
|
|
|
output = []
|
|
original = cv.imdecode(image, cv.IMREAD_UNCHANGED)
|
|
original = cv.cvtColor(original, cv.COLOR_BGR2RGB)
|
|
|
|
img = cv.cvtColor(original, cv.COLOR_BGR2GRAY)
|
|
_retval, thresh_gray = cv.threshold(img, 200, 255, cv.THRESH_BINARY)
|
|
|
|
img = morphology.area_closing(thresh_gray, area_threshold=area_threshold, connectivity=1)
|
|
|
|
contours = measure.find_contours(image=img, level=100)
|
|
|
|
fig, ax = plt.subplots()
|
|
ax.imshow(original, cmap=plt.cm.gray, alpha=0.3)
|
|
|
|
index = 1
|
|
|
|
for contour in contours:
|
|
area = calculate_area(contour)
|
|
|
|
if calculate_area(contour) > display_threshold:
|
|
ax.plot(contour[:, 1], contour[:, 0], linewidth=0.5, color='orangered')
|
|
|
|
cX, cY = center_of_mass(contour)
|
|
plt.text(cY, cX, index, color='black', fontsize=6)
|
|
|
|
output.append((index, round(area / total_px * total_mm, 2)))
|
|
|
|
# print(area, total_px)
|
|
|
|
|
|
index += 1
|
|
|
|
ax.axis('image')
|
|
ax.set_xticks([])
|
|
ax.set_yticks([])
|
|
|
|
ax.margins(0)
|
|
|
|
my_stringIObytes = io.BytesIO()
|
|
plt.savefig(my_stringIObytes, format='png', dpi=500, bbox_inches='tight')
|
|
my_stringIObytes.seek(0)
|
|
image_arr = base64.b64encode(my_stringIObytes.read()).decode(encoding='utf-8')
|
|
|
|
return image_arr, output
|
|
|
|
def calculate_area(countour):
|
|
c = np.expand_dims(countour.astype(np.float32), 1)
|
|
c = cv.UMat(c)
|
|
|
|
return cv.contourArea(c)
|
|
|
|
def center_of_mass(X):
|
|
x = X[:,0]
|
|
y = X[:,1]
|
|
g = (x[:-1]*y[1:] - x[1:]*y[:-1])
|
|
A = 0.5*g.sum()
|
|
cx = ((x[:-1] + x[1:])*g).sum()
|
|
cy = ((y[:-1] + y[1:])*g).sum()
|
|
|
|
return 1./(6*A)*np.array([cx,cy])
|