import math import cv2 as cv import numpy as np from numba import jit import json @jit(nopython=True) def rg_ratio_normalize( imgarr, I_Darkcurrent, f_stop, exposure_time, ISO, MIN_TEMP, MAX_TEMP ): # set max & min to most extreme values, # work up & down respectively from there tmin = MAX_TEMP tmax = 0 imgnew = imgarr.copy() for i in range(len(imgarr)): for j in range(len(imgarr[i])): px = imgarr[i][j] # normalize R & G pixels r_norm = (px[0] - I_Darkcurrent) * (f_stop ** 2) / (ISO * exposure_time) g_norm = (px[1] - I_Darkcurrent) * (f_stop ** 2) / (ISO * exposure_time) # apply camera calibration func temp_C = pyrometry_calibration_formula(g_norm, r_norm) # remove pixels outside calibration range if MAX_TEMP != None and temp_C > MAX_TEMP or MIN_TEMP != None and temp_C < MIN_TEMP: temp_C = 0 # update min & max if temp_C < tmin and temp_C >= 0: tmin = temp_C if temp_C > tmax: tmax = temp_C temp_C -= MIN_TEMP imgnew[i][j] = [temp_C, temp_C, temp_C] return imgnew, tmin, tmax @jit(nopython=True) def pyrometry_calibration_formula(i_ng, i_nr): """ Given the green-red ratio, calculates an approximate temperature in Celsius. """ return 362.73 * math.log10( (i_ng/i_nr) ** 3 ) + 2186.7 * math.log10( (i_ng/i_nr) ** 2 ) + 4466.5 * math.log10( (i_ng / i_nr) ) + 3753.5 def ratio_pyrometry_pipeline( file_bytes, # camera settings I_Darkcurrent: float, exposure_time: float, f_stop: float, ISO: float, # pyrometry config MAX_TEMP: float, MIN_TEMP: float, smoothing_radius: int, key_entries: int ): # read image & crop img_orig = cv.imdecode(file_bytes, cv.IMREAD_UNCHANGED) # img = img[y1:y2, x1:x2] img, tmin, tmax = rg_ratio_normalize( img_orig, I_Darkcurrent, f_stop, exposure_time, ISO, MIN_TEMP, MAX_TEMP ) # build & apply smoothing conv kernel k = [] for i in range(smoothing_radius): k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)]) kernel = np.array(k) img = cv.filter2D(src=img, ddepth=-1, kernel=kernel) # write colormapped image img_jet = cv.applyColorMap(img, cv.COLORMAP_JET) # cv.imwrite(f'{file_name}-cropped-transformed-ratio.{file_ext}', img_jet) # --- Generate temperature key --- # adjust max & min temps to be the same as the image # tmin_adj = tmin / (smoothing_radius ** 2) # tmax_adj = tmax / (smoothing_radius ** 2) # Generate 6-step key step = (tmax - tmin) / (key_entries-1) temps = [] key_img_arr = [[]] for i in range(key_entries): res_temp = tmin + (i * step) res_color = (tmax - (i * step)) / MAX_TEMP * 255 temps.append(math.floor(res_temp)) key_img_arr[0].append([res_color, res_color, res_color]) key_img = np.array(key_img_arr).astype(np.uint8) key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET) tempkey = {} for i in range(len(temps)): c = key_img_jet[0][i] tempkey[temps[i]] = f"rgb({c[0]}, {c[1]}, {c[2]})" # original, transformed, legend return img_orig, img_jet, tempkey