Compare commits

...

2 Commits

Author SHA1 Message Date
michael f83a98ffe0 temp probability density plot 2022-10-27 12:01:35 -07:00
michael d10665fd67 cleanups 2022-10-27 10:31:42 -07:00
13 changed files with 478 additions and 60 deletions

5
.gitignore vendored
View File

@ -1,5 +1,10 @@
# CUSTOM
images-input/*
!images-input/.gitkeep
images-output/*
!images-output/.gitkeep
config.yaml
.vscode/
*.swp

View File

@ -10,3 +10,7 @@ dev:
clean:
rm -rf static/*
touch static/.gitkeep
batch:
pipenv run python3 batch-process.py

View File

@ -10,6 +10,10 @@ flask = "*"
gunicorn = "*"
werkzeug = "*"
pyyaml = "*"
matplotlib = "*"
plotly = "*"
pandas = "*"
scipy = "==1.8.1"
[dev-packages]

368
Pipfile.lock generated
View File

@ -1,7 +1,7 @@
{
"_meta": {
"hash": {
"sha256": "0cfa12a983973f0699999da1f8adcf4662998d4d37158ae1eed984cb7b773fc3"
"sha256": "3428842daebc7c8a255790fde5231377c05479a39d5ce2977f043e58c7c80826"
},
"pipfile-spec": 6,
"requires": {
@ -24,6 +24,89 @@
"markers": "python_version >= '3.7'",
"version": "==8.1.3"
},
"contourpy": {
"hashes": [
"sha256:0389349875424aa8c5e61f757e894687916bc4e9616cc6afcbd8051aa2428952",
"sha256:0395ae71164bfeb2dedd136e03c71a2718a5aa9873a46f518f4133be0d63e1d2",
"sha256:057114f698ffb9e54657e8fda6802e2f5c8fad609845cf6afaf31590ef6a33c0",
"sha256:061e1f066c419ffe25b615a1df031b4832ea1d7f2676937e69e8e00e24512005",
"sha256:06c4d1dde5ee4f909a8a95ba1eb04040c6c26946b4f3b5beaf10d45f14e940ee",
"sha256:09ed9b63f4df8a7591b7a4a26c1ad066dcaafda1f846250fdcb534074a411692",
"sha256:0f7672148f8fca48e4efc16aba24a7455b40c22d4f8abe42475dec6a12b0bb9a",
"sha256:0f89f0608a5aa8142ed0e53957916623791a88c7f5e5f07ae530c328beeb888f",
"sha256:128bd7acf569f8443ad5b2227f30ac909e4f5399ed221727eeacf0c6476187e6",
"sha256:19ea64fa0cf389d2ebc10974616acfa1fdecbd73d1fd9c72215b782f3c40f561",
"sha256:1fb782982c42cee667b892a0b0c52a9f6c7ecf1da5c5f4345845f04eaa862f93",
"sha256:218722a29c5c26677d37c44f5f8a372daf6f07870aad793a97d47eb6ad6b3290",
"sha256:2b5e334330d82866923015b455260173cb3b9e3b4e297052d758abd262031289",
"sha256:2bf5c846c257578b03d498b20f54f53551616a507d8e5463511c58bb58e9a9cf",
"sha256:2d0ad9a85f208473b1f3613c45756c7aa6fcc288266a8c7b873f896aaf741b6b",
"sha256:2f54dcc9bb9390fd0636301ead134d46d5229fe86da0db4d974c0fda349f560e",
"sha256:3109fa601d2a448cec4643abd3a31f972bf05b7c2f2e83df9d3429878f8c10ae",
"sha256:3210d93ad2af742b6a96cf39792f7181822edbb8fe11c3ef29d1583fe637a8d8",
"sha256:3b3082ade8849130203d461b98c2a061b382c46074b43b4edd5cefd81af92b8a",
"sha256:3c3f2f6b898a40207843ae01970e57e33d22a26b22f23c6a5e07b4716751085f",
"sha256:3ca40d7844b391d90b864c6a6d1bb6b88b09035fb4d866d64d43c4d26fb0ab64",
"sha256:3cfc067ddde78b76dcbc9684d82688b7d3c5158fa2254a085f9bcb9586c1e2d8",
"sha256:434942fa2f9019b9ae525fb752dc523800c49a1a28fbd6d9240b0fa959573dcc",
"sha256:46b8e24813e2fb5a3e598c1f8b9ae403e1438cb846a80cc2b33cddf19dddd7f2",
"sha256:59c827e536bb5e3ef58e06da0faba61fd89a14f30b68bcfeca41f43ca83a1942",
"sha256:60f37acd4e4227c5a29f737d9a85ca3145c529a8dd4bf70af7f0637c61b49222",
"sha256:689d7d2a840619915d0abd1ecc6e399fee202f8ad315acda2807f4ca420d0802",
"sha256:6c02e22cf09996194bcb3a4784099975cf527d5c29caf759abadf29ebdb2fe27",
"sha256:79908b9d02b1d6c1c71ff3b7ad127f3f82e14a8e091ab44b3c7e34b649fea733",
"sha256:7c9e99aac7b430f6a9f15eebf058c742097cea3369f23a2bfc5e64d374b67e3a",
"sha256:813c2944e940ef8dccea71305bacc942d4b193a021140874b3e58933ec44f5b6",
"sha256:87121b9428ac568fb84fae4af5e7852fc34f02eadc4e3e91f6c8989327692186",
"sha256:896631cd40222aef3697e4e51177d14c3709fda49d30983269d584f034acc8a4",
"sha256:970a4be7ec84ccda7c27cb4ae74930bbbd477bc8d849ed55ea798084dd5fca8c",
"sha256:9939796abcadb2810a63dfb26ff8ca4595fe7dd70a3ceae7f607a2639b714307",
"sha256:99a8071e351b50827ad976b92ed91845fb614ac67a3c41109b24f3d8bd3afada",
"sha256:9c16fa267740d67883899e054cccb4279e002f3f4872873b752c1ba15045ff49",
"sha256:a30e95274f5c0e007ccc759ec258aa5708c534ec058f153ee25ac700a2f1438b",
"sha256:a74afd8d560eaafe0d9e3e1db8c06081282a05ca4de00ee416195085a79d7d3d",
"sha256:b46a04588ceb7cf132568e0e564a854627ef87a1ed3bf536234540a79ced44b0",
"sha256:b4963cf08f4320d98ae72ec7694291b8ab85cb7da3b0cd824bc32701bc992edf",
"sha256:b50e481a4317a8efcfffcfddcd4c9b36eacba440440e70cbe0256aeb6fd6abae",
"sha256:b85553699862c09937a7a5ea14ee6229087971a7d51ae97d5f4b407f571a2c17",
"sha256:bcc98d397c3dea45d5b262029564b29cb8e945f2607a38bee6163694c0a8b4ef",
"sha256:bed3a2a823a041e8d249b1a7ec132933e1505299329b5cfe1b2b5ec689ec7675",
"sha256:bf6b4c0c723664f65c2a47c8cb6ebbf660b0b2e2d936adf2e8503d4e93359465",
"sha256:bfd634cb9685161b2a51f73a7fc4736fd0d67a56632d52319317afaa27f08243",
"sha256:c0d5ee865b5fd16bf62d72122aadcc90aab296c30c1adb0a32b4b66bd843163e",
"sha256:c2b4eab7c12f9cb460509bc34a3b086f9802f0dba27c89a63df4123819ad64af",
"sha256:c51568e94f7f232296de30002f2a50f77a7bd346673da3e4f2aaf9d2b833f2e5",
"sha256:c5158616ab39d34b76c50f40c81552ee180598f7825dc7a66fd187d29958820f",
"sha256:cdacddb18d55ffec42d1907079cdc04ec4fa8a990cdf5b9d9fe67d281fc0d12e",
"sha256:ce763369e646e59e4ca2c09735cd1bdd3048d909ad5f2bc116e83166a9352f3c",
"sha256:d45822b0a2a452327ab4f95efe368d234d5294bbf89a99968be27c7938a21108",
"sha256:d8150579bf30cdf896906baf256aa200cd50dbe6e565c17d6fd3d678e21ff5de",
"sha256:d88814befbd1433152c5f6dd536905149ba028d795a22555b149ae0a36024d9e",
"sha256:dca5be83a6dfaf933a46e3bc2b9f2685e5ec61b22f6a38ad740aac9c16e9a0ff",
"sha256:dd084459ecdb224e617e4ab3f1d5ebe4d1c48facb41f24952b76aa6ba9712bb0",
"sha256:def9a01b73c9e27d70ea03b381fb3e7aadfac1f398dbd63751313c3a46747ef5",
"sha256:df65f4b2b4e74977f0336bef12a88051ab24e6a16873cd9249f34d67cb3e345d",
"sha256:dfe924e5a63861c82332a12adeeab955dc8c8009ddbbd80cc2fcca049ff89a49",
"sha256:e67dcaa34dcd908fcccbf49194211d847c731b6ebaac661c1c889f1bf6af1e44",
"sha256:eba62b7c21a33e72dd8adab2b92dd5610d8527f0b2ac28a8e0770e71b21a13f9",
"sha256:ed9c91bf4ce614efed5388c3f989a7cfe08728ab871d995a486ea74ff88993db",
"sha256:f05d311c937da03b0cd26ac3e14cb991f6ff8fc94f98b3df9713537817539795",
"sha256:f1cc623fd6855b25da52b3275e0c9e51711b86a9dccc75f8c9ab4432fd8e42c7",
"sha256:f670686d99c867d0f24b28ce8c6f02429c6eef5e2674aab287850d0ee2d20437",
"sha256:f856652f9b533c6cd2b9ad6836a7fc0e43917d7ff15be46c5baf1350f8cdc5d9",
"sha256:fb0458d74726937ead9e2effc91144aea5a58ecee9754242f8539a782bed685a"
],
"markers": "python_version >= '3.7'",
"version": "==1.0.5"
},
"cycler": {
"hashes": [
"sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3",
"sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"
],
"markers": "python_version >= '3.6'",
"version": "==0.11.0"
},
"flask": {
"hashes": [
"sha256:642c450d19c4ad482f96729bd2a8f6d32554aa1e231f4f6b4e7e5264b16cca2b",
@ -32,6 +115,14 @@
"index": "pypi",
"version": "==2.2.2"
},
"fonttools": {
"hashes": [
"sha256:2bb244009f9bf3fa100fc3ead6aeb99febe5985fa20afbfbaa2f8946c2fbdaf1",
"sha256:820466f43c8be8c3009aef8b87e785014133508f0de64ec469e4efb643ae54fb"
],
"markers": "python_version >= '3.7'",
"version": "==4.38.0"
},
"gunicorn": {
"hashes": [
"sha256:9dcc4547dbb1cb284accfb15ab5667a0e5d1881cc443e0677b4882a4067a807e",
@ -56,6 +147,80 @@
"markers": "python_version >= '3.7'",
"version": "==3.1.2"
},
"kiwisolver": {
"hashes": [
"sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b",
"sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166",
"sha256:1041feb4cda8708ce73bb4dcb9ce1ccf49d553bf87c3954bdfa46f0c3f77252c",
"sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c",
"sha256:1d1573129aa0fd901076e2bfb4275a35f5b7aa60fbfb984499d661ec950320b0",
"sha256:283dffbf061a4ec60391d51e6155e372a1f7a4f5b15d59c8505339454f8989e4",
"sha256:28bc5b299f48150b5f822ce68624e445040595a4ac3d59251703779836eceff9",
"sha256:2a66fdfb34e05b705620dd567f5a03f239a088d5a3f321e7b6ac3239d22aa286",
"sha256:2e307eb9bd99801f82789b44bb45e9f541961831c7311521b13a6c85afc09767",
"sha256:2e407cb4bd5a13984a6c2c0fe1845e4e41e96f183e5e5cd4d77a857d9693494c",
"sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6",
"sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b",
"sha256:3fe20f63c9ecee44560d0e7f116b3a747a5d7203376abeea292ab3152334d004",
"sha256:41dae968a94b1ef1897cb322b39360a0812661dba7c682aa45098eb8e193dbdf",
"sha256:4bd472dbe5e136f96a4b18f295d159d7f26fd399136f5b17b08c4e5f498cd494",
"sha256:4ea39b0ccc4f5d803e3337dd46bcce60b702be4d86fd0b3d7531ef10fd99a1ac",
"sha256:5853eb494c71e267912275e5586fe281444eb5e722de4e131cddf9d442615626",
"sha256:5bce61af018b0cb2055e0e72e7d65290d822d3feee430b7b8203d8a855e78766",
"sha256:6295ecd49304dcf3bfbfa45d9a081c96509e95f4b9d0eb7ee4ec0530c4a96514",
"sha256:62ac9cc684da4cf1778d07a89bf5f81b35834cb96ca523d3a7fb32509380cbf6",
"sha256:70e7c2e7b750585569564e2e5ca9845acfaa5da56ac46df68414f29fea97be9f",
"sha256:7577c1987baa3adc4b3c62c33bd1118c3ef5c8ddef36f0f2c950ae0b199e100d",
"sha256:75facbe9606748f43428fc91a43edb46c7ff68889b91fa31f53b58894503a191",
"sha256:787518a6789009c159453da4d6b683f468ef7a65bbde796bcea803ccf191058d",
"sha256:78d6601aed50c74e0ef02f4204da1816147a6d3fbdc8b3872d263338a9052c51",
"sha256:7c43e1e1206cd421cd92e6b3280d4385d41d7166b3ed577ac20444b6995a445f",
"sha256:81e38381b782cc7e1e46c4e14cd997ee6040768101aefc8fa3c24a4cc58e98f8",
"sha256:841293b17ad704d70c578f1f0013c890e219952169ce8a24ebc063eecf775454",
"sha256:872b8ca05c40d309ed13eb2e582cab0c5a05e81e987ab9c521bf05ad1d5cf5cb",
"sha256:877272cf6b4b7e94c9614f9b10140e198d2186363728ed0f701c6eee1baec1da",
"sha256:8c808594c88a025d4e322d5bb549282c93c8e1ba71b790f539567932722d7bd8",
"sha256:8ed58b8acf29798b036d347791141767ccf65eee7f26bde03a71c944449e53de",
"sha256:91672bacaa030f92fc2f43b620d7b337fd9a5af28b0d6ed3f77afc43c4a64b5a",
"sha256:968f44fdbf6dd757d12920d63b566eeb4d5b395fd2d00d29d7ef00a00582aac9",
"sha256:9f85003f5dfa867e86d53fac6f7e6f30c045673fa27b603c397753bebadc3008",
"sha256:a553dadda40fef6bfa1456dc4be49b113aa92c2a9a9e8711e955618cd69622e3",
"sha256:a68b62a02953b9841730db7797422f983935aeefceb1679f0fc85cbfbd311c32",
"sha256:abbe9fa13da955feb8202e215c4018f4bb57469b1b78c7a4c5c7b93001699938",
"sha256:ad881edc7ccb9d65b0224f4e4d05a1e85cf62d73aab798943df6d48ab0cd79a1",
"sha256:b1792d939ec70abe76f5054d3f36ed5656021dcad1322d1cc996d4e54165cef9",
"sha256:b428ef021242344340460fa4c9185d0b1f66fbdbfecc6c63eff4b7c29fad429d",
"sha256:b533558eae785e33e8c148a8d9921692a9fe5aa516efbdff8606e7d87b9d5824",
"sha256:ba59c92039ec0a66103b1d5fe588fa546373587a7d68f5c96f743c3396afc04b",
"sha256:bc8d3bd6c72b2dd9decf16ce70e20abcb3274ba01b4e1c96031e0c4067d1e7cd",
"sha256:bc9db8a3efb3e403e4ecc6cd9489ea2bac94244f80c78e27c31dcc00d2790ac2",
"sha256:bf7d9fce9bcc4752ca4a1b80aabd38f6d19009ea5cbda0e0856983cf6d0023f5",
"sha256:c2dbb44c3f7e6c4d3487b31037b1bdbf424d97687c1747ce4ff2895795c9bf69",
"sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3",
"sha256:c97528e64cb9ebeff9701e7938653a9951922f2a38bd847787d4a8e498cc83ae",
"sha256:d0611a0a2a518464c05ddd5a3a1a0e856ccc10e67079bb17f265ad19ab3c7597",
"sha256:d06adcfa62a4431d404c31216f0f8ac97397d799cd53800e9d3efc2fbb3cf14e",
"sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955",
"sha256:d5b61785a9ce44e5a4b880272baa7cf6c8f48a5180c3e81c59553ba0cb0821ca",
"sha256:da152d8cdcab0e56e4f45eb08b9aea6455845ec83172092f09b0e077ece2cf7a",
"sha256:da7e547706e69e45d95e116e6939488d62174e033b763ab1496b4c29b76fabea",
"sha256:db5283d90da4174865d520e7366801a93777201e91e79bacbac6e6927cbceede",
"sha256:db608a6757adabb32f1cfe6066e39b3706d8c3aa69bbc353a5b61edad36a5cb4",
"sha256:e0ea21f66820452a3f5d1655f8704a60d66ba1191359b96541eaf457710a5fc6",
"sha256:e7da3fec7408813a7cebc9e4ec55afed2d0fd65c4754bc376bf03498d4e92686",
"sha256:e92a513161077b53447160b9bd8f522edfbed4bd9759e4c18ab05d7ef7e49408",
"sha256:ecb1fa0db7bf4cff9dac752abb19505a233c7f16684c5826d1f11ebd9472b871",
"sha256:efda5fc8cc1c61e4f639b8067d118e742b812c930f708e6667a5ce0d13499e29",
"sha256:f0a1dbdb5ecbef0d34eb77e56fcb3e95bbd7e50835d9782a45df81cc46949750",
"sha256:f0a71d85ecdd570ded8ac3d1c0f480842f49a40beb423bb8014539a9f32a5897",
"sha256:f4f270de01dd3e129a72efad823da90cc4d6aafb64c410c9033aba70db9f1ff0",
"sha256:f6cb459eea32a4e2cf18ba5fcece2dbdf496384413bc1bae15583f19e567f3b2",
"sha256:f8ad8285b01b0d4695102546b342b493b3ccc6781fc28c8c6a1bb63e95d22f09",
"sha256:f9f39e2f049db33a908319cf46624a569b36983c7c78318e9726a4cb8923b26c"
],
"markers": "python_version >= '3.7'",
"version": "==1.4.4"
},
"llvmlite": {
"hashes": [
"sha256:03aee0ccd81735696474dc4f8b6be60774892a2929d6c05d093d17392c237f32",
@ -136,6 +301,53 @@
"markers": "python_version >= '3.7'",
"version": "==2.1.1"
},
"matplotlib": {
"hashes": [
"sha256:02561141c434154f7bae8e5449909d152367cb40aa57bfb2a27f2748b9c5f95f",
"sha256:05e86446562063d6186ff6d700118c0dbd5dccc403a6187351ee526c48878f10",
"sha256:0bab7564aafd5902128d54b68dca04f5755413fb6b502100bb0235a545882c48",
"sha256:12ab21d0cad122f5b23688d453a0280676e7c42f634f0dbd093d15d42d142b1f",
"sha256:183bf3ac6a6023ee590aa4b677f391ceed65ec0d6b930901a8483c267bd12995",
"sha256:1e2c75d5d1ff6b7ef9870360bfa23bea076b8dc0945a60d19453d7619ed9ea8f",
"sha256:220314c2d6b9ca11570d7cd4b841c9f3137546f188336003b9fb8def4dcb804d",
"sha256:2469f57e4c5cc0e85eddc7b30995ea9c404a78c0b1856da75d1a5887156ca350",
"sha256:27337bcb38d5db7430c14f350924542d75416ec1546d5d9d9f39b362b71db3fb",
"sha256:2cc5d726d4d42865f909c5208a7841109d76584950dd0587b01a77cc279d4ab7",
"sha256:3c53486278a0629fd892783271dc994b962fba8dfe207445d039e14f1928ea46",
"sha256:4648f0d79a87bf50ee740058305c91091ee5e1fbb71a7d2f5fe6707bfe328d1c",
"sha256:47cb088bbce82ae9fc2edf3c25e56a5c6142ce2553fea2b781679f960a70c207",
"sha256:4a3d903588b519b38ed085d0ae762a1dcd4b70164617292175cfd91b90d6c415",
"sha256:4d3b0e0a4611bd22065bbf47e9b2f689ac9e575bcb850a9f0ae2bbed75cab956",
"sha256:52935b7d4ccbf0dbc9cf454dbb10ca99c11cbe8da9467596b96e5e21fd4dfc5c",
"sha256:563896ba269324872ace436a57775dcc8322678a9496b28a8c25cdafa5ec2b92",
"sha256:565f514dec81a41cbed10eb6011501879695087fc2787fb89423a466508abbbd",
"sha256:5f97141e05baf160c3ec125f06ceb2a44c9bb62f42fcb8ee1c05313c73e99432",
"sha256:6f5788168da2661b42f7468063b725cc73fdbeeb80f2704cb2d8c415e9a57c50",
"sha256:71eced071825005011cdc64efbae2e2c76b8209c18aa487dedf69796fe4b1e40",
"sha256:7730e60e751cfcfe7fcb223cf03c0b979e9a064c239783ad37929d340a364cef",
"sha256:8245e85fd793f58edf29b8a9e3be47e8ecf76ea1a1e8240545f2746181ca5787",
"sha256:85948b303534b69fd771126764cf883fde2af9b003eb5778cb60f3b46f93d3f6",
"sha256:87027ff7b2edeb14476900261ef04d4beae949e1dfa0a3eb3ad6a6efbf9d0e1d",
"sha256:87bdbd37d0a41e025879863fe9b17bab15c0421313bc33e77e5e1aa54215c9c5",
"sha256:8dc25473319afabe49150267e54648ac559c33b0fc2a80c8caecfbbc2948a820",
"sha256:8ddd58324dc9a77e2e56d7b7aea7dbd0575b6f7cd1333c3ca9d388ac70978344",
"sha256:9403764017d20ff570f7ce973a8b9637f08a6109118f4e0ce6c7493d8849a0d3",
"sha256:9dd40505ccc526acaf9a5db1b3029e237c64b58f1249983b28a291c2d6a1d0fa",
"sha256:a4de03085afb3b80fab341afaf8e60dfe06ce439b6dfed55d657cf34a7bc3c40",
"sha256:a68b91ac7e6bb26100a540a033f54c95fe06d9c0aa51312c2a52d07d1bde78f4",
"sha256:b53387d4e59432ff221540a4ffb5ee9669c69417805e4faf0148a00d701c61f9",
"sha256:c1effccef0cea2d4da9feeed22079adf6786f92c800a7d0d2ef2104318a1c66c",
"sha256:c9756a8e69f6e1f76d47eb42132175b6814da1fbeae0545304c6d0fc2aae252a",
"sha256:d0161ebf87518ecfe0980c942d5f0d5df0e080c1746ebaab2027a969967014b7",
"sha256:e2d1b7225666f7e1bcc94c0bc9c587a82e3e8691da4757e357e5c2515222ee37",
"sha256:e3c116e779fbbf421a9e4d3060db259a9bb486d98f4e3c5a0877c599bd173582",
"sha256:e4c8b5a243dd29d50289d694e931bd6cb6ae0b5bd654d12c647543d63862540c",
"sha256:e632f66218811d4cf8b7a2a649e25ec15406c3c498f72d19e2bcf8377f38445d",
"sha256:fad858519bd6d52dbfeebdbe04d00dd8e932ed436f1c535e61bcc970a96c11e4"
],
"index": "pypi",
"version": "==3.6.1"
},
"numba": {
"hashes": [
"sha256:0744cf4214ed795eb2df3ed1635d77a6ffcbd990a66a06125548b5fb8ee46323",
@ -201,7 +413,7 @@
"sha256:f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef",
"sha256:f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7"
],
"markers": "python_version >= '3.8'",
"markers": "python_version >= '3.10'",
"version": "==1.23.4"
},
"opencv-python": {
@ -217,6 +429,142 @@
"index": "pypi",
"version": "==4.6.0.66"
},
"packaging": {
"hashes": [
"sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb",
"sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"
],
"markers": "python_version >= '3.6'",
"version": "==21.3"
},
"pandas": {
"hashes": [
"sha256:04e51b01d5192499390c0015630975f57836cc95c7411415b499b599b05c0c96",
"sha256:05c527c64ee02a47a24031c880ee0ded05af0623163494173204c5b72ddce658",
"sha256:0a78e05ec09731c5b3bd7a9805927ea631fe6f6cb06f0e7c63191a9a778d52b4",
"sha256:17da7035d9e6f9ea9cdc3a513161f8739b8f8489d31dc932bc5a29a27243f93d",
"sha256:249cec5f2a5b22096440bd85c33106b6102e0672204abd2d5c014106459804ee",
"sha256:2c25e5c16ee5c0feb6cf9d982b869eec94a22ddfda9aa2fbed00842cbb697624",
"sha256:32e3d9f65606b3f6e76555bfd1d0b68d94aff0929d82010b791b6254bf5a4b96",
"sha256:36aa1f8f680d7584e9b572c3203b20d22d697c31b71189322f16811d4ecfecd3",
"sha256:5b0c970e2215572197b42f1cff58a908d734503ea54b326412c70d4692256391",
"sha256:5cee0c74e93ed4f9d39007e439debcaadc519d7ea5c0afc3d590a3a7b2edf060",
"sha256:669c8605dba6c798c1863157aefde959c1796671ffb342b80fcb80a4c0bc4c26",
"sha256:66a1ad667b56e679e06ba73bb88c7309b3f48a4c279bd3afea29f65a766e9036",
"sha256:683779e5728ac9138406c59a11e09cd98c7d2c12f0a5fc2b9c5eecdbb4a00075",
"sha256:6bb391659a747cf4f181a227c3e64b6d197100d53da98dcd766cc158bdd9ec68",
"sha256:81f0674fa50b38b6793cd84fae5d67f58f74c2d974d2cb4e476d26eee33343d0",
"sha256:927e59c694e039c75d7023465d311277a1fc29ed7236b5746e9dddf180393113",
"sha256:932d2d7d3cab44cfa275601c982f30c2d874722ef6396bb539e41e4dc4618ed4",
"sha256:a52419d9ba5906db516109660b114faf791136c94c1a636ed6b29cbfff9187ee",
"sha256:b156a971bc451c68c9e1f97567c94fd44155f073e3bceb1b0d195fd98ed12048",
"sha256:bcf1a82b770b8f8c1e495b19a20d8296f875a796c4fe6e91da5ef107f18c5ecb",
"sha256:cb2a9cf1150302d69bb99861c5cddc9c25aceacb0a4ef5299785d0f5389a3209",
"sha256:d8c709f4700573deb2036d240d140934df7e852520f4a584b2a8d5443b71f54d",
"sha256:db45b94885000981522fb92349e6b76f5aee0924cc5315881239c7859883117d",
"sha256:ddf46b940ef815af4e542697eaf071f0531449407a7607dd731bf23d156e20a7",
"sha256:e675f8fe9aa6c418dc8d3aac0087b5294c1a4527f1eacf9fe5ea671685285454",
"sha256:eb7e8cf2cf11a2580088009b43de84cabbf6f5dae94ceb489f28dba01a17cb77",
"sha256:f340331a3f411910adfb4bbe46c2ed5872d9e473a783d7f14ecf49bc0869c594"
],
"index": "pypi",
"version": "==1.5.1"
},
"pillow": {
"hashes": [
"sha256:0030fdbd926fb85844b8b92e2f9449ba89607231d3dd597a21ae72dc7fe26927",
"sha256:030e3460861488e249731c3e7ab59b07c7853838ff3b8e16aac9561bb345da14",
"sha256:0ed2c4ef2451de908c90436d6e8092e13a43992f1860275b4d8082667fbb2ffc",
"sha256:136659638f61a251e8ed3b331fc6ccd124590eeff539de57c5f80ef3a9594e58",
"sha256:13b725463f32df1bfeacbf3dd197fb358ae8ebcd8c5548faa75126ea425ccb60",
"sha256:1536ad017a9f789430fb6b8be8bf99d2f214c76502becc196c6f2d9a75b01b76",
"sha256:15928f824870535c85dbf949c09d6ae7d3d6ac2d6efec80f3227f73eefba741c",
"sha256:17d4cafe22f050b46d983b71c707162d63d796a1235cdf8b9d7a112e97b15bac",
"sha256:1802f34298f5ba11d55e5bb09c31997dc0c6aed919658dfdf0198a2fe75d5490",
"sha256:1cc1d2451e8a3b4bfdb9caf745b58e6c7a77d2e469159b0d527a4554d73694d1",
"sha256:1fd6f5e3c0e4697fa7eb45b6e93996299f3feee73a3175fa451f49a74d092b9f",
"sha256:254164c57bab4b459f14c64e93df11eff5ded575192c294a0c49270f22c5d93d",
"sha256:2ad0d4df0f5ef2247e27fc790d5c9b5a0af8ade9ba340db4a73bb1a4a3e5fb4f",
"sha256:2c58b24e3a63efd22554c676d81b0e57f80e0a7d3a5874a7e14ce90ec40d3069",
"sha256:2d33a11f601213dcd5718109c09a52c2a1c893e7461f0be2d6febc2879ec2402",
"sha256:336b9036127eab855beec9662ac3ea13a4544a523ae273cbf108b228ecac8437",
"sha256:337a74fd2f291c607d220c793a8135273c4c2ab001b03e601c36766005f36885",
"sha256:37ff6b522a26d0538b753f0b4e8e164fdada12db6c6f00f62145d732d8a3152e",
"sha256:3d1f14f5f691f55e1b47f824ca4fdcb4b19b4323fe43cc7bb105988cad7496be",
"sha256:4134d3f1ba5f15027ff5c04296f13328fecd46921424084516bdb1b2548e66ff",
"sha256:4ad2f835e0ad81d1689f1b7e3fbac7b01bb8777d5a985c8962bedee0cc6d43da",
"sha256:50dff9cc21826d2977ef2d2a205504034e3a4563ca6f5db739b0d1026658e004",
"sha256:510cef4a3f401c246cfd8227b300828715dd055463cdca6176c2e4036df8bd4f",
"sha256:5aed7dde98403cd91d86a1115c78d8145c83078e864c1de1064f52e6feb61b20",
"sha256:69bd1a15d7ba3694631e00df8de65a8cb031911ca11f44929c97fe05eb9b6c1d",
"sha256:6bf088c1ce160f50ea40764f825ec9b72ed9da25346216b91361eef8ad1b8f8c",
"sha256:6e8c66f70fb539301e064f6478d7453e820d8a2c631da948a23384865cd95544",
"sha256:74a04183e6e64930b667d321524e3c5361094bb4af9083db5c301db64cd341f3",
"sha256:75e636fd3e0fb872693f23ccb8a5ff2cd578801251f3a4f6854c6a5d437d3c04",
"sha256:7761afe0126d046974a01e030ae7529ed0ca6a196de3ec6937c11df0df1bc91c",
"sha256:7888310f6214f19ab2b6df90f3f06afa3df7ef7355fc025e78a3044737fab1f5",
"sha256:7b0554af24df2bf96618dac71ddada02420f946be943b181108cac55a7a2dcd4",
"sha256:7c7b502bc34f6e32ba022b4a209638f9e097d7a9098104ae420eb8186217ebbb",
"sha256:808add66ea764ed97d44dda1ac4f2cfec4c1867d9efb16a33d158be79f32b8a4",
"sha256:831e648102c82f152e14c1a0938689dbb22480c548c8d4b8b248b3e50967b88c",
"sha256:93689632949aff41199090eff5474f3990b6823404e45d66a5d44304e9cdc467",
"sha256:96b5e6874431df16aee0c1ba237574cb6dff1dcb173798faa6a9d8b399a05d0e",
"sha256:9a54614049a18a2d6fe156e68e188da02a046a4a93cf24f373bffd977e943421",
"sha256:a138441e95562b3c078746a22f8fca8ff1c22c014f856278bdbdd89ca36cff1b",
"sha256:a647c0d4478b995c5e54615a2e5360ccedd2f85e70ab57fbe817ca613d5e63b8",
"sha256:a9c9bc489f8ab30906d7a85afac4b4944a572a7432e00698a7239f44a44e6efb",
"sha256:ad2277b185ebce47a63f4dc6302e30f05762b688f8dc3de55dbae4651872cdf3",
"sha256:adabc0bce035467fb537ef3e5e74f2847c8af217ee0be0455d4fec8adc0462fc",
"sha256:b6d5e92df2b77665e07ddb2e4dbd6d644b78e4c0d2e9272a852627cdba0d75cf",
"sha256:bc431b065722a5ad1dfb4df354fb9333b7a582a5ee39a90e6ffff688d72f27a1",
"sha256:bdd0de2d64688ecae88dd8935012c4a72681e5df632af903a1dca8c5e7aa871a",
"sha256:c79698d4cd9318d9481d89a77e2d3fcaeff5486be641e60a4b49f3d2ecca4e28",
"sha256:cb6259196a589123d755380b65127ddc60f4c64b21fc3bb46ce3a6ea663659b0",
"sha256:d5b87da55a08acb586bad5c3aa3b86505f559b84f39035b233d5bf844b0834b1",
"sha256:dcd7b9c7139dc8258d164b55696ecd16c04607f1cc33ba7af86613881ffe4ac8",
"sha256:dfe4c1fedfde4e2fbc009d5ad420647f7730d719786388b7de0999bf32c0d9fd",
"sha256:ea98f633d45f7e815db648fd7ff0f19e328302ac36427343e4432c84432e7ff4",
"sha256:ec52c351b35ca269cb1f8069d610fc45c5bd38c3e91f9ab4cbbf0aebc136d9c8",
"sha256:eef7592281f7c174d3d6cbfbb7ee5984a671fcd77e3fc78e973d492e9bf0eb3f",
"sha256:f07f1f00e22b231dd3d9b9208692042e29792d6bd4f6639415d2f23158a80013",
"sha256:f3fac744f9b540148fa7715a435d2283b71f68bfb6d4aae24482a890aed18b59",
"sha256:fa768eff5f9f958270b081bb33581b4b569faabf8774726b283edb06617101dc",
"sha256:fac2d65901fb0fdf20363fbd345c01958a742f2dc62a8dd4495af66e3ff502a4"
],
"markers": "python_version >= '3.7'",
"version": "==9.2.0"
},
"plotly": {
"hashes": [
"sha256:4efef479c2ec1d86dcdac8405b6ca70ca65649a77408e39a7e84a1ea2db6c787",
"sha256:52fd74b08aa4fd5a55b9d3034a30dbb746e572d7ed84897422f927fdf687ea5f"
],
"index": "pypi",
"version": "==5.11.0"
},
"pyparsing": {
"hashes": [
"sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb",
"sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"
],
"markers": "python_full_version >= '3.6.8'",
"version": "==3.0.9"
},
"python-dateutil": {
"hashes": [
"sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86",
"sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==2.8.2"
},
"pytz": {
"hashes": [
"sha256:335ab46900b1465e714b4fda4963d87363264eb662aab5e65da039c25f1f5b22",
"sha256:c4d88f472f54d615e9cd582a5004d1e5f624854a6a27a6211591c251f22a6914"
],
"version": "==2022.5"
},
"pyyaml": {
"hashes": [
"sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf",
@ -271,6 +619,22 @@
"markers": "python_version >= '3.7'",
"version": "==65.5.0"
},
"six": {
"hashes": [
"sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926",
"sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==1.16.0"
},
"tenacity": {
"hashes": [
"sha256:35525cd47f82830069f0d6b73f7eb83bc5b73ee2fff0437952cedf98b27653ac",
"sha256:e48c437fdf9340f5666b92cd7990e96bc5fc955e1298baf4a907e3972067a445"
],
"markers": "python_version >= '3.6'",
"version": "==8.1.0"
},
"werkzeug": {
"hashes": [
"sha256:7ea2d48322cc7c0f8b3a215ed73eabd7b5d75d0b50e31ab006286ccff9e00b8f",

View File

@ -67,23 +67,3 @@ To autoreload on source file changes:
```
gunicorn flask_frontend:app --reload
```
## Temperature maps
**Grayscale pyrometry:** currently basic; uses grayscale opencv import, then just applies a jet filter. Doesn't yet copy the full impl in the paper.
**Ratio pyrometry:** pretty damn close to what's in the paper but it's very broken atm
**Test image:**
![](examples/01-0001-cropped.png)
**Ratio pyrometry result (with convolutional smoothing):**
According to general researcher consensus, ratio pyrometry is supposed to be more accurate.
![](examples/01-0001-cropped-transformed-ratio.png)
**Grayscale pyrometry result:**
![](examples/01-0001-transformed-grayscale.png)

View File

@ -2,14 +2,15 @@ import yaml
import cv2 as cv
import numpy as np
import os
from matplotlib import pyplot as plt, image as mpimg
from ratio_pyrometry import rg_ratio_normalize
config = {}
with open("./config.yaml", "r") as yaml_stream:
config = yaml.safe_load(yaml_stream)
img_in_dir = "./images-input"
img_out_dir = "./images-output"
img_input_dir = "images-input"
img_out_dir = "images-output"
accepted_formats = [
".jpg",
".jpeg",
@ -19,44 +20,64 @@ accepted_formats = [
files = []
for file in os.listdir(img_in_dir):
for file in os.listdir(img_input_dir):
filename = os.fsdecode(file)
valid = False
for fmt in accepted_formats:
if filename.endswith(fmt):
files.append(os.path.join(img_in_dir, filename))
files.append(filename)
valid = True
break
if not valid:
if not valid and filename != ".gitkeep":
print(f"Invalid file extension for {filename}.")
exit
for filename in files:
with open(filename) as imgfile:
# read image & crop
img_orig = cv.imread(imgfile, cv.IMREAD_UNCHANGED)
# read image & crop
img_orig = cv.imread(f'{img_input_dir}/{filename}', cv.IMREAD_UNCHANGED)
img = rg_ratio_normalize(
img_orig,
config['i-darkcurrent'],
config['f-stop'],
config['exposure-time'],
config['iso'],
config['min-temp'],
config['max-temp'],
config['scaling-factor'],
)
img = rg_ratio_normalize(
img_orig,
config['i-darkcurrent'],
config['f-stop'],
config['exposure-time'],
config['iso'],
config['min-temp'],
config['max-temp'],
config['scaling-factor'],
img_out=False
)
# build & apply smoothing conv kernel
k = []
smoothing_radius = config['smoothing-radius']
for i in range(smoothing_radius):
k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)])
kernel = np.array(k)
# build & apply smoothing conv kernel
k = []
smoothing_radius = config['smoothing-radius']
for i in range(smoothing_radius):
k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)])
kernel = np.array(k)
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
# write colormapped image
img_jet = cv.applyColorMap(img, cv.COLORMAP_JET)
# chop off alphas & reverse bgr
img_orig = img_orig[:,:,:3]
img_orig = img_orig[:,:,::-1]
# TODO: GENERTE TEMP KEY & OUTPUT MATPLOTLIB
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1)
ax.set_title("Original Image")
imgplot_orig = plt.imshow(img_orig)
ax2 = fig.add_subplot(1, 2, 2)
ax2.set_title("Output Heatmap")
imgplot_final = plt.imshow(img, cmap="plasma")
ticks = np.linspace(
config['min-temp'],
config['max-temp'],
4
).tolist()
cbar = plt.colorbar(
orientation="horizontal",
)
cbar.ax.set_xticklabels([str(t) for t in ticks])
name = filename.split(".")[0]
extension = filename.split(".")[1]
fig.savefig(f"{img_out_dir}/{name}-transformed.{extension}", dpi=120)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 MiB

View File

@ -3,7 +3,13 @@
import cv2 as cv
import numpy as np
file = '01-0001-cropped.png'
# edge-detection kernel amplification
AMPLIFIER=9
MIN_INTENSITY=100
# file = '01-0001-cropped.png'
file = 'streaktest.png'
file_name = file.split(".")[0]
file_ext = file.split(".")[1]
@ -13,7 +19,7 @@ img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
kernel = np.array([
[-1, -1, -1],
[-1, 8, -1],
[-1, AMPLIFIER, -1],
[-1, -1, -1],
])
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

View File

@ -3,6 +3,8 @@ import numpy as np
from ratio_pyrometry import ratio_pyrometry_pipeline
import base64
import cv2 as cv
import plotly.figure_factory as ff
from scipy import stats
app = Flask(
__name__,
@ -18,7 +20,7 @@ def index():
def ratio_pyro():
f = request.files['file']
f_bytes = np.fromstring(f.read(), np.uint8)
img_orig, img_res, key = ratio_pyrometry_pipeline(
img_orig, img_res, key, ptemps = ratio_pyrometry_pipeline(
f_bytes,
ISO=float(request.form['iso']),
I_Darkcurrent=float(request.form['i_darkcurrent']),
@ -31,12 +33,34 @@ def ratio_pyro():
eqn_scaling_factor=float(request.form['equation_scaling_factor'])
)
# get base64 encoded images
img_orig_b64 = base64.b64encode(cv.imencode('.png', img_orig)[1]).decode(encoding='utf-8')
img_res_b64 = base64.b64encode(cv.imencode('.png', img_res)[1]).decode(encoding='utf-8')
# generate prob. distribution histogram & return embed
fig = ff.create_distplot(
[ptemps],
group_labels=[f.name],
show_rug=False,
show_hist=False,
)
fig.update_layout(
autosize=False,
width=800,
height=600,
)
fig.update_xaxes(
title_text="Temperature (°C)",
)
fig.update_xaxes(
title_text="Probability (1/°C)",
)
freq_plot = fig.to_html()
return render_template(
'results.jinja2',
img_orig_b64=img_orig_b64,
img_res_b64=img_res_b64,
legend=key
legend=key,
freq_plot=freq_plot
)

View File

@ -13,11 +13,16 @@ def rg_ratio_normalize(
ISO,
MIN_TEMP,
MAX_TEMP,
eqn_scaling_factor
eqn_scaling_factor,
):
"""
Get normalized G/R -> temperature data + list of all temperatures
"""
# copy image into new array & chop off alpha values (if applicable)
imgnew = imgarr.copy()[:,:,:3]
positive_temps = []
for i in range(len(imgarr)):
for j in range(len(imgarr[i])):
px = imgarr[i][j]
@ -32,12 +37,14 @@ def rg_ratio_normalize(
# remove pixels outside calibration range
if (MIN_TEMP != None and temp_C < MIN_TEMP) or (MAX_TEMP != None and temp_C > MAX_TEMP):
temp_C = MIN_TEMP
elif temp_C > MIN_TEMP:
positive_temps.append(temp_C)
# scale light intensity to calculated temperature
pix_i = scale_temp(temp_C, MIN_TEMP, MAX_TEMP)
imgnew[i][j] = [pix_i, pix_i, pix_i]
return imgnew
return imgnew, positive_temps
@jit(nopython=True)
@ -83,7 +90,7 @@ def ratio_pyrometry_pipeline(
# read image & crop
img_orig = cv.imdecode(file_bytes, cv.IMREAD_UNCHANGED)
img = rg_ratio_normalize(
img, ptemps = rg_ratio_normalize(
img_orig,
I_Darkcurrent,
f_stop,
@ -91,7 +98,7 @@ def ratio_pyrometry_pipeline(
ISO,
MIN_TEMP,
MAX_TEMP,
eqn_scaling_factor
eqn_scaling_factor,
)
# build & apply smoothing conv kernel
@ -126,4 +133,4 @@ def ratio_pyrometry_pipeline(
tempkey[temps[i]] = f"rgb({c[2]}, {c[1]}, {c[0]})"
# original, transformed, legend
return img_orig, img_jet, tempkey
return img_orig, img_jet, tempkey, ptemps

View File

@ -35,6 +35,9 @@
</td>
</tr>
</table>
{# Temperature Frequency Plot #}
<strong>Temperature Distribution</strong>
{{freq_plot}}
<style>
.img-table-heading {