Compare commits

..

2 Commits

Author SHA1 Message Date
michael 1de21e93e1 basic firebrand recognition
Co-authored-by: Alex <AlexanderMcDowell@users.noreply.github.com>
2022-11-14 22:47:43 -08:00
michael 59e0f2d861 firebrand edge detection demo
Co-authored-by: Alex <AlexanderMcDowell@users.noreply.github.com>
2022-11-13 17:57:41 -08:00
12 changed files with 301 additions and 60 deletions

BIN
examples/pyrometry/asdf.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 KiB

View File

@ -2,26 +2,77 @@
import cv2 as cv import cv2 as cv
import numpy as np import numpy as np
from skimage import measure, morphology, color, segmentation
import matplotlib.pyplot as plt
# edge-detection kernel amplification file = 'streaktest2.png'
AMPLIFIER=8
MIN_INTENSITY=100
# file = '01-0001-cropped.png'
file = 'streaktest.png'
file_name = file.split(".")[0]
file_ext = file.split(".")[1]
img = cv.imread(file) img = cv.imread(file)
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # blurred = cv.GaussianBlur(img, (8, 8), 0)
kernel = np.array([ retval, thresh_gray = cv.threshold(img, 120, 255, cv.THRESH_BINARY)
[-1, -1, -1],
[-1, AMPLIFIER, -1],
[-1, -1, -1],
])
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
cv.imwrite(f'{file_name}-edge-detection.{file_ext}', img) kernel = np.ones((7, 7), np.uint8)
image = cv.morphologyEx(thresh_gray, cv.MORPH_CLOSE, kernel, iterations=1)
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
retval, gray = cv.threshold(gray, 0, 255, cv.THRESH_BINARY)
gray = cv.copyMakeBorder(
gray,
20,
20,
20,
20,
cv.BORDER_CONSTANT,
value=0
)
# cv.imshow('gray', gray)
# cv.waitKey(0)
# contours = measure.find_contours(array=gray, level=100)
_img, contours = cv.findContours(gray, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)[0]
fig, ax = plt.subplots()
ax.imshow(gray, cmap=plt.cm.gray, alpha=1)
def calculate_area(countour):
c = np.expand_dims(countour.astype(np.float32), 1)
c = cv.UMat(c)
return cv.contourArea(c)
def center_of_mass(X):
x = X[:,0]
y = X[:,1]
g = (x[:-1]*y[1:] - x[1:]*y[:-1])
A = 0.5*g.sum()
cx = ((x[:-1] + x[1:])*g).sum()
cy = ((y[:-1] + y[1:])*g).sum()
return 1./(6*A)*np.array([cx,cy])
img_new = cv.cvtColor(gray, cv.COLOR_GRAY2BGR)
for contour in contours:
area = calculate_area(contour)
# if area > 250:
# cnt = np.array(contour).reshape((-1, 1, 2)).astype(np.int32)
# cv.drawContours(img_new, [cnt], -1, (0, 200, 255), thickness=10)
cv.drawContours(img_new, [contour], -1, (0, 200, 255), thickness=3)
# ax.plot(contour[:, 1], contour[:, 0], linewidth=0.5, color='orangered')
# cv.imshow('contours', img_new)
# cv.waitKey(0)
cv.imwrite("firebrand_contours_opencv.png", img_new)
ax.axis('image')
ax.set_xticks([])
ax.set_yticks([])
plt.savefig("edge_detection_figure.png", dpi=500)

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 445 KiB

View File

@ -1,11 +1,10 @@
from flask import Flask, render_template, request, send_file from flask import Flask, render_template, request, send_file
import numpy as np import numpy as np
from plotly_util import generate_plotly_temperature_pdf
from ratio_pyrometry import ratio_pyrometry_pipeline from ratio_pyrometry import ratio_pyrometry_pipeline
from size_projection import get_projected_area from size_projection import get_projected_area
import base64 import base64
import cv2 as cv import cv2 as cv
import plotly.figure_factory as ff
import pandas as pd
app = Flask( app = Flask(
__name__, __name__,
@ -21,7 +20,7 @@ def index():
def ratio_pyro(): def ratio_pyro():
f = request.files['file'] f = request.files['file']
f_bytes = np.fromstring(f.read(), np.uint8) f_bytes = np.fromstring(f.read(), np.uint8)
img_orig, img_res, key, ptemps = ratio_pyrometry_pipeline( img_orig, img_res, key, ptemps, indiv_firebrands = ratio_pyrometry_pipeline(
f_bytes, f_bytes,
ISO=float(request.form['iso']), ISO=float(request.form['iso']),
I_Darkcurrent=float(request.form['i_darkcurrent']), I_Darkcurrent=float(request.form['i_darkcurrent']),
@ -31,47 +30,28 @@ def ratio_pyro():
MIN_TEMP=float(request.form['min_temp']), MIN_TEMP=float(request.form['min_temp']),
smoothing_radius=int(request.form['smoothing_radius']), smoothing_radius=int(request.form['smoothing_radius']),
key_entries=int(request.form['legend_entries']), key_entries=int(request.form['legend_entries']),
eqn_scaling_factor=float(request.form['equation_scaling_factor']) eqn_scaling_factor=float(request.form['equation_scaling_factor']),
firebrand_min_intensity_threshold=float(request.form['intensity_threshold']),
firebrand_min_area=float(request.form['min_area']),
) )
# get base64 encoded images # get base64 encoded images
img_orig_b64 = base64.b64encode(cv.imencode('.png', img_orig)[1]).decode(encoding='utf-8') img_orig_b64 = base64.b64encode(cv.imencode('.png', img_orig)[1]).decode(encoding='utf-8')
img_res_b64 = base64.b64encode(cv.imencode('.png', img_res)[1]).decode(encoding='utf-8') img_res_b64 = base64.b64encode(cv.imencode('.png', img_res)[1]).decode(encoding='utf-8')
# generate prob. distribution histogram & return embed ptemps_list = [ptemps]
fig = ff.create_distplot(
[ptemps],
group_labels=[f.filename],
show_rug=False,
show_hist=False,
)
fig.update_layout(
autosize=False,
width=800,
height=600,
)
fig.update_xaxes(
title_text="Temperature (°C)",
)
fig.update_yaxes(
title_text="Probability (1/°C)",
)
freq_plot = fig.to_html()
# create csv-formatted stuff for i in range(len(indiv_firebrands)):
# currently only supports 1 firebrand (grabs first object in plot). # base64 encode image data
plot_data=fig.to_dict() brand_data = indiv_firebrands[i]
x_data = plot_data["data"][0]["x"] unencoded = brand_data["img_data"]
y_data = plot_data["data"][0]["y"] brand_data["img_data"] = base64.b64encode(cv.imencode('.png', unencoded)[1]).decode(encoding='utf-8')
indiv_firebrands[i] = brand_data
tdata = [["Temperature", "Frequency"]] # add ptemp data to list
for i in range(len(x_data)): ptemps_list.append(brand_data["ptemps"])
r = []
r.append(x_data[i])
r.append(y_data[i])
tdata.append(r)
csvstr = pd.DataFrame(tdata).to_csv(index=False, header=False) freq_plot, csvstrs = generate_plotly_temperature_pdf(ptemps_list)
return render_template( return render_template(
'pyrometry-results.html', 'pyrometry-results.html',
@ -79,7 +59,8 @@ def ratio_pyro():
img_res_b64=img_res_b64, img_res_b64=img_res_b64,
legend=key, legend=key,
freq_plot=freq_plot, freq_plot=freq_plot,
csv_data=csvstr csv_data=csvstrs[0],
individual_firebrands=indiv_firebrands,
) )

64
plotly_util.py Normal file
View File

@ -0,0 +1,64 @@
from typing import List
import plotly.figure_factory as ff
import pandas as pd
def generate_plotly_temperature_pdf(ptemps_list: List[list]):
"""
Generate plotly graph HTML & raw CSV data for temperature pdf
ptemps: pixel temperature LIST in order of:
- Ptemps of firebrands "overview" image
- Ptemps list for each individual firebrand
plotname: what to call the plot
Returns result in form (plot_html, csv_data)
"""
# generate prob. distribution histogram & return embed
labels = ["Full Image"]
for i in range(len(ptemps_list[1:])):
labels.append(f"Firebrand {i+1}")
labels.reverse()
fig = ff.create_distplot(
ptemps_list,
group_labels=labels,
show_rug=False,
show_hist=False,
)
fig.update_layout(
autosize=False,
width=800,
height=600,
)
fig.update_xaxes(
title_text="Temperature (°C)",
)
fig.update_yaxes(
title_text="Probability (1/°C)",
)
freq_plot = fig.to_html()
# create csv-formatted stuff
csvstrs = []
plot_data=fig.to_dict()
for i in range(len(plot_data["data"])):
x_data = plot_data["data"][i]["x"]
y_data = plot_data["data"][i]["y"]
tdata = [["Temperature", "Frequency"]]
for i in range(len(x_data)):
r = []
r.append(x_data[i])
r.append(y_data[i])
tdata.append(r)
csvstr = pd.DataFrame(tdata).to_csv(index=False, header=False)
csvstrs.append(csvstr)
return (
freq_plot,
csvstrs
)

View File

@ -3,6 +3,7 @@ from multiprocessing.sharedctypes import Value
import cv2 as cv import cv2 as cv
import numpy as np import numpy as np
from numba import jit from numba import jit
from skimage import measure
@jit(nopython=True) @jit(nopython=True)
def rg_ratio_normalize( def rg_ratio_normalize(
@ -85,11 +86,104 @@ def ratio_pyrometry_pipeline(
smoothing_radius: int, smoothing_radius: int,
key_entries: int, key_entries: int,
eqn_scaling_factor: float, eqn_scaling_factor: float,
# firebrand detection
firebrand_min_intensity_threshold: float,
firebrand_min_area: float
): ):
# read image & crop # read image & crop
img_orig = cv.imdecode(file_bytes, cv.IMREAD_UNCHANGED) img_orig = cv.imdecode(file_bytes, cv.IMREAD_UNCHANGED)
# ---------------------------------------------------------
# -- Firebrand detection
# ---------------------------------------------------------
img = cv.copyMakeBorder(
img_orig,
20,
20,
20,
20,
cv.BORDER_CONSTANT,
value=0
)
retval, thresh_gray = cv.threshold(img, firebrand_min_intensity_threshold, 255, cv.THRESH_BINARY)
kernel = np.ones((7, 7), np.uint8)
image = cv.morphologyEx(thresh_gray, cv.MORPH_CLOSE, kernel, iterations=1)
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
retval, gray = cv.threshold(gray, 0, 255, cv.THRESH_BINARY)
contours = measure.find_contours(array=gray, level=100)
def calculate_area(countour):
c = np.expand_dims(countour.astype(np.float32), 1)
c = cv.UMat(c)
return cv.contourArea(c)
individual_firebrands = []
for contour in contours:
if calculate_area(contour) > firebrand_min_area:
mask = np.zeros(img.shape[0:2], dtype='uint8')
cv.fillPoly(mask, pts=np.int32([np.flip(contour, 1)]), color=(255,255,255))
retval, mask = cv.threshold(mask, 0, 255, cv.THRESH_BINARY)
#apply the mask to the img
masked = cv.bitwise_and(img, img, mask=mask)
masked_ratio_rg, ptemps_indiv = rg_ratio_normalize(
masked,
I_Darkcurrent,
f_stop,
exposure_time,
ISO,
MIN_TEMP,
MAX_TEMP,
eqn_scaling_factor,
)
# build & apply smoothing conv kernel
k = []
for i in range(smoothing_radius):
k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)])
kernel = np.array(k)
masked_ratio_rg = cv.filter2D(src=masked_ratio_rg, ddepth=-1, kernel=kernel)
# write colormapped image
masked_ratio_rg_jet = cv.applyColorMap(masked_ratio_rg, cv.COLORMAP_JET)
# Generate key
step = (MAX_TEMP - MIN_TEMP) / (key_entries-1)
temps = []
key_img_arr = [[]]
for i in range(key_entries):
res_temp = MIN_TEMP + (i * step)
res_color = scale_temp(res_temp, MIN_TEMP, MAX_TEMP)
temps.append(math.floor(res_temp))
key_img_arr[0].append([res_color, res_color, res_color])
key_img = np.array(key_img_arr).astype(np.uint8)
key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET)
tempkey = {}
for i in range(len(temps)):
c = key_img_jet[0][i]
tempkey[temps[i]] = f"rgb({c[2]}, {c[1]}, {c[0]})"
individual_firebrands.append({
"img_data": masked_ratio_rg_jet,
"legend": tempkey,
"ptemps": ptemps_indiv
})
img, ptemps = rg_ratio_normalize( img, ptemps = rg_ratio_normalize(
img_orig, img_orig,
I_Darkcurrent, I_Darkcurrent,
@ -112,7 +206,9 @@ def ratio_pyrometry_pipeline(
# write colormapped image # write colormapped image
img_jet = cv.applyColorMap(img, cv.COLORMAP_JET) img_jet = cv.applyColorMap(img, cv.COLORMAP_JET)
# --- Generate temperature key --- # ---------------------------------------------------------
# -- Generate temperature key
# ---------------------------------------------------------
# Generate key # Generate key
step = (MAX_TEMP - MIN_TEMP) / (key_entries-1) step = (MAX_TEMP - MIN_TEMP) / (key_entries-1)
@ -133,4 +229,4 @@ def ratio_pyrometry_pipeline(
tempkey[temps[i]] = f"rgb({c[2]}, {c[1]}, {c[0]})" tempkey[temps[i]] = f"rgb({c[2]}, {c[1]}, {c[0]})"
# original, transformed, legend # original, transformed, legend
return img_orig, img_jet, tempkey, ptemps return img_orig, img_jet, tempkey, ptemps, individual_firebrands

View File

@ -50,8 +50,13 @@
<h4>Firebrand Detection Settings</h4> <h4>Firebrand Detection Settings</h4>
<label for="edge_amp">Edge Amplification</label> <label for="intensity_threshold">intensity threshold (0-255)</label>
<input type="number" name="edge_amp" value="10", step="0.1"/> <input type="number" name="intensity_threshold" value="250", step="0.1"/>
<br>
<label for="min_area">min area (removes small particles)</label>
<input type="number" name="min_area" value="115", step="0.1"/>
<br>
<h4>Output Settings</h4> <h4>Output Settings</h4>

View File

@ -7,6 +7,9 @@
{% block content %} {% block content %}
<div style="display:flex; flex-direction: column;"> <div style="display:flex; flex-direction: column;">
<h2>General Results</h2>
<table class="img-table"> <table class="img-table">
<tr> <tr>
<th class="img-table-heading">Input Image</th> <th class="img-table-heading">Input Image</th>
@ -40,6 +43,44 @@
</tr> </tr>
</table> </table>
<h2>Individual Firebrands</h2>
<table>
<tr>
<th>Output Heatmap</th>
<th>Legend</th>
</tr>
{% for item in individual_firebrands %}
<tr>
{# output heatmap #}
<td>
<img class="img-out" src="data:image/png;base64,{{ item['img_data'] }}" alt="result image">
</td>
</td>
{# legend #}
<td>
<h3>Firebrand {{ loop.index }}</h3>
<table class="legend" id="legend">
<tr>
<th class="legend-heading">Color</th>
<th class="legend-heading">Temperature</th>
</tr>
{% for temp, color in item["legend"].items() %}
<tr>
<td class="legend-cell"><div style="width:30px;height:20px;background-color:{{ color }};"></div></td>
<td class="legend-cell">{{ temp }}°C</td>
</tr>
{% endfor %}
</table>
</td>
</tr>
{% endfor %}
</table>
<br> <br>
{# Temperature Frequency Plot #} {# Temperature Frequency Plot #}
<div style="display: flex; flex-direction: row; align-items: center;"> <div style="display: flex; flex-direction: row; align-items: center;">
@ -50,6 +91,9 @@ onclick="saveData(`{{csv_data}}`, 'temperature-data.csv')">Download Data as CSV<
</div> </div>
{{ freq_plot | safe }} {{ freq_plot | safe }}
<!-- Firebrands: {{ individual_firebrands }} -->
</div> </div>
{% endblock %} {% endblock %}