138 lines
3.5 KiB
Python
138 lines
3.5 KiB
Python
import math
|
|
import cv2 as cv
|
|
import numpy as np
|
|
from numba import jit
|
|
import json
|
|
|
|
# Cropping config
|
|
# x1 = 420
|
|
# x2 = 1200
|
|
# y1 = 400
|
|
# y2 = -1
|
|
|
|
# post-processing
|
|
smoothing_radius = 2
|
|
|
|
# temperature key generation
|
|
key_entries = 6
|
|
|
|
|
|
@jit(nopython=True)
|
|
def rg_ratio_normalize(
|
|
imgarr,
|
|
I_Darkcurrent,
|
|
f_stop,
|
|
exposure_time,
|
|
ISO,
|
|
MIN_TEMP,
|
|
MAX_TEMP
|
|
):
|
|
# set max & min to most extreme values,
|
|
# work up & down respectively from there
|
|
tmin = MAX_TEMP
|
|
tmax = 0
|
|
|
|
imgnew = imgarr.copy()
|
|
for i in range(len(imgarr)):
|
|
for j in range(len(imgarr[i])):
|
|
px = imgarr[i][j]
|
|
|
|
# normalize R & G pixels
|
|
r_norm = (px[0] - I_Darkcurrent) * (f_stop ** 2) / (ISO * exposure_time)
|
|
g_norm = (px[1] - I_Darkcurrent) * (f_stop ** 2) / (ISO * exposure_time)
|
|
|
|
# apply camera calibration func
|
|
temp_C = pyrometry_calibration_formula(g_norm, r_norm)
|
|
|
|
# remove pixels outside calibration range
|
|
if MAX_TEMP != None and temp_C > MAX_TEMP or MIN_TEMP != None and temp_C < MIN_TEMP:
|
|
temp_C = 0
|
|
|
|
# update min & max
|
|
if temp_C < tmin and temp_C >= 0:
|
|
tmin = temp_C
|
|
if temp_C > tmax:
|
|
tmax = temp_C
|
|
|
|
imgnew[i][j] = [temp_C, temp_C, temp_C]
|
|
return imgnew, tmin, tmax
|
|
|
|
|
|
@jit(nopython=True)
|
|
def pyrometry_calibration_formula(i_ng, i_nr):
|
|
"""
|
|
Given the green-red ratio, calculates an approximate temperature
|
|
in Celsius.
|
|
"""
|
|
return 362.73 * math.log10(
|
|
(i_ng/i_nr) ** 3
|
|
) + 2186.7 * math.log10(
|
|
(i_ng/i_nr) ** 3
|
|
) + 4466.5 * math.log10(
|
|
(i_ng / i_nr) ** 3
|
|
) + 3753.5
|
|
|
|
def ratio_pyrometry_pipeline(
|
|
file_bytes,
|
|
# camera settings
|
|
I_Darkcurrent: float,
|
|
exposure_time: float,
|
|
f_stop: float,
|
|
ISO: float,
|
|
# pyrometry config
|
|
MAX_TEMP: float,
|
|
MIN_TEMP: float
|
|
):
|
|
|
|
# read image & crop
|
|
img_orig = cv.imdecode(file_bytes, cv.IMREAD_UNCHANGED)
|
|
# img = img[y1:y2, x1:x2]
|
|
|
|
img, tmin, tmax = rg_ratio_normalize(
|
|
img_orig,
|
|
I_Darkcurrent,
|
|
f_stop,
|
|
exposure_time,
|
|
ISO,
|
|
MIN_TEMP,
|
|
MAX_TEMP
|
|
)
|
|
|
|
# build & apply smoothing conv kernel
|
|
k = []
|
|
for i in range(smoothing_radius):
|
|
k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)])
|
|
kernel = np.array(k)
|
|
|
|
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
|
|
|
|
# write colormapped image
|
|
img_jet = cv.applyColorMap(img, cv.COLORMAP_JET)
|
|
# cv.imwrite(f'{file_name}-cropped-transformed-ratio.{file_ext}', img_jet)
|
|
|
|
# --- Generate temperature key ---
|
|
|
|
# adjust max & min temps to be the same as the image
|
|
# tmin_adj = tmin / (smoothing_radius ** 2)
|
|
# tmax_adj = tmax / (smoothing_radius ** 2)
|
|
# Generate 6-step key
|
|
step = (tmax - tmin) / (key_entries-1)
|
|
temps = []
|
|
key_img_arr = [[]]
|
|
for i in range(key_entries):
|
|
res_temp = tmin + (i * step)
|
|
res_color = (tmax - (i * step)) / MAX_TEMP * 255
|
|
temps.append(math.floor(res_temp))
|
|
key_img_arr[0].append([res_color, res_color, res_color])
|
|
|
|
key_img = np.array(key_img_arr).astype(np.uint8)
|
|
key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET)
|
|
|
|
tempkey = {}
|
|
for i in range(len(temps)):
|
|
c = key_img_jet[0][i]
|
|
tempkey[temps[i]] = f"rgb({c[0]}, {c[1]}, {c[2]})"
|
|
|
|
# original, transformed, legend
|
|
return img_orig, img_jet, tempkey
|